• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modulation effect in adjacent dual metal single atom catalysts for electrochemical nitrogen reduction reaction

    2022-06-18 10:53:16XiaonanZhengYangLiuYuYanXiaoxiaoLiYuanYao
    Chinese Chemical Letters 2022年3期

    Xiaonan Zheng,Yang Liu,Yu Yan,Xiaoxiao Li,Yuan Yao

    MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage &State Key Laboratory of Advanced Welding and Joining,School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin 150080,China

    Keywords:Nitrogen reduction reaction Electrocatalysts Density functional theory Dual metal single atom catalysts Modulation effect

    ABSTRACT Nitrogen reduction reaction (NRR) is a clean mode of energy conversion and the development of highly efficient NRR electrocatalysts under ambient conditions for industrial application is still a big challenge.Metal-nitrogen-carbon (M-N-C) has emerged as a class of single atom catalyst due to the unique geometric structure,high catalytic activity,and clear selectivity.Herein,we designed a series of dual metal single atom catalysts containing adjacent M-N-C dual active centers (MN4/M’N4-C) as NRR electrocatalysts to uncover the structure-activity relationship.By evaluating structural stability,catalytic activity,and selectivity using density functional theory (DFT) calculations,5 catalysts,such as CrN4/M’N4-C (M’=Cr,Mn,Fe,Cu and Zn),were determined to exhibit the best NRR catalytic performance with the limiting potential ranging from ?0.64 V to ?0.62 V.The CrN4 center acted as the main catalytic site and the adjacent M’N4 center could enhance the NRR catalytic activity by modulation effect based on the analysis of the electronic properties including the charge density difference,partial density of states (PDOS),and Bader charge variation.This study offers useful insights on understanding the structure-activity relationship of dual metal single atom catalysts for electrochemical NRR.

    Ammonia (NH3) is of great significance and widely used in agriculture,industry,and sustainable energy conversion [1,2].In industry,Haber–Bosch method is currently used for large-scale ammonia production at high temperature and high pressure over Fe-based or Ru-based catalysts,which requires high energy input and emits a large amount of greenhouse gases [3,4].Therefore,it is urgentlyneeded to develop green and sustainable ways for NH3production under mild conditions [5–8].Among the NH3synthesis methods,electrochemical nitrogen reduction reaction (NRR) using water as the hydrogen source offers a promising way to replace the high-energy-consuming and environment-polluting Haber–Bosch method [9].

    However,it is difficult to cleave and dissociate the N≡N bond due to its high total bond energy (941 kJ/mol) [10].For this reason,the performance of the NRR electrocatalyst has very big upgrade space due to a low yield rate of NH3and faradaic efficiency(FE) [11–13].Multiple materials including pure metals [14,15],alloys [16],metal compounds [17,18]and nonmetals [19,20]have been applied for experimental studies of NH3synthesis in both theory and experiment.Single-atom catalysts (SACs),isolated metal atoms anchored to supports,have been applied in many fields such as oxygen reduction reaction (ORR) [21],CO2reduction reaction(CO2RR) [22]and oxidation of formaldehyde [23,24]due to the 100% atomic utilization,high activity and selectivity,and durable stability [25–27].In a series of single metal atom catalysts,many metal-nitrogen-carbon (M-N-C,M=Fe,Co,Ni,Mn,Mo,Y,Sc,etc.)have successfully developed for electrocatalysis [28–31].In particular,inspired by the natural metalloenzyme called cytochrome c oxidase (CcO) with the adjacent Cu and Fe sites [32–34],several dual metal single atom catalysts with adjacent M-N-C dual active centers have been synthesized recently and exhibited excellent stability and catalytic performance [35–40].For example,a highly dispersed Fe–Cu dual-atom nanozyme has been successfully constructed to mimic Cytochrome c oxidase for catalyzing ORR [37].The dual-metal catalysts with neighboring Fe-N4-C and Co-N4-C active centers are also reported as efficient ORR catalysts [36,39].In addition,a dual metal single atom catalyst consisted of Cu-N4and Zn-N4on the N-doped carbon support was prepared and showed high ORR activity [35].

    Fig.1.(a) The structures of adjacent dual metal active sites on MN4/M’N4-C and(b) the calculated Ebind values.

    As far as we know,there is no report of dual-metal catalysts for the NRR by now,and the in-depth analysis and understanding of structure-property relationship for the neighboring M-NC catalysts are also insufficient.Inspired by the successful synthesis of adjacent M-N-C catalysts and their potential catalytic activity,we designed a series of non-precious metal-based neighboring M-N-C catalysts (denoted as MN4/M’N4-C),and employed the density functional theory (DFT) method to explore the NRR activity.Firstly,the stability of catalysts is evaluated,and NRR selectivity was investigated by considering?N2/?H adsorption.According to the adsorption configuration of N2,we then explore possible reaction pathways in the NRR process and screen promising catalysts for the NRR.Finally,the electronic structure analysis is performed to further understand the interaction on the adjacent dual metal single atom to achieve good NRR catalytic performance.

