• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Scalable synthesis of macroscopic porous carbon sheet anode for potassium-ion capacitor

    2022-06-18 10:53:18YuyingQinYuhoXieHnZhoChunynZhuTongLiShuxinZhngRutoWngYunchngShiLongweiYin
    Chinese Chemical Letters 2022年3期

    Yuying Qin,Yuho Xie,Hn Zho,Chunyn Zhu,Tong Li,Shuxin Zhng,Ruto Wng,b,c,?,Yunchng Shi,?,Longwei Yin,?

    a Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials,Ministry of Education,School of Materials Science and Engineering,Shandong University,Ji’nan 250061,China

    b Suzhou Institute of Shandong University,Suzhou 215123,China

    c CAS Key Laboratory of Carbon Materials,Institute of Coal Chemistry,Chinese Academy of Sciences,Taiyuan 030001,China

    Keywords:Carbon materials Anode Nitrogen doping Porous carbon Potassium-ion capacitor K+ charge storage

    ABSTRACT Carbon materials hold the great promise for application in energy storage devices owing to their low cost,high thermal/chemical stability,and high electrical conductivity.However,it remains challenging to synthesize high-performance carbon electrodes in a simple,scalable and sustainable way.Here,we report a facile method for scalable synthesis of porous carbon anode by using cheap and easily accessible zeolitic imidazolate framework-8 as a template and polyvinylpyrrolidone as an additional carbon source.The obtained porous carbon shows the macroscopic sheet-like morphology,which has the highly disordered structure,expanded interlayer spacing,abundant pore structure,and nitrogen doping properties.This porous carbon anode is demonstrated to have the excellent K+ charge storage properties in specific capacity,rate capability,and cycling stability.A potassium-ion capacitor assembled by using this porous carbon as the anode,delivers a maximum energy density of 85.12 Wh/kg and power density of 11860 W/kg as well as long cycle life exceeding 3000 cycles.This represents a critical advance in the design of low cost and scalable carbon material for applications in energy storage devices.

    Recently,potassium-ion based energy storage devices have attracted widely attention owing to the low cost,abundance in earth’crust (1.5 wt%),low redox potential (?2.93 Vvs.E0) of potassium [1].They are considered as the optimal substitutes for popular lithium-ion counterparts.The most common potassium-ion based energy storage devices are potassium-ion batteries (PIBs)and potassium-ion capacitors (PICs) [2,3].PIBs with the same configuration with lithium-ion batteries,exhibit the high energy density,but suffering from the poor power density and cycling stability [1,2].PICs combine a capacitive porous carbon cathode,a battery-like anode,and organic electrolyte containing K salts in one configuration,which have the ability to deliver the high energy density and power density simultaneously without sacrificing the cycling stability [3,4].Unfortunately,most of reported PICs are lower than expected.The main issue on PICs is kinetics mismatch between two electrodes,where the kinetics of anode materials based on faradaic potassium redox reaction is far less than that of cathode materials using the electrolytic double-layer capacitance.Thus,the substantial progress on anode materials to accommodate the large sized potassium ions is still a great challenge for PICs.

    Various anode materials have been explored so far,which can be mainly categorized as three types including insert-type,redoxtype,and alloy-type [5,6].Redox-type and alloy-type anode materials are characterized by their high theoretical specific capacities,yet suffers from the poor rate capability and short cycling life owing to the large volume change during the K+accommodation.Insert-type materials,such as carbon materials [7–9],K2TiO13[10],organic K2TP [11],MXene [12],have been explored as anodes for PICs or PIBs due to no apparent structural change during the potassiated process.Among these insert-type materials,carbon materials are considered as the most promising anodes for PICs owing to their high theoretical specific capacity (279 mAh/g),limited volume change,and low K+insertion potential (<0.5 Vvs.K+/K)[8,13].Recently,carbon materials with adjustable microstructure and/or optimal heteroatoms doping and/or highly porous structure have been developed [7,9,14–19],which exhibit the enhanced electrochemical performance in specific capacity,rate capability and long cycle life.However,many synthesized methods for these carbon materials such as template method,chemical vapor deposition and arc discharge,usually need multi-step treatments or unique equipment,resulting in low production efficiency,high energy consumption,and/or unscalable manner.

    Fig.1.(a) Schematic illustration of the synthesis of ZPDC.(b–d) SEM images of ZPDC.(e–g) TEM images of ZPDC.

    Herein,we report a facile and scalable method to synthesize the porous carbon anode by directly carbonization of the mixture of ZIF-8 and PVP made by solution process.The as-prepared porous carbon shows the macroscopic sheet-like morphology,which has the expanded interlayer spacing,highly disordered structure,abundant pore structure,and nitrogen doped properties.Electrochemical results demonstrate that ZIF-8 and PVP derived porous carbon(ZPDC) exhibits the enhanced K+charge storage properties in specific capacity,rate capability,and cycling stability.Moreover,full cell PICs are assembled by using ZPDC as the anode and homemade porous carbon as the cathode,which can operate at a high working voltage up to 4.2 V and deliver a maximum energy density of 85.12 Wh/kg and power density of 11.86 kW/kg as well as long cycle lifespan over 3000 cycles.

