• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    H4SiW12O40-catalyzed cyclization of epoxides/aldehydes and sulfonyl hydrazides:An efficient synthesis of 3,4-disubstituted 1H-pyrazoles

    2022-06-18 10:53:20GuopingYngXunjieXieMengyunChengXiofeiGoXiolingLinKeLiYunyunChengYufengLiu
    Chinese Chemical Letters 2022年3期

    Guoping Yng,Xunjie Xie,Mengyun Cheng,Xiofei Go,Xioling Lin,Ke Li,Yunyun Cheng,Yufeng Liu

    a Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation,Jiangxi Province Key Laboratory of Synthetic Chemistry,East China University of Technology,Nanchang 330013,China

    b Henan Key Laboratory of Polyoxometalate Chemistry,College of Chemistry and Chemical Engineering,Henan University,Kaifeng 475004,China

    Keywords:Silicotungstic acid Epoxides Aldehydes Sulfonyl hydrazides 3,4-Disubstituted 1H-pyrazoles

    ABSTRACT A simple and efficient method for the synthesis of pyrazoles through a silicotungstic acid (H4SiW12O40)-catalyzed cyclization of epoxides/aldehydes and sulfonyl hydrazides has been developed.Various epoxides/aldehydes were smoothly reacted with sulfonyl hydrazides to furnish regioselectivity 3,4-disubstituted 1H-pyrazoles.The application of such an earth-abundant,readily accessible,and nontoxic catalyst provides a green approach for the construction of 3,4-disubstituted 1H-pyrazoles.A plausible reaction mechanism has been proposed on the basis of control experiments,GC-MS and DFT calculations.

    Pyrazole moiety is ubiquitous in organic compounds with broad pharmaceutical activities,such as antitumor,antifungal,and analgesic activities.Thus,compounds containing pyrazole rings are widely used in medical and life sciences [1–6].Moreover,pyrazoles have also displayed applications in the preparation of metalorganic complexes,supermolecules,electroluminescent materials and utilized as essential ligands for metals [7–11].Owing to their prominent properties,extensive efforts have been made in the construction of pyrazole derivatives [12–16].

    Over the past few decades,various methods have been developed for the construction of pyrazoles.The most commonly strategy for the acquisition of pyrazole derivatives is the condensation reaction between hydrazine and 1,3-electrophilic substrate [17–22].Among the reported methods,sulfonyl hydrazides,which are readily accessible,stable nature and stable solids,have been applied as the predominant nitrogen source for the construction of pyrazoles [23–26].For example,Wan and Hu groups reported the condensation of sulfonyl hydrazides with 1,3-dicarbonyl compounds to synthesis of 1,3,5-trisubstituted pyrazoles,respectively [27–29].The condensation of sulfonyl hydrazides withα,β-unsaturated carbonyl compounds to synthesis of 3,5-disubstituted pyrazoles have also been reported [30–32].Other 1,3-electrophilic substrates include 1,3-diarylpropenes [33],enaminones [34],propargylic alcohols [35,36],and related multicomponent variants [37–39]were also used to construct pyrazoles with sulfonyl hydrazides(Scheme 1).However,these methods usually suffer from harsh reaction conditions,poor regioselectivity,requiring special substrate sources,and most of the products remain restricted to 3,5-substituted pyrazoles.Therefore,the development of an environmentally benign,efficient and practical approach for the synthesis of pyrazoles from easily available substrates is highly desirable.

    Scheme 1.General methods for the construction of pyrazole rings using sulfonyl hydrazides as predominant nitrogen source.

    Herein,we report an efficient cascade reaction for the preparation of 3,4-disubstituted pyrazoles by cyclization of various epoxides or aldehydes with sulfonyl hydrazides.Notably,the utilization of environmentally benign and inexpensive polyoxometalates as highly efficient catalysts to synthesis the pyrazoles makes this transformation a green procedure [40–42].In addition,the large excess of sulfonyl hydrazides could be transformed to thiosulfonates under standard conditions,which represents an important class of organosulfur compounds with an array of biological activities including antibacterial,antiviral and antifungal activities [43–45].