    Seven non-precious metal atoms (Cr,Mn,Fe,Co,Ni,Cu and Zn)were selected to anchor on N-doped graphene in pairs,constructing 28 MN4/M’N4-C catalysts in the present study as shown in Fig.1a,motivated by that the corresponding M-N-C catalysts with N4-coordinated structure have been synthesized [41,42]and this may contribute to the development of adjacent M-N-C dual single atom catalysts.In the optimized geometries,each metal atom bonds with four surrounding N atoms on the graphene substrate with bond length of 1.85~1.97 ?A (Table S1 in Supporting information).In particular,the Cu-N and Zn-N bond lengths in CuN4/ZnN4-C were calculated to be 1.91 and 1.94 ?A (Table S1),which are in agreement with the experimental results from the extended X-ray absorption fine structure (EXAFS) measurement for Cu/Zn-NC with the Cu-N and Zn-N bond lengths of 2.01 ?A [35].The dual metal single atom centers of M-N-C and M’-N-C were located in an adjacent position with the distance between two metal atoms ranging from 4.96 ?A to 5.10 ?A (Table S1),consistent with the corresponding experimental results that the distance between the two metal atoms is around 5.0 ?A for the synthesized MN4/M’N4-C catalysts such as CuN4/ZnN4-C,FeN4/CuN4-C and FeN4/CoN4-C [35–37].These show that our computational models for the as-designed catalysts are reliable and reasonable.

    Table 1 The adsorption configurations of N2 molecule and the adsorption energies of N2 molecule,H and N2H on 11 MN4/M’N4-C (The ‘?’donates the atom adsorbed on the surface) in eV.

    Based on the optimized geometries of the as-designed catalysts,we then evaluate their stabilities by calculating the binding energies (Ebind) using equation:Ebind=E(MN4/M’N4-C)–E(NC)–E(M)–E(M’),whereE(MN4/M’N4-C) andE(NC) represent the electronic energies of catalyst andN-doped graphene substrate,respectively;E(M) andE(M’) are the electronic energies of M and M’atoms,respectively.According to this definition,a lowerEbindindicates a higher thermodynamics stability of MN4/M’N4-C.As shown in Fig.1b,one can see that theEbindvalues were all negative ranging from–15.72 eV to–4.48 eV,indicating neighboring dual metal single atom can be stably anchored in the N-doped graphene.In addition,they have the similar stabilities as the experimentally synthesized FeN4/CoN4-C,FeN4/CuN4-C and CuN4/ZnN4-C which have the binding energies calculated in this study with the values of–15.33,–12.54 and–7.45 eV,respectively.It may imply that the asdesigned catalysts could also be synthesized in future.

    Fig.2.The N2 adsorbed on M atom by (a) end-on and (b) side-on configurations.The N2 adsorbed on M’atom by (c) end-on and (d) side-on configurations.

    We next investigated the adsorption of N2molecule on MN4/M’N4-C surfaces.As shown in Fig.2,one can see that N2molecule can adsorb on the surface in perpendicular end-on or parallel side-on configurations.However,two metal atoms locate so far with the distance of around 5 ?A so that it is not suitable for the formation of the bridge conformation in which two N atoms in N2molecule adsorb on different metal atoms,respectively.Based on the calculatedΔGvalues of N2adsorption listed in Table S2(Supporting information),we found that the end-on configurations are more energetically favorable than the side-on configurations for both M and M’sites.Therefore,the 11 MN4/M’N4-C with negativeΔGvaluesviaN2end-on adsorption configuration are summarized in Table 1.Although the adsorption ability of N2on the 11 MN4/M’N4-C was relatively weak (–0.21 eV to–0.02 eV),it was still an exothermic reaction which could proceed spontaneously.In contrast,the remaining catalysts will be excluded from following study because the adsorption and activation of N2on these catalysts hardly take place at room temperature.

    As well known,hydrogen evolution reaction (HER) is the key competition reaction toward NRR,thus,the competitive adsorption between H and N2on the catalysts was studied by comparing the changes of Gibbs free energies (ΔG(?H) andΔG(?N2)).The results listed in Table 1 showed that theΔG(?N2) are all negative,whereas theΔG(?H) values are all positive.It means that N2is preferentially adsorbed onto the screened 11 MN4/M’N4-C rather than H,preventing the accumulation of H-adatoms and exhibiting good selectivity for electrochemical NRR.