    Fig.1a shows the typical synthesized procedure of ZPDC.In this procedure,a certain amount of zinc zeolitic imidazolate framework(ZIF-8) with an average diameter of 1.8 μm and PVP was homogeneously mixed in water,and then dried to form a white sheet with a thickness of ~0.4 mm (Figs.S1 and S2 in Supporting information).SEM images in Fig.S1 show that ZIF-8 particles are homogeneously embedded into PVP matrix.In addition,the pristine polyhedral morphology of ZIF-8 is slightly changed,which may be related to the PVP coated on the surface of ZIF-8 particles.The white sheet was further pyrolyzed at 1000 °C in an Ar atmosphere,resulting in a porous ZPDC sheet with a thickness of ~0.22 mm.The morphology and structure of as-prepared ZPDC sheet were studiedviascanning electron microscopy (SEM) and transmission electron microscopy (TEM).As shown in Figs.1b and c,as-prepared ZPDC sheet is composed by the well-connected micro-boxes with an average diameter of 1.1 μm.High-resolution SEM image (Fig.1d)and TEM image (Fig.1e) show that micro-boxes inherit the polyhedral shape of ZIF-8 particles,but with slight deformation.The slight deformation of micro-boxes may be related to PVP addition.During the pyrolysis,the PVP gel was transformed into a stiff carbon shell coated on ZIF-8 particles at a low pyrolyzed temperature [20].Further elevated the pyrolyzed temperature,ZIF-8 particles enclosed in PVP derived carbon shell start to decompose,release the decomposed gas,and then shrink,finally resulting in a porous carbon,while the PVP derived carbon shell deforms slightly due to the shrinkage of ZIF-8 template.Therefore,PVP was used here as an adhesion agent to bind the ZIF-8 particles to form the ZIF-8/PVP composite sheet and as the additional carbon source to form the carbon shell,thus connecting the ZIF-8 derived carbon together for generating macroscopic porous carbon framework.Similar shell-core structure also observed in other works on ZIF-8/PVP and ZIF-8/agarose derived porous carbon [20,21].For comparison,ZIF-8 particles without PVP addition were transformed into regularly polyhedral carbon with an average particle size of 0.66 μm under the same condition (Fig.S2).High-resolution TEM images(Figs.1f and g) show that the carbon framework of ZPDC is composed by a three-dimensional (3D) distribution of nanopores with highly curved atom-thick walls.Energy dispersive X-ray spectrometry (EDS) mapping (Fig.S3 in Supporting information) demonstrates the uniform distribution of N and O heteroatoms over the carbon matrix of ZPDC.

    Fig.2a shows the XRD patterns of ZPDC and ZDC samples.The XRD patterns of ZDC shows the two broaden peaks located around 25.18oand 43.29o,corresponding to the (002) and (100)plane of graphite,respectively.The calculated interlayer distance of ZDC is approximate 3.53 ?A.No diffraction peaks related to metal Zn are observed,indicating the metal Zn is mainly evaporated at 1000 °C.After the PVP addition,the as-prepared ZPDC sample shows the similar profile of XRD pattern with ZDC except for a slight down-shift of (002) peak with a shift value of 0.7o,indicating the expanded interlayer structure of ZPDC.The interlayer distance of ZPDC is calculated to be 3.63 ?A,which is consistent with TEM observation.This expanded inter-graphene spacing may facilitate the fast K+intercalation into the bulk of the ZPDC anode.The broaden XRD peaks also imply the poor crystallinity and low degree of graphitization of ZPDC and ZDC samples.Meanwhile,Scherr’s equation was used to determine the average graphene domain height (Lc)viausing the full width at half maximum values of (002) peaks [22,23].The Lc values for ZDC and ZPDC can be approximately determined to be 0.86 and 0.82 nm,respectively.Therefore,the graphene domains for ZPDC and ZDC samples are mainly composed by about two or three layer-stacked curved graphene sheets (e.g.,0.82/0.34=2.4).The carbon structure of as-prepared samples is further studied by Raman spectroscopy(Fig.2b).Two broad peaks are found in these two samples,which can be assigned to broad disorder-induced D-bands and in-plane vibration G-bands at around 1346 cm?1and 1585 cm?1,respectively.The degree of graphitic ordering can be evaluated from the integral intensity value ratio between D- and G-band (ID/IG).ID/IGvalues for ZDC and ZPDC are calculated to be 2.27 and 2.31,respectively.According to the reported equation [24,25],the average domain size (La) of ZDC and ZPDC are 8.63 and 8.48 nm,which are close to other reports on MOFs derived porous carbons with the disordered structure and large defects [14,23,26–28].

    Fig.2.Structural Characterization of ZDC and ZPDC: (a) XRD patterns.(b) Raman spectra.(c) Nitrogen adsorption-desorption isotherm curves.(d) Pore-size distribution curves.(e) N 1s XPS spectra.(f) O 1s XPS spectra.