    Initially,we commenced our studies using 2-phenyloxirane(1a) and 4-methylbenzenesulfonohydrazide (3a) as the model substrates to screen the reaction conditions and summarized in Table 1.The results of the catalyst screening showed that Bronsted acids (entries 1–4) were able to catalyze the reaction and H4SiW12O40performed best,giving the desired product 4a in 41%yield (entry 4).Two representative Lewis acids,FeCl3and Cu(OTf)2,were tested as catalysts under the same conditions and did not form any desired product (entries 5 and 6).No product was obtained in the absence of catalyst (entry 7).After screening solvents,we found that 1,4-dioxane was the best solvent for this reaction,comparing with CH3CN,DCE,toluene and CH3NO2(entry 3vs.entries 8–11).The reaction worked better with the formation of 4a in 46% yield (Table 1,entry 12) when the reaction temperature was increased to 100 °C,and further increasing the temperature did not improve the yield.When we tried this transformation with 0.4 mmol 3a,the yield of 4a increased to 61%.Elevated the amount of 3a led to a decreased yield (Table 1,entries 15 and 16).The yield was increased to 87% when 4 mol% of H4SiW12O40was employed(entry 18).

    Table 1 Conditions optimization.a

    Table 2 Substrate scope of H4SiW12O40-catalyzed cyclization reaction.a

    With the optimal reaction conditions in hand,we explored the substrate scope of this transformation with a range of sulfonyl hydrazides.As shown in Table 2,sulfonyl hydrazide derivatives with different functional groups were applicable to this reaction.Both electron-withdrawing and -donating substituted groups in the benzene ring of sulfonyl hydrazides could smoothly provide nitrogen source,producing the desired product 4a in moderate to high yields (Table 2,entries 1–8).In addition,the large excess of sulfonyl hydrazides could be transformed to corrsponding thiosulfonates in moderate to good yields under standard conditions(47%?78%,5a–5h).It is worth noting that although the sulfonyl groups were not involved in the reaction,the different substituted groups of sulfonyl hydrazides still had an effect on the yield of the product.Sulfonyl hydrazides with electron-donating groups afforded higher yield of 4a than those with electron-withdrawing groups.

    Subsequently,the scope of the reaction was explored using a variety of epoxides (Table 3).The epoxides bearing -F,-Cl,-Br groups on the para-position of benzene ring were converted into the corresponding 3,4-disubstituted pyrazoles 4b–4d in good yields with different sulfonyl hydrazides,and corrsponding thiosulfonates could be obtained in 45%?73% yields.

    To expand the substrate scope of this transformation,phenylacetaldehyde derivatives were also explored.As can be seen in Table 4,phenylacetaldehydes appeared slightly high reactive than corresponding epoxide derivatives (2a–2d).Generally,phenylacetaldehydes with substituents such asm-Me,p-OMe ando-Cl afforded the corresponding products (4e–4g) in good yields.

    Table 3 Substrate scope of H4SiW12O40-catalyzed cyclization reaction.a

    More practically,this reaction could be performed on a gramscale (10 mmol scale),clearly showing its potential application in organic synthesis (Scheme 2).The model product 4a from 2-phenyloxirane (1a) or phenylacetaldehyde (2a) with 4-methylbenzenesulfonohydrazide (3a) were investigated under the standard conditions,and the desired product 4a were obtained in 82% and 85% yields,respectively.

    In order to gain insight into the reaction mechanism,several control experiments were conducted (Scheme 3).By addition of 2 equiv.radical inhibitor TEMPO,4a was still produced in high yield under standard conditions,which indicated that this reaction may not proceedviaa radical process (Scheme 3a).When the model reaction was stopped at 1 h,2-phenylacetaldehyde (2a),1-phenylethane-1,2-diol (A),2,4-diphenylbut-2-enal (B) and 4a were detected by GC-MS (Fig.S1 in Supporting information),which implied that 2a,A and B would be the key intermediates in this reaction (Scheme 3b).Under the standard reaction conditions,both 2a and B could be converted to 4a in 89% and 80% yields,respectively.However,Pure A could not be converted to 4a under the standard conditions (Schemes 3c-e).The results further proved that 2a and B were the key intermediates and A was not the key intermediate in this reaction.

    a Reaction conditions: 2 (0.4 mmol),3a (0.4 mmol),1,4-dioxane (1.0 mL),H4SiW12O40 (4 mol%),for 3 h.b Isolated yield.The yield of 5 based on 0.2 mmol 3.