    The first hydrogenation step (?N2+H++e?→?N2H) is usually considered as the potential determining step (PDS) for electrochemical NRR,and high-activity catalysts should haveΔG(?N2H)values of less than theΔGmaxof the well-established Ru(0001)stepped surface (0.98 eV) [12],which was set as the criterion for metal-based catalysts due to the highest NRR theoretical activity among bulk metal surfaces [43,44].As shown in Table 1,5 CrN4/M’N4-C (M’=Cr,Mn,Fe,Cu and Zn) presented theΔG(?N2H)values of about 0.60 eV,which suggests that they meet the requirements above and will be further studied and discussed.

    Fig.3.(a) Schematic representation of distal and alternating pathways for NRR in end-on configuration.Gibbs free energy diagrams of the NRR at zero potential (blake lines)and an applied potential (red lines) via the (b) distal and (c) alternating pathway on CrN4/MnN4-C.

    Since N2molecule prefers the end-on adsorption configuration on the 5 CrN4/M’N4-C,the typical NRR reaction pathways including distal and alternating pathways were considered to reveal the catalytic mechanism (Fig.3a).In the distal pathway,the first three proton-electron (H++e?) pairs are preferentially added on the distal N atom,leading to the generation of the first NH3molecule,and then another three proton-electron (H++e?) pairs attack the remaining N atom to release the second NH3.In the alternating pathway,six proton-electron (H++e?) pairs alternately hydrogenate two N atoms.The produced NH3can be easily protonated to NH4+and released into solution under the electrochemical conditions [45,46],so the further protonation of?NH3into NH4+was not considered.

    By taking the CrN4/MnN4-C as an example,as shown in Figs.3b and c,it can be seen that the first two steps of the alternating and distal pathways,namely N2adsorption and?N2H formation,were the same.TheΔG values of the first two steps were–0.05 and 0.62 eV,respectively.After adsorbed N2is hydrogenated,the generated?N2H intermediate can proceedviadistal or alternating pathways.In the distal pathway (Fig.3b),the next hydrogenation to form?N-NH2is slightly endothermic with a free energy change of 0.14 eV.One can see that?N-NH2can be hydrogenated to release the first NH3to form?N with free energy change of ?1.02 eV.The free energy changes for the continuous hydrogenations of?N to form?NH,?NH2and?NH3were calculated to be ?0.05,?0.56 and ?0.20 eV,respectively.Regarding the alternating pathways on CrN4/MnN4-C (Fig.3c),the second hydrogenation on the other nitrogen to form?NH-NH will proceed after overcoming a positive free energy change of 0.35 eV.In the subsequent steps,the intermediates?NH-NH2and?NH2-NH2are formed with the free energy change values of ?0.19 and 0.06 eV,respectively.A negative free energy change of ?1.71 eV is obtained with the formation of the first NH3.Finally,the second NH3molecule can be formed with a downhill step of ?0.20 eV.Therefore,the formation of?N2H species is the PDS due to the maximumΔGvalues(0.62 eV) among all the elementary steps for CrN4/MnN4-C.WhenU=?0.62 V is applied,all elementary reactions become downhill,and the whole electrochemical NRR processes turn to be spontaneous.

    Fig.4.(a) Charge density difference maps of N2 adsorption on CrN4/MnN4-C,where the isosurface value is set to be 0.005 e/?A3.The positive and negative charges are shown in cyan and yellow,respectively.(b) Partial density of states (PDOS) of N2 adsorption on CrN4/MnN4-C.(c) The Bader charge variation of the CrN4/MnN4-C along distal pathway.

    According to the detailedΔGvalues of CrN4/CrN4-C,CrN4/FeN4-C,CrN4/CuN4-C and CrN4/ZnN4-C in Table S3 (Supporting information),we can find that the free energy change of PDS for these catalysts are 0.63,0.63,0.64 and 0.63 eV,respectively.Hereby,the computedULfor 5 CrN4/M’N4-C is from?0.64 V to ?0.62 V,which are much lower than that for recently reported ruthenium SAC Ru1-N3(?0.73 V) with the yield rate of 120.9 μgNH3mgcat.?1h?1[47].TheULresults also indicate the better NRR activity of 5 CrN4/M’N4-C by comparing with the single atom catalysts with the same metal atom such as Cr anchored on defective graphene (?0.98 V) [44],single Mn-N4sites anchored on porous carbon (?1.04 V) [48],Fe-N4/graphene (?1.35 V) [49],Cu on N-doped carbon (?1.85 V) [50].Besides,considering that NRR is conducted in aqueous electrolytes,the solvation effect has been also studied on CrN4/M’N4-C (M’=Cr,Mn,Fe,Cu and Zn) along distal pathway.As shown in Fig.S1 (Supporting information),the solvation effect could reduce the limiting potential in the range of?0.49 eV to ?0.37 V.Here,CrN4/M’N4-C (M’=Cr,Mn,Fe,Cu and Zn) is expected as promising candidates for electrochemical NRR.