    The pore structure of as-prepared samples was studied by N2adsorption/desorption isotherms.As shown in Fig.2c,the isotherm for ZPDC samples shows a type H4loops and does not exhibit any limiting adsorption at highP/P0,which is associated with micropores and narrow slit pores.The pore-size distribution curve of ZPDC further shows the presence of micro-/meso-pores in 1–3 nm size range as well as a handful of mesopores ranging from 6 nm to 50 nm (Fig.2d),suggesting the hierarchical porous architecture of MDPC.For comparison,ZDC exhibits the typical Ⅰsorption isotherms (Fig.2c).The pore-size distribution of ZDC shows that the pores size mainly centers around 1–2 nm,suggesting the microporous structure (Fig.2d).ZPDC has a high Brunauer-Emmett-Teller (BET) surface area of 705.52 m2/g and a high pore volume and 0.38 cm3/g,which are higher than that of ZDC (591.30 m2/g and 0.26 cm3/g).The X-ray photoelectron spectroscopy (XPS) was further employed to disclose the surface characterization of asprepared porous carbon.From Fig.S4a (Supporting information),both ZDC and ZPDC samples are mainly composed by C,O,and N elements.The N and O contents in ZDC sample are about 7.62%and 6.23%,respectively.For ZPDC samples,the N content decreases to 4.16%,while the O contents increases to 9.42%.The high- resolution C 1s spectrum (Fig.S4b in Supporting information) of ZPDC and ZDC can be fitted into C–C (284.70 eV),C–O/C–N (285.85 eV)and C=O (288.6 eV) bands [29].The N 1s spectrum of ZPDC can be deconvoluted into four peaks centered at 398.6 eV,400 eV,401.1 eV,and 403.1 eV,which can be assigned to pyridinic N (N-6),pyrrolic N (N-5),quaternary N (N-Q) groups,and oxidized-N groups (Fig.2e),respectively [30,31].The proportional differences of these three N-related groups between ZPDC and ZDC can be associated to PVP addition.The O 1s spectrum (Fig.2f) of ZPDC and ZDC can be fitted into three peaks around 530.40,531.98 and 533.10 eV,corresponding to C=O quinone groups (O–Ⅰ),C–OH hydroxylic groups or C–O–C either groups (O–Ⅱ) and–O–C=O carboxyl groups (O–Ⅲ),respectively [27,32].The above XPS spectra demonstrates that as-synthesized carbon anode is a nitrogen and oxygen heteroatoms co-doped carbon,which may increase the active sites for potassiation and improve the wettability to increase the active surface area.

    Fig.3.Electrochemical characterization of ZPDC electrode: (a) CV curves.(b) Charging/discharging curves.(c) Rate capability at various current densities ranging from 0.05 A/g to 2 A/g.(d) Cycling stability at 0.1 A/g (initial 10 cycles at 0.05 A/g).

    Half-cell configurationversusK metal was employed to study the electrochemical performance of as-prepared porous carbons anode.Fig.3a shows the CV curves of ZPDC at a sweep rate of 0.2 mV/s within a potential range of 0.01–3.00 V (vs.K+/K).In the initial cathodic process,the cathodic current increases rapidly after the potential less than 0.7 V (vs.K+/K),which is related to the irreversible reactions and the simultaneous formation of solid electrolyte interface (SEI) [29].During the following anodic scan,only one hump is observed around 0.5 V (vs.K+/K),indicates the stepwise extraction of K+from K-intercalated carbon and followed continuous reversible reactions between the K+and surface functional groups [27–32].After the several cycles,the CV curves tend to overlap,indicating the good reversibility of K+inter/detercalated process.Fig.3b shows the typical charge/discharge curves under the different current densities ranging from 0.05 A/g to 2 A/g.These charge/discharge curves exhibit a slope profile without the voltage plateau,which is similar with other reported porous carbon or heteroatom doped carbon anodes [17,29–33].The rate capability of ZPDC was evaluated and plotted in Fig.3c.The specific capacities of ZPDC are calculated to be 202.9,170.6,149.8,120.5,104.2,95.2 and 63.8 mAh/g,corresponding to the charge/discharge current density of 0.05,0.1,0.2,0.5,0.8,1.0 and 2.0 A/g,respectively.When the current density resets to 0.5 A/g,ZPDC still delivers a high specific capacity of 116.2 mAh/g.ZPDC electrode shows the relatively low columbic efficiency at the initial cycles (25.6% for first cycle),which is mainly associated to the formation of SEI layer and irreversible side reactions on the surface of ZPDC electrode [29–32].The low columbic efficiency could be alleviated by pre-potassiation process and electrolyte additives.As the current density exceeding 0.2 A/g,the columbic efficiency values are close to 100% in the followed rate-test process.We also noted that the specific capacity values of ZPDC are higher than ZDC,which may be associated to hierarchical pore structure and interconnected features of ZPDC,thus facilitating the electron and ions transfer.ZPDC anode also exhibits the good cycling stability.As shown in Fig.3d,ZPDC anode exhibits a high reversible capacity of 132.8 mAh/g after 300 cycles at 0.1 A/g,corresponding to a capacity retention ratio of 76.3%.As the cycling current density increases to 1.0 A/g,ZPDC still preserves 77.2% of initial specific capacity after 300 cycles (Fig.S5 in Supporting information).

    Fig.4.Electrochemical performance of ZPDC//PDPC PICs: (a) Schematic illustration of this KIC.(b) CV curves.(c) Galvanostatic charge/discharge curves.(d) Specific capacities under the different discharging current densities.(e) Ragone plots showing energy and power densities vs.other reports.(f) Long-term cycling performance at 1 A/g.