    Scheme 2.Gram-scale reactions.

    Scheme 3.Control experiments.

    Scheme 4.Proposed mechanism.

    Based on the above experiment results and relevant literature,a plausible mechanism was proposed in Scheme 4 [46,47].It is believed that 1a initially was catalyzed by H4SiW12O40to provide 2aviathe Meinwald rearrangement,which underwent the aldol reaction to afford the intermediate B.The condensation of 3a with B provided imine C,followed by the intramolecular addition to generate pyrazole 4a.

    To better understand the reaction mechanism,a density functional theory (DFT) calculations are employed in the same experimental conditions (solvent of 1,4-dioxane,temperature at 373.15 K,and pressure at 1.00 atm) using M06-2X density functional.According to the proposed mechanism in Scheme 4,the whole reaction can be divided into four sub-reactions (1–4),which are shown in Fig.1 along with their Gibbs free energy change (ΔG) predicted by M06-2X/6–31G??.TheΔGvalues of sub-reactions 1 and 4 are smaller than zero while those of sub-reactions 2 and 3 are larger than zero,indicating that sub-reactions 1 and 4 can occur spontaneously while sub-reactions 2 and 3 cannot.TheΔGvalue of sub-reaction 3 is larger than that of sub-reaction 2,which is larger than that of sub-reaction 1.This is consistent with the experimental result that key intermediates 2a and B are detected by GC-MS.Additionally,theΔGvalue of sub-reaction 4 is much smaller than that of sub-reaction 3,which explains why intermediate C cannot be detected by GC-MS experimentally.

    It is generally known that the first three sub-reactions (1–3)are well known organic reactions,including Meinwald rearrangement of 1a to 2a,aldol condensation of 2a to B,and aldimine condensation of B and 3a to C.But we are not familiar with the last sub-reaction 4 of C to 4a.Therefore,its mechanism is calculated at the M06-2X/6–31G??level and shown in Fig.2.Here,H4SiW12O40provides an acidic environment similar to protonic acid,thus,a simple H3O+-H2O model was used to estimateΔGvalues during protonation and deprotonation processes.Initially,C is readily protonated to form C-p,which is an exergonic process by 36.5 kcal/mol.Then,C-p undergoes intramolecular cyclization reaction through TS with an activation free energy of 22.1 kcal/mol to form cyclic intermediate D,which is also an exergonic process by 4.7 kcal/mol.Subsequently,both formation of TsH from D to E and departure of TsH from E to 4a–p are exergonic processes by 20.4 and 13.3 kcal/mol,respectively.The above steps are all exergonic processes,indicating that protonation of C,intramolecular cyclization of C-p,and both formation and departure of TsH can occur spontaneously.Finally,the experimental detected product 4a is formed after deprotonation of 4a-p,which is an endergonic process by 37.5 kcal/mol.Although deprotonation process is endergonic,the whole sub-reaction 4 is exergonic and spontaneous.These calculation results conclude that it is preferred to occur intramolecular cyclization process before formation and departure of TsH.Additionally,departure of TsH occurred before intramolecular cyclization is calculated to be an endergonic process by 75.0 kcal/mol (Fig.S2 in Supporting information),which also supports the above conclusion that intramolecular cyclization process prefers to occur first.

    Fig.1.Four sub-reactions (1–4) and their Gibbs free energy change (ΔG) predicted by M06-2X/6–31G??.

    Fig.2.Proposed mechanism and calculated relative Gibbs free energies for the subreaction 4 of C to 4a based on DFT calculation.

    In summary,a simple,green and practical system for the preparation of pyrazole derivatives in the presence of 4 mol%H4SiW12O40,using TsNHNH2as a nitrogen-transfer reagent under mild conditions has been demonstrated.The utilization of environmentally benign and inexpensive polyoxometalates as a highly efficient catalyst to synthesis the pyrazoles make this transformation a green procedure.Taken together with its operational simplicity,readily available reagents,and amenability to gram-scale synthesis,this green reaction will find practical applications for the synthesis of pyrazole derivatives.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Nos.22001034 and 21804019),the Open Fund of the Jiangxi Province Key Laboratory of Synthetic Chemistry (No.JXSC202008),the Research Found of East China University of Technology (Nos.DHBK2019264,DHBK2019265 and DHBK2019267).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.08.037.