    To clarify the origin of the catalytic activity of the 5 CrN4/M’N4-Cs (M’=Cr,Mn,Fe,Cu and Zn),we first analyzed corresponding charge density difference (Fig.4a) and partial density of states(Fig.4b) of the adsorbed N2molecule on CrN4/MnN4-C as an example.The charge density difference results confirmed that both positive and negative charges accumulate around the adsorbed N2molecule and Cr atom of CrN4/MnN4-C,which is beneficial to promote the “acceptance–donation” process [5,51]that metal atom donates electrons to the antibonding orbitals of N2and accepts lone-pair electrons of N2.In addition,it is noted that a small part of positive charge accumulated on Mn atom,which suggests that Mn atom probably plays a role in electron transfer to Cr atom due to the so-called modulation effect [38]and promotes the N2activation on Cr active site.The modulation effect of CrN4/MnN4-C,where Cr atom is the only active center,while Mn atom is considered as the modulator,is completely different from the previously reported synergetic effect on double-atom catalysts (DACs) such as (Fe,Co)/CNT [52]and Ni/Fe-N-C [53],in which binary metal is demonstrated as one active center to catalyze reactions.Additionally,the computed partial density of states (PDOS) of N2adsorption on CrN4/MnN4-C showed that the hybridization mainly occurred between Cr d-orbital and N2p-orbital,and there was a small part of orbital overlap between Mn d-orbital and N2p-orbital.These results clarified the origin of the activation of N2molecule on CrN4/MnN4-C.To deeply understand the catalytic mechanism,the charge transfer variations on the basis of Bader charge differences of all reaction intermediates NxHyadsorbed on CrN4/MnN4-Cviathe distal pathway are summarized in Fig.4c.Obviously,the charge was transferred from CrN4to the adsorbed NxHyspecies for most of the elementary reaction steps.Even though the NxHyintermediates were mainly located at the CrN4active site,the neighbored MnN4acted as a reservoir to store or release electrons when needed.Consequently,the modulation effect between the dual metal single atoms is effective in electron transfer,leading to the activation of N2and then promotes the subsequent hydrogenation step of NRR.

    In conclusion,a series of energetically stable adjacent dual metal single atom supported on N-doped graphene (MN4/M’N4-C) are designed for electrochemical NRR by means of DFT calculations.Based on the results of N2adsorption free energy,and Gibbs free energy change of NRR,it was predicted that 5 CrN4/M’N4-C(M’=Cr,Mn,Fe,Cu and Zn) exhibited promising NRR activity with the limiting potential of ?0.64 V to ?0.62 V.The modulation effect is observed in the adjacent dual metal single atom catalysts based on the analysis of charge distribution and PDOS.This work not only provides new insight for developing neighboring dual single atom catalysts at atomic level,but also highlights the importance of the modulation effect between the multi-active centers.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the open project of State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology (No.AWJ-19M07) and the National Natural Science Foundation of China (No.U2067216).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.08.102.