    The kinetics of potassiation and depotassiation for ZPDC was evaluatedviagalvanostatic intermittent titration technique (GITT).Fig.S6a (Supporting information) shows the potential response of ZPDC electrode during the GITT test under a current density of 0.1 A/g.The diffusion coefficient K+(Dk) values calculated by solving Fick’second law based on the GITT potential curves were plotted in Fig.S6b (Supporting information).During the cathodic process,the Dkvalue for ZPDC slightly increase initially,and then decrease rapidly below 0.5 V.Therefore,the diffusion kinetics of K+with heteroatoms or defects occurred at high voltage range is higher than that of K+inserted into carbon layer occurred at low voltage range.While a reverse trend was observed in the anodic process.The Dkvalue for ZPDC decreases continuously first before reaching at 0.7 V,raises slightly between 0.7–1.2 V,and then decreases gradually before reaching the upper cutoff voltage.The Dkvalues for ZPDC during the potassiated and depotassiated process are higher than that of ZDC,which indicates that the unique wellconnected micro-box structure is conducive to K+diffusion in the carbon matrix.EIS measurements on ZPDC electrode in half cell were also carried out at the working potential range from 0.01–3 Vvs.K/K+with an elevated potential of 0.5 V,the corresponding results were plotted in Fig.S7 (Supporting information).All of the EIS plots feature the semi-circle in the high-frequency region and oblique line in the low-frequency region,corresponding to electron/charge transfer resistance at the electrolyte-electrode surface and the Warburg impedance of K+diffusion in ZPDC electrode,respectively [15,24].The electron/charge transfer resistance shows little change at the high potassiated voltage and largely increases as the potassiated potential less than 1 Vvs.K/K+.This may be associated to that the reduced charge transfer kinetics and the variation of SEI at the low potential range.The slope of oblique line at low-frequency decreases gradually with the increase of discharge depth,indicating the decreased K+diffusion kinetics in ZPDC matrix [15].The above EIS results are consistent with the observation of CVs and GITT characterizations.

    To further demonstrate the potential of ZPDC in KICs,a prototype full cell was fabricated by using ZPDC as anode and homemade polyaniline derived porous carbon (PDPC) as capacitive-type cathode in KPF6based organic electrolyte,as schematically illustrated in Fig.4a.More details about PDPC can be seen in our previous report [7].In view of the electrochemical performance of asfabricated KICs with the different anode/cathode mass ratio,the optimal ratio is 1:1 (Fig.S8 in Supporting information).Figs.4b and c show thequasi-rectangular CVs and the symmetric linear charge/discharge curves within a potential range of 1–4.2 V,respectively,indicating a typical capacitive behavior for as assembled ZPDC//PDPC KICs.The specific capacities of ZPDC//PDPC KIC were calculated to 35.6,31.2,25.8,21.9,19.2,14.2,11.2,9.5 and 7.5 mAh/g at the charge/discharge densities of 0.1,0.2,0.5,0.8,1,2,3,4 and 5 A/g,respectively,as shown in Fig.4d.The energy and power densities of the ZPDC//PDPC KIC are further evaluated and are plotted in Fig.4e.The ZPDC//PDPC KIC delivers a high energy density of 85.12 Wh/kg at a power density of 207.89 W/kg.Even at a high-power density of 11.86 kW/kg,this KIC can still provide an energy density of 19.76 Wh/kg.The energy and power performance of this KIC is compared favorably with state-of-the-art KICs in the literature [10,11,33–40].Furthermore,ZPDC//PDPC KIC also exhibits an acceptable cycle stability with a capacity retention of 76% after 3000 cycles at a constant charge/discharge current density of 1 A/g with a high coulombic efficiency of ~100% during whole cycling(Fig.4f).

    In summary,we synthesized porous carbon sheets with several centimeters by directly carbonization of the mixture of ZIF-8 and PVP made by solution process.The porous carbon sheet is composed by the well-connected micro-boxes in which ZIF-8 was used as template to form inner porous matrix and PVP as the binder to form the carbon shell during the carbonization.The as-prepared porous carbon sheets had the abundant micro/mesopores,large interlayer spacing and nitrogen doping property.Such favorable structure enables this porous carbon to provide large active sites and shorten diffusion path for K+storage.Electrochemical results demonstrate the high and stable K+charge storage properties.An assembled PIC was assembled by employing this ZPDC electrode as an anode combined with a home-made porous carbon as the cathode,which delivers a high operation working voltage up to 4.2 V,a high energy density of 85.12 Wh/kg and a high-power density of 11.8 kW/kg.The present work provides a new insight on the fabrication of MOFs derived composites towards to the low-cost carbon anodes for energy storage devices.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China (No.51902188),Key Research &Development Program of Shandong Province (No.2019JZZY010355),Natural Science Foundation of Jiangsu Province (No.BK20190207),and the CAS Key Laboratory of Carbon Materials (No.KLCMKFJJ2006).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.08.101.