    日本 av在线| 最好的美女福利视频网| 亚洲男人天堂网一区| 在线观看美女被高潮喷水网站 | 国产熟女xx| 在线观看www视频免费| avwww免费| 波多野结衣高清作品| 午夜福利免费观看在线| 中文字幕熟女人妻在线| 亚洲五月天丁香| 最新在线观看一区二区三区| 久久精品亚洲精品国产色婷小说| 美女大奶头视频| 99国产综合亚洲精品| 国产熟女午夜一区二区三区| 亚洲精品av麻豆狂野| 精品一区二区三区视频在线观看免费| 免费av毛片视频| 99久久无色码亚洲精品果冻| svipshipincom国产片| 国产精品乱码一区二三区的特点| 午夜a级毛片| 亚洲七黄色美女视频| 首页视频小说图片口味搜索| 欧美日韩瑟瑟在线播放| 97人妻精品一区二区三区麻豆| 19禁男女啪啪无遮挡网站| 这个男人来自地球电影免费观看| 亚洲第一电影网av| 久久久久久免费高清国产稀缺| 精品国产美女av久久久久小说| 一个人观看的视频www高清免费观看 | 美女黄网站色视频| 后天国语完整版免费观看| 精品日产1卡2卡| 久久久久久久久中文| 国产精品综合久久久久久久免费| 中文字幕熟女人妻在线| 又爽又黄无遮挡网站| 香蕉久久夜色| 午夜a级毛片| 亚洲国产精品成人综合色| 可以免费在线观看a视频的电影网站| 91在线观看av| 日韩 欧美 亚洲 中文字幕| 午夜亚洲福利在线播放| 法律面前人人平等表现在哪些方面| 9191精品国产免费久久| 日本五十路高清| 视频区欧美日本亚洲| 女警被强在线播放| 欧美日韩国产亚洲二区| 国产一区在线观看成人免费| 18美女黄网站色大片免费观看| √禁漫天堂资源中文www| 手机成人av网站| 亚洲片人在线观看| a级毛片在线看网站| 国产精品 欧美亚洲| 午夜激情av网站| 国产精品av视频在线免费观看| cao死你这个sao货| 精品第一国产精品| 久久精品人妻少妇| 国产黄色小视频在线观看| 久久久国产成人精品二区| 黑人操中国人逼视频| 人人妻人人澡欧美一区二区| 69av精品久久久久久| 国产激情久久老熟女| 国产精品98久久久久久宅男小说| 亚洲熟妇中文字幕五十中出| 日本一区二区免费在线视频| 一本综合久久免费| 欧美在线黄色| 久久久久九九精品影院| 国产av麻豆久久久久久久| 精品电影一区二区在线| 精品国产乱码久久久久久男人| 又爽又黄无遮挡网站| 少妇熟女aⅴ在线视频| 欧美日本亚洲视频在线播放| 欧美在线一区亚洲| 精品一区二区三区av网在线观看| ponron亚洲| 亚洲人成77777在线视频| 日本撒尿小便嘘嘘汇集6| 亚洲一区二区三区不卡视频| 亚洲国产看品久久| 成人手机av| 精品久久久久久久久久久久久| 国产亚洲av高清不卡| 欧美又色又爽又黄视频| 久久久国产精品麻豆| 青草久久国产| 日韩欧美国产在线观看| 伊人久久大香线蕉亚洲五| 中文字幕人妻丝袜一区二区| 精品无人区乱码1区二区| 国产av麻豆久久久久久久| 嫩草影视91久久| videosex国产| 成年女人毛片免费观看观看9| 少妇熟女aⅴ在线视频| 久久这里只有精品中国| 久久亚洲真实| 免费在线观看日本一区| 午夜影院日韩av| 国产成人精品久久二区二区91| √禁漫天堂资源中文www| 午夜两性在线视频| 久久久久久大精品| 久久久国产成人精品二区| 婷婷亚洲欧美| 国产av不卡久久| x7x7x7水蜜桃| 亚洲欧美日韩东京热| 国产精品香港三级国产av潘金莲| 一边摸一边抽搐一进一小说| 亚洲av中文字字幕乱码综合| av国产免费在线观看| 日本 欧美在线| 亚洲人成网站高清观看| 最好的美女福利视频网| 十八禁人妻一区二区| 