    日本猛色少妇xxxxx猛交久久| 99re6热这里在线精品视频| 欧美日韩亚洲综合一区二区三区_| 欧美日韩成人在线一区二区| 日本猛色少妇xxxxx猛交久久| 免费在线观看视频国产中文字幕亚洲 | 国产99久久九九免费精品| 老司机在亚洲福利影院| av视频免费观看在线观看| 免费女性裸体啪啪无遮挡网站| 精品国产乱码久久久久久小说| 久久综合国产亚洲精品| 亚洲欧美激情在线| 亚洲国产精品999| 一级,二级,三级黄色视频| 亚洲精品乱久久久久久| 咕卡用的链子| av在线app专区| 性高湖久久久久久久久免费观看| 亚洲av成人精品一二三区| 欧美少妇被猛烈插入视频| 欧美日韩国产mv在线观看视频| 中文字幕亚洲精品专区| 国产亚洲欧美在线一区二区| 波多野结衣一区麻豆| 国产高清国产精品国产三级| 亚洲中文字幕日韩| 中文字幕人妻丝袜一区二区| 欧美精品一区二区免费开放| 中文字幕av电影在线播放| 麻豆乱淫一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利在线免费观看网站| 国产成人91sexporn| 亚洲,一卡二卡三卡| 久久久精品区二区三区| 亚洲国产日韩一区二区| 国产精品久久久久久人妻精品电影 | 久久av网站| 婷婷色麻豆天堂久久| 国产亚洲午夜精品一区二区久久| 亚洲精品成人av观看孕妇| 午夜免费观看性视频| 51午夜福利影视在线观看| 午夜老司机福利片| 亚洲av片天天在线观看| 亚洲国产精品国产精品| 人体艺术视频欧美日本| 可以免费在线观看a视频的电影网站| av在线播放精品| 丝袜在线中文字幕| 久久久国产精品麻豆| 女警被强在线播放| 热re99久久国产66热| 在线亚洲精品国产二区图片欧美| 国产高清不卡午夜福利| 久久久久国产一级毛片高清牌| 一本综合久久免费| 久久国产精品男人的天堂亚洲| 免费女性裸体啪啪无遮挡网站| 亚洲精品乱久久久久久| 777久久人妻少妇嫩草av网站| h视频一区二区三区| 高清黄色对白视频在线免费看| av网站在线播放免费| www日本在线高清视频| 在线观看一区二区三区激情| 美女大奶头黄色视频| 午夜久久久在线观看| 手机成人av网站| 人妻 亚洲 视频| 亚洲av欧美aⅴ国产| xxx大片免费视频| 99国产精品一区二区三区| 欧美97在线视频| 99国产精品一区二区蜜桃av | 精品视频人人做人人爽| 嫁个100分男人电影在线观看 | 精品久久久久久久毛片微露脸 | 成人国语在线视频| 国产精品一区二区精品视频观看| 久久精品国产亚洲av涩爱| 日本午夜av视频| 啦啦啦视频在线资源免费观看| 亚洲精品国产av蜜桃| av有码第一页| 久久久久视频综合| 狂野欧美激情性bbbbbb| 日本黄色日本黄色录像| 成人国产av品久久久| 国产男女内射视频| 国产精品久久久久久精品电影小说| 在线观看免费视频网站a站| 母亲3免费完整高清在线观看| 国产成人啪精品午夜网站| 国产黄色视频一区二区在线观看| 欧美黑人欧美精品刺激| 极品人妻少妇av视频| 国语对白做爰xxxⅹ性视频网站| av在线老鸭窝| 汤姆久久久久久久影院中文字幕| 91老司机精品| 欧美亚洲日本最大视频资源| 女人久久www免费人成看片| 日本vs欧美在线观看视频| 一本大道久久a久久精品| 欧美av亚洲av综合av国产av| cao死你这个sao货| 成人影院久久| 自线自在国产av| 99精国产麻豆久久婷婷| 欧美大码av| 天堂俺去俺来也www色官网| 亚洲成av片中文字幕在线观看| 亚洲人成电影免费在线| 精品久久久精品久久久| 日韩电影二区| 亚洲人成电影免费在线| 国产片特级美女逼逼视频| 久热这里只有精品99| 丝袜人妻中文字幕| 亚洲国产欧美网| 一个人免费看片子| 日韩人妻精品一区2区三区| 亚洲精品国产色婷婷电影| 黄网站色视频无遮挡免费观看| 在线精品无人区一区二区三| 日韩一卡2卡3卡4卡2021年| 无限看片的www在线观看| 亚洲国产看品久久| 欧美人与性动交α欧美精品济南到| 在线观看免费高清a一片| 国产日韩欧美亚洲二区| 在线观看免费日韩欧美大片| 日韩免费高清中文字幕av| 日韩 欧美 亚洲 中文字幕| 国产成人影院久久av| av在线播放精品| av在线app专区| 男女下面插进去视频免费观看| 欧美大码av| 久久久久久久国产电影| cao死你这个sao货| 男男h啪啪无遮挡| 日本91视频免费播放| 欧美精品一区二区大全| 国精品久久久久久国模美| 