    亚洲 欧美一区二区三区| cao死你这个sao货| 久久欧美精品欧美久久欧美| 久久精品91蜜桃| 岛国在线观看网站| 在线av久久热| 免费人成视频x8x8入口观看| 亚洲熟妇中文字幕五十中出| 天天一区二区日本电影三级| 国产aⅴ精品一区二区三区波| www国产在线视频色| 好男人在线观看高清免费视频 | 亚洲 欧美 日韩 在线 免费| 欧美中文日本在线观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩高清综合在线| 国产一区二区激情短视频| 色播在线永久视频| 中文字幕久久专区| 男女那种视频在线观看| 亚洲成人久久爱视频| 禁无遮挡网站| 国产亚洲精品久久久久5区| 日韩精品免费视频一区二区三区| 人人妻人人澡欧美一区二区| 白带黄色成豆腐渣| 两人在一起打扑克的视频| 国产成人一区二区三区免费视频网站| 日韩视频一区二区在线观看| 亚洲成人国产一区在线观看| 日韩免费av在线播放| 婷婷亚洲欧美| 欧美 亚洲 国产 日韩一| 国产精品永久免费网站| 99精品久久久久人妻精品| 国产精品久久久人人做人人爽| 久久久久久人人人人人| 久久精品亚洲精品国产色婷小说| 人人妻人人看人人澡| 欧美中文综合在线视频| 国产成人欧美在线观看| 亚洲人成伊人成综合网2020| aaaaa片日本免费| 成年免费大片在线观看| 男人操女人黄网站| 99riav亚洲国产免费| 久久精品成人免费网站| 女生性感内裤真人,穿戴方法视频| 久久婷婷人人爽人人干人人爱| 亚洲国产毛片av蜜桃av| 日韩中文字幕欧美一区二区| 欧美精品啪啪一区二区三区| 久久国产精品人妻蜜桃| 中文在线观看免费www的网站 | 国产精品亚洲av一区麻豆| 国产精品精品国产色婷婷| 欧美黑人欧美精品刺激| 黑丝袜美女国产一区| 国产成人精品久久二区二区91| 香蕉国产在线看| 国产熟女午夜一区二区三区| 夜夜爽天天搞| 精品福利观看| 最新美女视频免费是黄的| 国产亚洲欧美98| 热99re8久久精品国产| 这个男人来自地球电影免费观看| 又大又爽又粗| 十八禁人妻一区二区| 久久久久九九精品影院| 成年人黄色毛片网站| 最近在线观看免费完整版| 久久中文字幕一级| 久久久精品欧美日韩精品| 1024手机看黄色片| 亚洲性夜色夜夜综合| 黑丝袜美女国产一区| 国产黄色小视频在线观看| 久久中文字幕人妻熟女| 淫秽高清视频在线观看| 欧美乱码精品一区二区三区| 桃色一区二区三区在线观看| 亚洲人成电影免费在线| bbb黄色大片| 在线观看免费日韩欧美大片| 母亲3免费完整高清在线观看| 免费女性裸体啪啪无遮挡网站| 国产av不卡久久| 男女午夜视频在线观看| 妹子高潮喷水视频| 一边摸一边做爽爽视频免费| 脱女人内裤的视频| 两个人看的免费小视频| 热99re8久久精品国产| 国产欧美日韩一区二区精品| 青草久久国产| 亚洲一码二码三码区别大吗| 少妇裸体淫交视频免费看高清 | 国产在线观看jvid| 欧美乱色亚洲激情| 亚洲精品在线美女| 国产成人欧美| 婷婷丁香在线五月| 亚洲欧美激情综合另类| 88av欧美| 久久狼人影院| 久久精品aⅴ一区二区三区四区| 一a级毛片在线观看| 嫩草影视91久久| 亚洲一区中文字幕在线| 美女国产高潮福利片在线看| 白带黄色成豆腐渣| 又黄又爽又免费观看的视频| 午夜福利在线在线| 18禁观看日本| 亚洲午夜精品一区,二区,三区| 香蕉av资源在线| 久久久久久久精品吃奶| 亚洲精品在线美女| 岛国在线观看网站| aaaaa片日本免费| 国产真实乱freesex| 中文字幕人妻熟女乱码| 国产国语露脸激情在线看| av福利片在线| 一区二区三区精品91| 中文字幕人妻熟女乱码| 国内精品久久久久久久电影| 亚洲免费av在线视频| 成年人黄色毛片网站| 日本一区二区免费在线视频| 老汉色av国产亚洲站长工具| 老汉色∧v一级毛片| 欧美日韩福利视频一区二区| 亚洲国产看品久久| 国内少妇人妻偷人精品xxx网站 | 久久精品成人免费网站| 国产精品一区二区三区四区久久 | 国产精品国产高清国产av| 窝窝影院91人妻| 精品久久久久久久久久久久久 | 国产成年人精品一区二区| 国产私拍福利视频在线观看| 欧美+亚洲+日韩+国产| 日本精品一区二区三区蜜桃| or卡值多少钱| 久久精品影院6| 露出奶头的视频| 亚洲人成77777在线视频| 国内毛片毛片毛片毛片毛片| 午夜影院日韩av| 亚洲色图 男人天堂 中文字幕| 