99精品在免费线老司机午夜| 少妇人妻一区二区三区视频| 又大又爽又粗| 色综合婷婷激情| 亚洲成人中文字幕在线播放| www.www免费av| 人妻丰满熟妇av一区二区三区| 日本免费一区二区三区高清不卡| 欧美日韩乱码在线| 欧美国产日韩亚洲一区| 日韩免费av在线播放| 午夜福利免费观看在线| 丰满人妻熟妇乱又伦精品不卡| 国产一区二区三区视频了| 亚洲无线在线观看| 国产精品永久免费网站| 老司机靠b影院| 成在线人永久免费视频| 精品久久久久久成人av| 日本免费一区二区三区高清不卡| 男女之事视频高清在线观看| 黄色a级毛片大全视频| 悠悠久久av| 国产精品av久久久久免费| 老司机福利观看| 久久久久国产精品人妻aⅴ院| 亚洲激情在线av| 最近在线观看免费完整版| 亚洲中文日韩欧美视频| 99久久精品热视频| 日本撒尿小便嘘嘘汇集6| 成年版毛片免费区| 国产精品日韩av在线免费观看| 国产视频内射| 999久久久精品免费观看国产| 91成年电影在线观看| 欧美一级毛片孕妇| 久久精品91蜜桃| 淫秽高清视频在线观看| 最近最新中文字幕大全电影3| 成人av一区二区三区在线看| 国产精品 国内视频| 久久久久久久久免费视频了| 国产真人三级小视频在线观看| 男人的好看免费观看在线视频 | 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩亚洲综合一区二区三区_| 免费看日本二区| 国产精品亚洲一级av第二区| 在线观看美女被高潮喷水网站 | 男女下面进入的视频免费午夜| 成人手机av| 好看av亚洲va欧美ⅴa在| 国产av一区二区精品久久| 99精品久久久久人妻精品| 日韩国内少妇激情av| 一区福利在线观看| 久久久精品国产亚洲av高清涩受| 91在线观看av| 亚洲成人国产一区在线观看| 两人在一起打扑克的视频| 亚洲最大成人中文| 亚洲,欧美精品.| 久久这里只有精品19| 亚洲一区二区三区不卡视频| 黄片小视频在线播放| 国产成人aa在线观看| 韩国av一区二区三区四区| av在线播放免费不卡| 嫁个100分男人电影在线观看| 国产1区2区3区精品| 日韩成人在线观看一区二区三区| 国产精华一区二区三区| 又黄又粗又硬又大视频| 日本精品一区二区三区蜜桃| 成年女人毛片免费观看观看9| 国产视频一区二区在线看| 19禁男女啪啪无遮挡网站| 久久久久久亚洲精品国产蜜桃av| 亚洲精品在线美女| 午夜亚洲福利在线播放| 免费在线观看日本一区| 日本 av在线| 欧美色视频一区免费| 欧美乱码精品一区二区三区| 久久久久久久久久黄片| 首页视频小说图片口味搜索| 三级国产精品欧美在线观看 | 日本 欧美在线| 看免费av毛片| 啦啦啦免费观看视频1| 一本久久中文字幕| 好看av亚洲va欧美ⅴa在| 国产免费av片在线观看野外av| 制服诱惑二区| 国产成+人综合+亚洲专区| 国产免费av片在线观看野外av| 别揉我奶头~嗯~啊~动态视频| 国产伦在线观看视频一区| 他把我摸到了高潮在线观看| 桃色一区二区三区在线观看| 亚洲精品在线美女| 久久久久久久精品吃奶| 成人欧美大片| 亚洲国产精品999在线| 午夜免费激情av| 欧美高清成人免费视频www| 一区福利在线观看| aaaaa片日本免费| 久久人妻av系列| 午夜福利高清视频| 老鸭窝网址在线观看| 中文字幕久久专区| 国产精品香港三级国产av潘金莲| 中文字幕精品亚洲无线码一区| 熟妇人妻久久中文字幕3abv| 麻豆国产97在线/欧美 | 18禁观看日本| 午夜福利在线观看吧| 国产精品野战在线观看| 在线永久观看黄色视频| 