午夜免费成人在线视频| 久久久亚洲精品成人影院| 欧美久久黑人一区二区| 久久久国产欧美日韩av| 亚洲色图 男人天堂 中文字幕| 午夜福利视频精品| 亚洲国产看品久久| 91国产中文字幕| 国产免费视频播放在线视频| 久久精品aⅴ一区二区三区四区| 国产成人影院久久av| 真人做人爱边吃奶动态| 80岁老熟妇乱子伦牲交| 午夜老司机福利片| 建设人人有责人人尽责人人享有的| 黄片小视频在线播放| 操出白浆在线播放| 欧美精品亚洲一区二区| 看十八女毛片水多多多| 丰满人妻熟妇乱又伦精品不卡| 老司机靠b影院| 最近中文字幕2019免费版| 午夜久久久在线观看| 老汉色∧v一级毛片| 欧美日韩综合久久久久久| 夫妻午夜视频| 亚洲少妇的诱惑av| 制服诱惑二区| 亚洲欧美中文字幕日韩二区| 精品少妇黑人巨大在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 久久人人爽人人片av| 国产一区二区激情短视频 | 在线 av 中文字幕| 国产欧美亚洲国产| 亚洲欧洲日产国产| 亚洲精品日本国产第一区| 欧美老熟妇乱子伦牲交| 亚洲国产av影院在线观看| 下体分泌物呈黄色| 久久女婷五月综合色啪小说| 国产高清videossex| 亚洲 国产 在线| 男女下面插进去视频免费观看| 50天的宝宝边吃奶边哭怎么回事| 一个人免费看片子| 青草久久国产| 午夜激情av网站| 欧美激情极品国产一区二区三区| 国产视频首页在线观看| 日本五十路高清| 亚洲精品日韩在线中文字幕| av不卡在线播放| 亚洲久久久国产精品| 亚洲av男天堂| 久久久久久免费高清国产稀缺| 色网站视频免费| www.熟女人妻精品国产| 一个人免费看片子| 国产极品粉嫩免费观看在线| 午夜两性在线视频| 欧美在线一区亚洲| 好男人视频免费观看在线| 两个人免费观看高清视频| 观看av在线不卡| 色婷婷久久久亚洲欧美| videosex国产| 91老司机精品| 欧美变态另类bdsm刘玥| 亚洲精品乱久久久久久| 亚洲 国产 在线| 亚洲精品自拍成人| 最近手机中文字幕大全| 性高湖久久久久久久久免费观看| 精品第一国产精品| 日本91视频免费播放| 亚洲美女黄色视频免费看| 中文字幕精品免费在线观看视频| 黄色一级大片看看| 国产日韩一区二区三区精品不卡| 日韩精品免费视频一区二区三区| 两人在一起打扑克的视频| 亚洲欧美激情在线| 精品国产乱码久久久久久男人| 欧美大码av| 丝袜喷水一区| 观看av在线不卡| 777久久人妻少妇嫩草av网站| 国产亚洲欧美在线一区二区| 精品一区二区三区av网在线观看 | 夜夜骑夜夜射夜夜干| 18禁国产床啪视频网站| 一边亲一边摸免费视频| 少妇精品久久久久久久| 视频区图区小说| 国产视频一区二区在线看| 美女脱内裤让男人舔精品视频| 久久综合国产亚洲精品| 久久毛片免费看一区二区三区| 精品国产一区二区久久| 国产精品久久久久久精品古装| 51午夜福利影视在线观看| 啦啦啦在线免费观看视频4| 国产av一区二区精品久久| av片东京热男人的天堂| 亚洲专区中文字幕在线| 成人手机av| 欧美性长视频在线观看| 国产高清不卡午夜福利| 99国产精品99久久久久| 成年人免费黄色播放视频| av又黄又爽大尺度在线免费看| 久久久久久久大尺度免费视频| 看十八女毛片水多多多| 色综合欧美亚洲国产小说| 国产欧美日韩一区二区三区在线| 99国产精品一区二区蜜桃av | 亚洲久久久国产精品| 一边亲一边摸免费视频| 新久久久久国产一级毛片| 久久性视频一级片| 一二三四在线观看免费中文在| 亚洲九九香蕉| 少妇猛男粗大的猛烈进出视频| 1024香蕉在线观看| 多毛熟女@视频| 精品亚洲成a人片在线观看| 两性夫妻黄色片| 亚洲欧美中文字幕日韩二区| 亚洲av日韩在线播放| 在线观看免费高清a一片| 久久av网站| 日本猛色少妇xxxxx猛交久久| 97在线人人人人妻| 国产精品成人在线| 手机成人av网站| 叶爱在线成人免费视频播放| 精品高清国产在线一区| 美女高潮到喷水免费观看| 国产高清videossex| 国产成人系列免费观看| 色婷婷av一区二区三区视频| 久久久久久久国产电影| av福利片在线| 欧美日韩亚洲高清精品| 欧美精品一区二区免费开放| 国产精品一二三区在线看| 亚洲av欧美aⅴ国产| 亚洲欧美清纯卡通| 波野结衣二区三区在线| 免费一级毛片在线播放高清视频 | 国产一区有黄有色的免费视频| 女警被强在线播放| 久久久久久久国产电影| 免费在线观看黄色视频的| 性色av一级| 一级,二级,三级黄色视频| 老司机深夜福利视频在线观看 | 国产成人91sexporn| 女人被躁到高潮嗷嗷叫费观| 国产熟女午夜一区二区三区| 婷婷色av中文字幕| 午夜av观看不卡| 国产精品免费视频内射| 久久天躁狠狠躁夜夜2o2o | 日本av免费视频播放| 国产黄色视频一区二区在线观看| 天天躁夜夜躁狠狠久久av| 天天躁日日躁夜夜躁夜夜| 蜜桃在线观看..