一本久久中文字幕| aaaaa片日本免费| av免费在线观看网站| 好男人电影高清在线观看| 悠悠久久av| 国产一级毛片七仙女欲春2 | 丝袜在线中文字幕| 黄色成人免费大全| 一进一出抽搐动态| 亚洲一区二区三区色噜噜| 亚洲成av片中文字幕在线观看| 亚洲专区中文字幕在线| 波多野结衣av一区二区av| 一进一出好大好爽视频| 久久久久久国产a免费观看| 免费观看人在逋| 丝袜人妻中文字幕| 两人在一起打扑克的视频| 欧美中文日本在线观看视频| 欧美日韩中文字幕国产精品一区二区三区| a级毛片a级免费在线| 亚洲精品久久成人aⅴ小说| 免费看a级黄色片| 人人妻人人澡欧美一区二区| 美女午夜性视频免费| 日本免费一区二区三区高清不卡| 嫩草影视91久久| 99热6这里只有精品| 亚洲欧美精品综合久久99| 在线观看午夜福利视频| 久9热在线精品视频| 欧美激情高清一区二区三区| 日韩大码丰满熟妇| 天堂√8在线中文| 男人舔奶头视频| 欧美日本视频| 岛国在线观看网站| 啦啦啦观看免费观看视频高清| 侵犯人妻中文字幕一二三四区| 老司机深夜福利视频在线观看| 久久精品国产99精品国产亚洲性色| 无人区码免费观看不卡| 热99re8久久精品国产| 日韩欧美免费精品| 人成视频在线观看免费观看| 人人妻,人人澡人人爽秒播| 1024香蕉在线观看| 国内少妇人妻偷人精品xxx网站 | 韩国精品一区二区三区| 国产黄片美女视频| 天天躁夜夜躁狠狠躁躁| 久久精品国产综合久久久| 少妇熟女aⅴ在线视频| 99精品久久久久人妻精品| 黑人欧美特级aaaaaa片| 精品高清国产在线一区| 国产亚洲精品综合一区在线观看 | 色精品久久人妻99蜜桃| 美女午夜性视频免费| 国产一区二区在线av高清观看| 满18在线观看网站| 人人妻人人澡人人看| 人成视频在线观看免费观看| 国产色视频综合| АⅤ资源中文在线天堂| 日本a在线网址| 19禁男女啪啪无遮挡网站| 搡老妇女老女人老熟妇| 成人国产一区最新在线观看| 午夜影院日韩av| 欧美+亚洲+日韩+国产| 国产精品香港三级国产av潘金莲| 黄网站色视频无遮挡免费观看| 午夜福利在线在线| 国产精品99久久99久久久不卡| 亚洲av五月六月丁香网| 亚洲全国av大片| 亚洲av成人av| 麻豆国产av国片精品| xxx96com| 一本大道久久a久久精品| 亚洲精品在线美女| 18禁国产床啪视频网站| 亚洲精品美女久久久久99蜜臀| 俄罗斯特黄特色一大片| 夜夜爽天天搞| av福利片在线| 亚洲精品中文字幕一二三四区| 久久精品成人免费网站| 婷婷丁香在线五月| 日本撒尿小便嘘嘘汇集6| 亚洲av电影不卡..在线观看| 中文字幕最新亚洲高清| 99精品在免费线老司机午夜| 亚洲国产精品久久男人天堂| 成年免费大片在线观看| 夜夜夜夜夜久久久久| 日韩大码丰满熟妇| 国产麻豆成人av免费视频| 国产成人精品无人区| 国产高清有码在线观看视频 | 亚洲久久久国产精品| 午夜福利免费观看在线| 午夜福利一区二区在线看| av有码第一页| 99国产精品一区二区蜜桃av| 一进一出抽搐动态| 国产成人av教育| 午夜福利成人在线免费观看| 国产欧美日韩一区二区精品| 久久草成人影院| cao死你这个sao货| 淫秽高清视频在线观看| 久久久久国内视频| 在线看三级毛片| 久久这里只有精品19| 国产成人啪精品午夜网站| 欧美另类亚洲清纯唯美| 一本综合久久免费| 麻豆成人av在线观看| 欧美日韩黄片免| 成人国产综合亚洲| 欧美av亚洲av综合av国产av| or卡值多少钱| 国产精品日韩av在线免费观看| 变态另类丝袜制服| 桃红色精品国产亚洲av| 可以免费在线观看a视频的电影网站| 精品国内亚洲2022精品成人| 白带黄色成豆腐渣| 亚洲色图av天堂| 99国产极品粉嫩在线观看| 国产亚洲精品第一综合不卡| 美女高潮喷水抽搐中文字幕| 亚洲精品一区av在线观看| 亚洲成av片中文字幕在线观看| videosex国产| 黄色片一级片一级黄色片| 人人妻人人澡人人看| 日韩欧美在线二视频| 国产片内射在线| av电影中文网址| 18禁观看日本| 亚洲中文字幕日韩| 久久 成人 亚洲| 嫩草影视91久久| 欧美午夜高清在线| 18禁黄网站禁片免费观看直播| 国产私拍福利视频在线观看| 黄色视频不卡| 亚洲五月婷婷丁香| 精品无人区乱码1区二区| 国产精品一区二区免费欧美| 在线看三级毛片| 看免费av毛片| 岛国在线观看网站| 国产精品免费视频内射| 