亚洲欧美精品综合久久99| 老熟妇仑乱视频hdxx| 一级片免费观看大全| 在线观看舔阴道视频| 精品乱码久久久久久99久播| 久久伊人香网站| 国产三级在线视频| 三级毛片av免费| 国产精品一区二区精品视频观看| 99精品欧美一区二区三区四区| 狠狠狠狠99中文字幕| 欧美成人性av电影在线观看| 久久久久免费精品人妻一区二区| 国产精品日韩av在线免费观看| 天堂影院成人在线观看| 草草在线视频免费看| 国产亚洲欧美98| 欧美日韩黄片免| 一夜夜www| 黄色a级毛片大全视频| 成人国产综合亚洲| 19禁男女啪啪无遮挡网站| 国内久久婷婷六月综合欲色啪| 国产三级在线视频| 狂野欧美白嫩少妇大欣赏| 国产伦一二天堂av在线观看| 国内少妇人妻偷人精品xxx网站 | 婷婷精品国产亚洲av在线| 国产欧美日韩一区二区三| 精品久久久久久久毛片微露脸| 亚洲成人久久爱视频| 午夜精品在线福利| 97超级碰碰碰精品色视频在线观看| 中文在线观看免费www的网站 | 国产亚洲av嫩草精品影院| 少妇的丰满在线观看| 久久伊人香网站| 亚洲va日本ⅴa欧美va伊人久久| 人妻夜夜爽99麻豆av| 在线视频色国产色| 欧美一区二区国产精品久久精品 | 窝窝影院91人妻| 少妇熟女aⅴ在线视频| 国产av在哪里看| 丰满人妻一区二区三区视频av | 无人区码免费观看不卡| 搡老熟女国产l中国老女人| 国产高清激情床上av| 俄罗斯特黄特色一大片| 午夜精品久久久久久毛片777| 久久天堂一区二区三区四区| 午夜精品在线福利| 精品久久久久久久久久久久久| 一二三四在线观看免费中文在| 日本精品一区二区三区蜜桃| 国内久久婷婷六月综合欲色啪| 97人妻精品一区二区三区麻豆| 热99re8久久精品国产| 亚洲中文字幕一区二区三区有码在线看 | 国产av在哪里看| 日韩三级视频一区二区三区| 精品无人区乱码1区二区| 黄色成人免费大全| videosex国产| 成年女人毛片免费观看观看9| 久久香蕉精品热| 欧美一区二区国产精品久久精品 | 丁香六月欧美| 午夜激情av网站| 每晚都被弄得嗷嗷叫到高潮| 精华霜和精华液先用哪个| 日本免费a在线| 91大片在线观看| 成人国产综合亚洲| 伊人久久大香线蕉亚洲五| 日韩 欧美 亚洲 中文字幕| 亚洲性夜色夜夜综合| 很黄的视频免费| 日韩欧美在线乱码| 村上凉子中文字幕在线| 亚洲人成77777在线视频| 又爽又黄无遮挡网站| 久久精品亚洲精品国产色婷小说| 日韩欧美三级三区| 最新美女视频免费是黄的| 少妇被粗大的猛进出69影院| 午夜成年电影在线免费观看| 久久亚洲精品不卡| 成人亚洲精品av一区二区| 国产精品久久久av美女十八| 国产69精品久久久久777片 | 91av网站免费观看| 一级毛片精品| 久久久国产精品麻豆| 国产av麻豆久久久久久久| 国产av不卡久久| 50天的宝宝边吃奶边哭怎么回事| 哪里可以看免费的av片| 久久 成人 亚洲| 99在线人妻在线中文字幕| 久久热在线av| 岛国视频午夜一区免费看| 91大片在线观看| 免费av毛片视频| 在线播放国产精品三级| 黄片小视频在线播放| 日韩欧美国产在线观看| 免费在线观看完整版高清| 久久人妻av系列| 国产精品,欧美在线| 国产高清videossex| 国产高清激情床上av| 欧美中文综合在线视频| 草草在线视频免费看| √禁漫天堂资源中文www| 午夜a级毛片| 国产激情久久老熟女| 一区福利在线观看| 级片在线观看| 美女高潮喷水抽搐中文字幕| 高潮久久久久久久久久久不卡| 欧美黑人欧美精品刺激| 国产成人啪精品午夜网站| 免费在线观看影片大全网站| 