| 国产成人av教育| 9热在线视频观看99| 国产三级黄色录像| 午夜免费鲁丝| 精品人妻熟女毛片av久久网站| 中文字幕最新亚洲高清| 最近手机中文字幕大全| 精品国产乱码久久久久久男人| 真人做人爱边吃奶动态| 看十八女毛片水多多多| 色播在线永久视频| 19禁男女啪啪无遮挡网站| 黄片播放在线免费| 高清视频免费观看一区二区| 国产成人av激情在线播放| 久久天堂一区二区三区四区| 国产精品一区二区在线不卡| 国产欧美日韩一区二区三 | 青春草亚洲视频在线观看| 欧美97在线视频| 成年女人毛片免费观看观看9 | 制服诱惑二区| 悠悠久久av| 久久天躁狠狠躁夜夜2o2o | 日本色播在线视频| 欧美亚洲日本最大视频资源| 麻豆国产av国片精品| 激情视频va一区二区三区| 免费看十八禁软件| 亚洲中文字幕日韩| 国产精品一国产av| 一边摸一边做爽爽视频免费| 久久久亚洲精品成人影院| a 毛片基地| 欧美在线一区亚洲| 亚洲专区国产一区二区| 免费高清在线观看视频在线观看| 国产亚洲一区二区精品| 成人手机av| 韩国高清视频一区二区三区| 久久九九热精品免费| 久久久久国产精品人妻一区二区| 男女边摸边吃奶| 精品福利观看| 18在线观看网站| 一级黄色大片毛片| 国产精品国产三级专区第一集| 亚洲专区国产一区二区| 免费人妻精品一区二区三区视频| 亚洲精品国产区一区二| 麻豆国产av国片精品| 黄色 视频免费看| 麻豆国产av国片精品| 蜜桃国产av成人99| 最黄视频免费看| 中文字幕亚洲精品专区| 亚洲国产av影院在线观看| 99久久人妻综合| 精品久久久久久电影网| 亚洲少妇的诱惑av| av又黄又爽大尺度在线免费看| 在线观看一区二区三区激情| 亚洲精品国产一区二区精华液| 久久精品熟女亚洲av麻豆精品| 熟女少妇亚洲综合色aaa.| 日韩视频在线欧美| 夫妻午夜视频| 亚洲国产精品999| 久久久久久久久免费视频了| 黄色视频不卡| 99九九在线精品视频| 免费高清在线观看日韩| 超碰成人久久| 纵有疾风起免费观看全集完整版| 午夜激情av网站| 亚洲一区二区三区欧美精品| 丰满饥渴人妻一区二区三| 久久精品亚洲av国产电影网| 国产高清视频在线播放一区 | 99久久综合免费| videosex国产| 91九色精品人成在线观看| 国产av精品麻豆| 中文字幕精品免费在线观看视频| 交换朋友夫妻互换小说| 国产亚洲av高清不卡| 嫁个100分男人电影在线观看 | 最新在线观看一区二区三区 | 亚洲欧洲国产日韩| 精品人妻一区二区三区麻豆| 亚洲综合色网址| 国产真人三级小视频在线观看| 午夜激情久久久久久久| 蜜桃在线观看..| 91老司机精品| 国产免费现黄频在线看| 亚洲自偷自拍图片 自拍| 成年美女黄网站色视频大全免费| a 毛片基地| 丝袜人妻中文字幕| 国产高清视频在线播放一区 | av国产久精品久网站免费入址| 欧美日韩亚洲综合一区二区三区_| 欧美 亚洲 国产 日韩一| 国产女主播在线喷水免费视频网站| 日韩 亚洲 欧美在线| 伊人亚洲综合成人网| 一级黄色大片毛片| 免费观看a级毛片全部| 嫩草影视91久久| 成人国产av品久久久| 午夜两性在线视频| 免费在线观看黄色视频的| 精品人妻1区二区| 久久久久国产一级毛片高清牌| h视频一区二区三区| 久久午夜综合久久蜜桃| 国产三级黄色录像| 欧美 亚洲 国产 日韩一| 欧美在线一区亚洲| 热re99久久精品国产66热6| 别揉我奶头~嗯~啊~动态视频 | 天天添夜夜摸| 丝袜脚勾引网站| 欧美亚洲 丝袜 人妻 在线| 亚洲国产欧美日韩在线播放| 国产国语露脸激情在线看| 十八禁高潮呻吟视频| av又黄又爽大尺度在线免费看| 亚洲欧美日韩高清在线视频 | 另类亚洲欧美激情| 人人妻人人添人人爽欧美一区卜| 国产精品.