侵犯人妻中文字幕一二三四区| 国产一区二区三区视频了| 久久精品国产清高在天天线| 亚洲av美国av| 19禁男女啪啪无遮挡网站| 国产av又大| 午夜久久久在线观看| 国产高清videossex| 国产亚洲av高清不卡| 一级a爱片免费观看的视频| 欧美日韩精品网址| 无遮挡黄片免费观看| 18禁黄网站禁片免费观看直播| 香蕉丝袜av| 狠狠狠狠99中文字幕| 最近最新免费中文字幕在线| 亚洲一卡2卡3卡4卡5卡精品中文| 一级毛片女人18水好多| 婷婷精品国产亚洲av| 韩国精品一区二区三区| 90打野战视频偷拍视频| 成人午夜高清在线视频 | 亚洲成a人片在线一区二区| 精品久久久久久久人妻蜜臀av| 男人舔女人的私密视频| 精品一区二区三区视频在线观看免费| 天堂动漫精品| 免费看a级黄色片| 国产黄a三级三级三级人| 亚洲男人天堂网一区| 亚洲人成电影免费在线| 国产99久久九九免费精品| 日韩成人在线观看一区二区三区| 亚洲自拍偷在线| 黄片大片在线免费观看| 一级毛片女人18水好多| 国产亚洲精品第一综合不卡| 中亚洲国语对白在线视频| 高清毛片免费观看视频网站| 一区二区三区国产精品乱码| 亚洲av成人不卡在线观看播放网| 亚洲九九香蕉| 国产av一区在线观看免费| av天堂在线播放| 母亲3免费完整高清在线观看| 成人精品一区二区免费| 免费看a级黄色片| 亚洲美女黄片视频| 国产成人影院久久av| 夜夜躁狠狠躁天天躁| 亚洲 欧美一区二区三区| 男女下面进入的视频免费午夜 | 满18在线观看网站| www.熟女人妻精品国产| 老司机在亚洲福利影院| 神马国产精品三级电影在线观看 | 免费女性裸体啪啪无遮挡网站| 无人区码免费观看不卡| 黑人巨大精品欧美一区二区mp4| 91字幕亚洲| 亚洲精品久久国产高清桃花| 夜夜躁狠狠躁天天躁| 亚洲欧美精品综合一区二区三区| 久久久久久久午夜电影| 美女扒开内裤让男人捅视频| 亚洲成人久久性| 免费看美女性在线毛片视频| 99久久精品国产亚洲精品| 国产亚洲精品综合一区在线观看 | 久久精品影院6| 很黄的视频免费| 成人欧美大片| 国产精品久久久人人做人人爽| 亚洲成人久久爱视频| 国产精品免费视频内射| 亚洲人成77777在线视频| 亚洲av电影不卡..在线观看| 动漫黄色视频在线观看| 久久久久亚洲av毛片大全| 欧美成人一区二区免费高清观看 | 国产乱人伦免费视频| 亚洲狠狠婷婷综合久久图片| 久久久久精品国产欧美久久久| 精品国产国语对白av| 亚洲激情在线av| 中文字幕精品亚洲无线码一区 | 99久久久亚洲精品蜜臀av| 精品久久久久久,| 女警被强在线播放| 欧美日韩瑟瑟在线播放| 长腿黑丝高跟| 久久午夜亚洲精品久久| 亚洲在线自拍视频| 村上凉子中文字幕在线| 免费观看人在逋| 亚洲 欧美一区二区三区| 一a级毛片在线观看| 亚洲精品中文字幕一二三四区| 亚洲国产欧美网| 国产成年人精品一区二区| 欧美成狂野欧美在线观看| 精品福利观看| 免费观看人在逋| 国产单亲对白刺激| 18禁观看日本| 少妇被粗大的猛进出69影院| 性欧美人与动物交配| 精品国内亚洲2022精品成人| 91麻豆精品激情在线观看国产| 国产主播在线观看一区二区| 免费在线观看亚洲国产| 午夜日韩欧美国产| 1024香蕉在线观看| 婷婷丁香在线五月| 人人妻人人澡欧美一区二区| 午夜福利一区二区在线看| 国产精品亚洲av一区麻豆| 老熟妇仑乱视频hdxx| 亚洲国产精品成人综合色| 好看av亚洲va欧美ⅴa在| 国产精品免费一区二区三区在线| 国产麻豆成人av免费视频| 不卡av一区二区三区| or卡值多少钱| 久久久久久久久免费视频了| 亚洲一区二区三区色噜噜| 麻豆av在线久日| av免费在线观看网站| 国产91精品成人一区二区三区| 国产激情久久老熟女| 国产野战对白在线观看| 香蕉国产在线看| 中文亚洲av片在线观看爽| 18美女黄网站色大片免费观看| 九色国产91popny在线| 黄色 视频免费看| 一本久久中文字幕| 成人国产综合亚洲| 亚洲成av片中文字幕在线观看| 中文字幕最新亚洲高清| 午夜福利高清视频| 97碰自拍视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av电影在线进入| 日韩一卡2卡3卡4卡2021年| 国产伦在线观看视频一区| 国内揄拍国产精品人妻在线 | 人人妻人人看人人澡| 免费看a级黄色片| 美女 人体艺术 gogo| 成人一区二区视频在线观看| 