亚洲九九香蕉| 亚洲人成网站高清观看| 国产爱豆传媒在线观看 | 又黄又粗又硬又大视频| 妹子高潮喷水视频| 国产男靠女视频免费网站| 日韩av在线大香蕉| 人妻久久中文字幕网| 亚洲午夜精品一区,二区,三区| 免费电影在线观看免费观看| 国产真实乱freesex| 欧美激情久久久久久爽电影| 亚洲男人天堂网一区| 久久这里只有精品19| 老熟妇乱子伦视频在线观看| 变态另类丝袜制服| 国产亚洲欧美98| 婷婷亚洲欧美| 丁香欧美五月| 亚洲成av人片免费观看| 一本大道久久a久久精品| 国产成年人精品一区二区| 又爽又黄无遮挡网站| 国产高清视频在线播放一区| 大型av网站在线播放| 人人妻人人看人人澡| 久久天堂一区二区三区四区| 成年免费大片在线观看| 国产一级毛片七仙女欲春2| 国产伦人伦偷精品视频| 亚洲国产精品久久男人天堂| 三级国产精品欧美在线观看 | 精品国产乱码久久久久久男人| 男女那种视频在线观看| 一进一出抽搐gif免费好疼| 久久精品国产亚洲av高清一级| 国产成人av激情在线播放| 97碰自拍视频| 午夜精品在线福利| 国内精品一区二区在线观看| 日本精品一区二区三区蜜桃| 色av中文字幕| 国产一区二区三区视频了| 亚洲黑人精品在线| 免费观看精品视频网站| 国产一区在线观看成人免费| 可以在线观看的亚洲视频| 国产精品免费视频内射| 久久人妻福利社区极品人妻图片| 99精品在免费线老司机午夜| av在线天堂中文字幕| 亚洲欧美日韩东京热| 男女视频在线观看网站免费 | 午夜激情福利司机影院| 欧美日本亚洲视频在线播放| 亚洲国产中文字幕在线视频| 男女做爰动态图高潮gif福利片| 成人18禁在线播放| 老汉色av国产亚洲站长工具| 99久久99久久久精品蜜桃| 俄罗斯特黄特色一大片| 老司机在亚洲福利影院| 在线观看免费日韩欧美大片| 成人国产一区最新在线观看| 欧美3d第一页| 国产精品久久久人人做人人爽| 亚洲天堂国产精品一区在线| 女生性感内裤真人,穿戴方法视频| 黑人操中国人逼视频| 日本a在线网址| 一二三四在线观看免费中文在| 亚洲成av人片免费观看| 久久久久亚洲av毛片大全| 99久久综合精品五月天人人| 99久久精品热视频| 亚洲免费av在线视频| 好看av亚洲va欧美ⅴa在| 99国产精品一区二区蜜桃av| 亚洲国产高清在线一区二区三| 成人av在线播放网站| 神马国产精品三级电影在线观看 | 美女高潮喷水抽搐中文字幕| 看黄色毛片网站| 久久中文字幕一级| 少妇熟女aⅴ在线视频| 色播亚洲综合网| 亚洲电影在线观看av| 欧美成狂野欧美在线观看| 97碰自拍视频| 99热这里只有精品一区 | 极品教师在线免费播放| 欧美日韩精品网址| tocl精华| 欧美+亚洲+日韩+国产| 国产v大片淫在线免费观看| 国产av一区二区精品久久| 啦啦啦观看免费观看视频高清| 琪琪午夜伦伦电影理论片6080| 欧美绝顶高潮抽搐喷水| av在线天堂中文字幕| 精品福利观看| 久久久国产成人免费| 久久人人精品亚洲av| 欧美国产日韩亚洲一区| 国产午夜精品久久久久久| 欧美绝顶高潮抽搐喷水| 男插女下体视频免费在线播放| 大型黄色视频在线免费观看| 精品午夜福利视频在线观看一区| 国产私拍福利视频在线观看| 精品久久久久久久人妻蜜臀av| 亚洲av第一区精品v没综合| 亚洲人成网站在线播放欧美日韩| 久久久精品国产亚洲av高清涩受| 久久精品夜夜夜夜夜久久蜜豆 | 香蕉av资源在线| 黄色毛片三级朝国网站| 欧美成人性av电影在线观看| 国产一区二区三区视频了| e午夜精品久久久久久久| av在线播放免费不卡| 