久久久| 欧美乱码精品一区二区三区| 人成视频在线观看免费观看| 一区二区三区激情视频| 国产精品秋霞免费鲁丝片| 久久久国产欧美日韩av| 伦理电影免费视频| 国产一区二区激情短视频 | 国产在线观看jvid| 激情五月婷婷亚洲| 19禁男女啪啪无遮挡网站| 91九色精品人成在线观看| 欧美在线一区亚洲| 国产精品久久久久久精品古装| 国产成人av教育| 国产成人系列免费观看| 青春草亚洲视频在线观看| 国产亚洲欧美在线一区二区| 无限看片的www在线观看| 日韩人妻精品一区2区三区| 另类精品久久| 女人精品久久久久毛片| 久久毛片免费看一区二区三区| 久久99热这里只频精品6学生| 夫妻性生交免费视频一级片| 97人妻天天添夜夜摸| 日本av免费视频播放| 午夜免费成人在线视频| 多毛熟女@视频| 老汉色av国产亚洲站长工具| 无限看片的www在线观看| 男女边摸边吃奶| 女人被躁到高潮嗷嗷叫费观| 精品久久蜜臀av无| kizo精华| 中文字幕高清在线视频| 精品福利永久在线观看| 亚洲精品国产区一区二| 在线av久久热| kizo精华| 99九九在线精品视频| 电影成人av| 晚上一个人看的免费电影| 在线av久久热| 久久久欧美国产精品| av国产精品久久久久影院| 久久人妻福利社区极品人妻图片 | 最黄视频免费看| 少妇精品久久久久久久| 两个人看的免费小视频| 精品久久久久久久毛片微露脸 | 亚洲国产欧美日韩在线播放| 久久久久视频综合| 人人妻人人爽人人添夜夜欢视频| 人妻人人澡人人爽人人| 汤姆久久久久久久影院中文字幕| 99久久人妻综合| 欧美国产精品一级二级三级| 国产亚洲欧美在线一区二区| 手机成人av网站| 欧美人与性动交α欧美精品济南到| 国产亚洲精品第一综合不卡| 国产高清国产精品国产三级| 永久免费av网站大全| 建设人人有责人人尽责人人享有的| 亚洲国产av新网站| 久久毛片免费看一区二区三区| 免费一级毛片在线播放高清视频 | 日韩熟女老妇一区二区性免费视频| 色婷婷久久久亚洲欧美| 亚洲天堂av无毛| 国产精品久久久av美女十八| 国产成人av激情在线播放| 欧美日韩亚洲综合一区二区三区_| 一级黄片播放器| 久久这里只有精品19| 成人午夜精彩视频在线观看| 久久 成人 亚洲| 在线看a的网站| 国产精品久久久久久精品古装| 一本色道久久久久久精品综合| 91麻豆精品激情在线观看国产 | 自线自在国产av| 午夜久久久在线观看| 美女高潮到喷水免费观看| 下体分泌物呈黄色| 国产成人av教育| av视频免费观看在线观看| 亚洲成人手机| 18在线观看网站| 国产日韩欧美亚洲二区| 久久国产精品人妻蜜桃| 亚洲九九香蕉| 妹子高潮喷水视频| 一本—道久久a久久精品蜜桃钙片| 18禁国产床啪视频网站| 一本久久精品| 香蕉国产在线看| 欧美av亚洲av综合av国产av| 午夜免费鲁丝| 99国产精品一区二区蜜桃av | 日韩中文字幕视频在线看片| 精品少妇黑人巨大在线播放| 亚洲精品日本国产第一区| 亚洲一卡2卡3卡4卡5卡精品中文| 成年动漫av网址| 黄色毛片三级朝国网站| 色精品久久人妻99蜜桃| 丝瓜视频免费看黄片| 久久ye,这里只有精品| 叶爱在线成人免费视频播放| 妹子高潮喷水视频| 成人三级做爰电影| 女人久久www免费人成看片| 一区二区三区乱码不卡18| 欧美xxⅹ黑人| 欧美精品亚洲一区二区| 日本五十路高清| 高清黄色对白视频在线免费看| 一本综合久久免费| 狠狠婷婷综合久久久久久88av| 欧美 亚洲 国产 日韩一| a级毛片在线看网站| 亚洲精品成人av观看孕妇| 成年人黄色毛片网站| 91字幕亚洲| 中文字幕色久视频| 80岁老熟妇乱子伦牲交| 青春草亚洲视频在线观看| 十八禁网站网址无遮挡| 国产成人精品久久二区二区免费| 国产亚洲精品久久久久5区| 手机成人av网站| 91国产中文字幕| 亚洲 国产 在线| 久久久久国产一级毛片高清牌| 国产av一区二区精品久久| 午夜免费鲁丝| 天天添夜夜摸| 曰老女人黄片| 婷婷色麻豆天堂久久| 晚上一个人看的免费电影| 两人在一起打扑克的视频| 精品一品国产午夜福利视频| 久久久久久久久免费视频了| 亚洲成色77777| a级毛片黄视频| 青草久久国产| 午夜免费成人在线视频| 日本猛色少妇xxxxx猛交久久| 18禁国产床啪视频网站| 国产免费一区二区三区四区乱码| 亚洲美女黄色视频免费看| 在线观看免费视频网站a站| 精品久久久精品久久久| 一区在线观看完整版| 精品人妻在线不人妻| av国产久精品久网站免费入址| 欧美日韩视频精品一区| 午夜福利一区二区在线看| 又黄又粗又硬又大视频| 久久精品久久久久久噜噜老黄| 1024香蕉在线观看| 久久久久网色| av有码第一页| 久久久精品区二区三区|