宅男免费午夜| 国产精品亚洲av一区麻豆| 欧美又色又爽又黄视频| 国产精品久久久久久人妻精品电影| 好看av亚洲va欧美ⅴa在| 亚洲精品美女久久av网站| 黄色a级毛片大全视频| 午夜影院日韩av| 国产视频内射| 亚洲五月色婷婷综合| 久久精品91无色码中文字幕| 国产1区2区3区精品| 午夜福利一区二区在线看| 午夜精品在线福利| 亚洲国产高清在线一区二区三 | 国产真人三级小视频在线观看| 1024手机看黄色片| 无限看片的www在线观看| 香蕉丝袜av| 久久人妻av系列| 少妇被粗大的猛进出69影院| 免费高清在线观看日韩| 看片在线看免费视频| 一区二区日韩欧美中文字幕| 丝袜人妻中文字幕| 亚洲欧美精品综合一区二区三区| 欧美性猛交╳xxx乱大交人| 日日摸夜夜添夜夜添小说| 亚洲精品在线观看二区| 精品一区二区三区四区五区乱码| 欧美成人午夜精品| АⅤ资源中文在线天堂| www.熟女人妻精品国产| 男女做爰动态图高潮gif福利片| 日本a在线网址| 国产免费男女视频| 黄频高清免费视频| 国产又黄又爽又无遮挡在线| 亚洲第一青青草原| 正在播放国产对白刺激| 国产91精品成人一区二区三区| 欧美成狂野欧美在线观看| 国产成人欧美| 18禁裸乳无遮挡免费网站照片 | 熟女电影av网| 久久精品成人免费网站| www.熟女人妻精品国产| 色综合亚洲欧美另类图片| 国产单亲对白刺激| 成人18禁高潮啪啪吃奶动态图| 国产一卡二卡三卡精品| 欧洲精品卡2卡3卡4卡5卡区| 黄色女人牲交| 在线看三级毛片| 亚洲国产精品999在线| 欧美日韩亚洲国产一区二区在线观看| 男女下面进入的视频免费午夜 | 看片在线看免费视频| 亚洲人成77777在线视频| 久久 成人 亚洲| or卡值多少钱| 九色国产91popny在线| 国产成年人精品一区二区| 啦啦啦韩国在线观看视频| 丰满的人妻完整版| 日本撒尿小便嘘嘘汇集6| 亚洲国产毛片av蜜桃av| 国产亚洲av嫩草精品影院| 又黄又粗又硬又大视频| 黄色视频,在线免费观看| 欧美 亚洲 国产 日韩一| 亚洲精品中文字幕一二三四区| 成人精品一区二区免费| 91成年电影在线观看| 成人永久免费在线观看视频| 国产高清有码在线观看视频 | 极品教师在线免费播放| 国产成+人综合+亚洲专区| 国内毛片毛片毛片毛片毛片| 国产免费男女视频| 久久国产精品男人的天堂亚洲| 无人区码免费观看不卡| 女人高潮潮喷娇喘18禁视频| 亚洲第一欧美日韩一区二区三区| 久久狼人影院| av片东京热男人的天堂| www日本黄色视频网| 免费看日本二区| 国产野战对白在线观看| 欧美黄色淫秽网站| 午夜福利欧美成人| 亚洲第一电影网av| 男人舔奶头视频| 中出人妻视频一区二区| 欧美黑人精品巨大| 国产人伦9x9x在线观看| 久久国产精品影院| 国产色视频综合| 午夜两性在线视频| 久久性视频一级片| 国内少妇人妻偷人精品xxx网站 | 一a级毛片在线观看| 欧美日韩亚洲国产一区二区在线观看| 色综合亚洲欧美另类图片| 亚洲欧美激情综合另类| 18禁黄网站禁片免费观看直播| 正在播放国产对白刺激| 中文字幕人妻丝袜一区二区| 高潮久久久久久久久久久不卡| 一个人免费在线观看的高清视频| 一级毛片女人18水好多| 听说在线观看完整版免费高清| √禁漫天堂资源中文www| 天堂动漫精品| 亚洲午夜理论影院| 免费人成视频x8x8入口观看| 久久精品91蜜桃| 亚洲成人国产一区在线观看| 黄色毛片三级朝国网站| 男女床上黄色一级片免费看| 在线国产一区二区在线| 亚洲成人国产一区在线观看| 夜夜躁狠狠躁天天躁| 99国产综合亚洲精品| 免费无遮挡裸体视频| 黄色视频不卡| 99国产精品一区二区三区| 亚洲精品久久国产高清桃花| 动漫黄色视频在线观看| 亚洲人成伊人成综合网2020| 夜夜看夜夜爽夜夜摸| x7x7x7水蜜桃| 亚洲片人在线观看| 久久青草综合色| 亚洲真实伦在线观看| 精品久久久久久成人av| 国产蜜桃级精品一区二区三区| 黑人欧美特级aaaaaa片| 欧美三级亚洲精品| aaaaa片日本免费| 国产主播在线观看一区二区| 午夜久久久在线观看| 变态另类丝袜制服| 欧美乱码精品一区二区三区| or卡值多少钱| av免费在线观看网站| 亚洲国产欧美一区二区综合| 亚洲成人久久性| 啦啦啦 在线观看视频| 欧美性长视频在线观看| 成人手机av| 婷婷精品国产亚洲av在线| 后天国语完整版免费观看| 在线视频色国产色| 伦理电影免费视频|