久久久精品大字幕| 一个人免费在线观看电影 | 国产精品免费一区二区三区在线| 亚洲av中文字字幕乱码综合| 亚洲黑人精品在线| 国产精品综合久久久久久久免费| 成人三级做爰电影| 久久99热这里只有精品18| 亚洲精品av麻豆狂野| 18禁美女被吸乳视频| 欧美三级亚洲精品| 欧美3d第一页| 亚洲男人天堂网一区| 女人爽到高潮嗷嗷叫在线视频| 色精品久久人妻99蜜桃| 91字幕亚洲| 美女扒开内裤让男人捅视频| 国产午夜精品久久久久久| 少妇熟女aⅴ在线视频| 给我免费播放毛片高清在线观看| 好男人电影高清在线观看| 亚洲精品国产一区二区精华液| 波多野结衣高清作品| 熟妇人妻久久中文字幕3abv| 午夜免费激情av| 亚洲精品一区av在线观看| 国产高清videossex| 91成年电影在线观看| av免费在线观看网站| 18禁黄网站禁片午夜丰满| 亚洲国产看品久久| 欧美最黄视频在线播放免费| 国产成人精品无人区| 12—13女人毛片做爰片一| 99久久综合精品五月天人人| АⅤ资源中文在线天堂| 亚洲欧美日韩东京热| 国产欧美日韩一区二区精品| 99re在线观看精品视频| 男女那种视频在线观看| 日本免费a在线| 国产一级毛片七仙女欲春2| 99精品久久久久人妻精品| 成人国产一区最新在线观看| 成年女人毛片免费观看观看9| 国产精品,欧美在线| 怎么达到女性高潮| 欧美日韩中文字幕国产精品一区二区三区| tocl精华| 欧美高清成人免费视频www| 五月玫瑰六月丁香| 色综合婷婷激情| 亚洲七黄色美女视频| 精品不卡国产一区二区三区| 好男人在线观看高清免费视频| 此物有八面人人有两片| 在线看三级毛片| 国产真人三级小视频在线观看| 国产久久久一区二区三区| 国产精品,欧美在线| 人妻丰满熟妇av一区二区三区| 日韩三级视频一区二区三区| 久久久久免费精品人妻一区二区| 99国产精品一区二区蜜桃av| 欧美三级亚洲精品| 免费在线观看亚洲国产| 亚洲美女视频黄频| 欧美最黄视频在线播放免费| 精品国产乱码久久久久久男人| 国产精品98久久久久久宅男小说| 久久精品91无色码中文字幕| 亚洲电影在线观看av| 可以在线观看的亚洲视频| 女人高潮潮喷娇喘18禁视频| 可以免费在线观看a视频的电影网站| 国产真人三级小视频在线观看| 久久伊人香网站| 欧美黑人欧美精品刺激| 可以在线观看毛片的网站| 亚洲狠狠婷婷综合久久图片| 不卡av一区二区三区| 一级片免费观看大全| 在线观看66精品国产| 一本一本综合久久| 国产三级中文精品| 成年女人毛片免费观看观看9| 久久亚洲精品不卡| 欧美久久黑人一区二区| 老汉色av国产亚洲站长工具| 男男h啪啪无遮挡| 免费观看人在逋| 国产精品98久久久久久宅男小说| 亚洲色图 男人天堂 中文字幕| 99国产精品一区二区三区| 午夜免费激情av| 久久久久亚洲av毛片大全| 久久伊人香网站| 久久久水蜜桃国产精品网| 搡老熟女国产l中国老女人| 最近最新免费中文字幕在线| 黄色 视频免费看| 在线看三级毛片| 少妇被粗大的猛进出69影院| 国产精品野战在线观看| 亚洲av熟女| 老汉色∧v一级毛片| 女人被狂操c到高潮| 日韩欧美精品v在线| 国产人伦9x9x在线观看| 女生性感内裤真人,穿戴方法视频| 久久久久免费精品人妻一区二区| 国产精品 国内视频| 少妇粗大呻吟视频| 俺也久久电影网| www.自偷自拍.com| 国产精品亚洲av一区麻豆| 国产av一区二区精品久久| 国产99久久九九免费精品| 少妇裸体淫交视频免费看高清 | 国产99白浆流出| 午夜老司机福利片| 久久人人精品亚洲av| 日韩欧美国产在线观看|