• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Strain tuned efficient heterostructure photoelectrodes

    2022-06-18 10:53:16HihongZhengMingyngLiJinsongChenAnhngQunKihngYeHngRenShengHuYngCo
    Chinese Chemical Letters 2022年3期

    Hihong Zheng,Mingyng Li,Jinsong Chen,Anhng Qun,Kihng Ye,Hng Ren,Sheng Hu,d,Yng Co,d,?

    a State Key Laboratory of Physical Chemistry of Solid Surfaces,Collaborative Innovation Center of Chemistry for Energy Materials (iChEM),College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China

    b Department of Chemistry,University of Texas at Austin,Austin,TX 78712,United States

    c Guangzhou Key Laboratory of Clean Transportation Energy Chemistry,School of Chemical Engineering and Light Industry,Guangdong University of Technology,Guangzhou 510006,China

    d Pen-Tung Sah Institute of Micro-Nano Science and Technology,Xiamen University,Xiamen 361005,China

    Keywords:Photoelectrochemical water splitting van der Waals heterostructures Two-dimensional MoS2 Strain engineering Scanning electrochemical cell microscopy

    ABSTRACT van der Waals (vdWs) heterostructures based on two-dimensional (2D) materials have become a promising candidate for photoelectrochemical (PEC) catalyst not only because of the freedom in materials design that enable the band-offset construction and facilitate the charge separation.They also provide a platform for the study of various of interface effect in PEC.Here,we report a new kind of mixed-dimensional vdWs heterostructure photoelectrode and investigate the strain enhanced PEC performance at vdWs interfaces.Our heterostructures are composed of 2D n-type MoS2 nanosheets and three-dimensional (3D) p-type Cu2O nanorod arrays (NRAs),where Cu2O NRAs introduce periodically strain in the p-n junction interface.We find a promotion of the HER catalytic activities in heterostructure based PEC photoelectrodes using in-situ measurement techniques including the scanning electrochemical cell microscopy and various local spectrum probe measurements.This is attributed to the efficient charge separation at the strained heterointerface.Our results demonstrate an interesting venue for understanding the local interface effects with high spatial resolution,and shed light on design and developing high-efficiency photoelectrodes.1L MoS2/Cu2O vdWs heterostructure photocathodes were prepared by nanoindentation technology.The effects of strain on promoting charge separation at the heterointerface were verified by the enhanced performances in PEC hydrogen evolution reaction of vdWs heterostructure through scanning electrochemical cell microscopy technique and various local spectrum probe measurements.

    Hydrogen production by photoelectrochemical (PEC) water splitting converts the inexhaustible solar irradiation to storable H2as clean energy,and thus has received widespread attention [1–4].One of the key limiting factors for the PEC performance is the fast recombination of photo-generated charge carriers.Among various strategies for enhancing charge separation efficiency,the creation of heterojunctions by assembling two distinct materials has been demonstrated to be promising.It allows for efficient electron-hole separation where charge carriers generated in one photocatalytic material is able to transfer through the contact interface to the other material [5–9].In particular,van der Waals(vdWs) heterostructures constructedviathe vdWs interaction between dangling-bond-free materials have attracted much attention for a number of reasons: First,vdWs interactions allow creating artificial heterostructures with sharp and atomically clean interfaces[10].These characteristics provide them as ideal model systems to study the interface effect for PEC.The unique properties of 2D materials like their high specific surface area,proper crystal facet,and large number of active sites will further improve the PEC performance [11,12].Second,the heterostructure construction requires only physical assembly of two kinds of materials regardless of their lattice structures and dimensions [13,14].This allows considerable freedom in integrating,for example two-dimensional (2D) materials,with materials with different dimensions,and enables the creation of naturally non-existing heterostructures containing merits from each of their components [15–19].Moreover,the 2D materials based vdWs heterojunction allows a short photo-generated charge diffusion distance,and further accelerates charge separation to improve the PEC performance [20,21].This is different from the traditional two-dimensional (2D) materials,such as graphene and black phosphorus where the charge separation is limited by the in-plane diffusion [22–24].

    Fig.1.(a) Scheme of the fabrication process of 1L MoS2/Cu2O (NRAs) heterostructure nanorod arrays.SEM image of top surface view of (b) Cu2O nanorod arrays,the inset is the AFM height profile of the Cu2O NRAs.(c) 1L MoS2/Cu2O heterostructure nanorod arrays,and (d) an enlarged view of a single 1L MoS2/Cu2O heterostructure nanocolumn.Scale bar in (c): 10 μm.Scale bar in (d): 2 μm.

    However,due to the lattice mismatching,strain is usually produced at the interface of vdWs heterostructure when assembling multiple 2D layers together [25,26].Although it has been reported that strain engineering effectively tunes both the band structures and band alignment in PEC anode and optimize the charge transfer dynamic in heterostructure [27–29],the effect of strain to PEC performance in vdWs heterostructure based photoelectrode remains elusive.From fundamental level point of view,strain is a local effect and its influence to hydrogen evolution reaction (HER)requires probe measurements with high spatial resolution [30–32].However,the currently prevailing electrochemical detection for the current-voltage characteristics within the whole photoelectrode fails to acquire those detailed signals at the heterostructure interface.

    With this in mind,in this work,we combine the scanning electrochemical cell microscopy (SECCM) technique and various local spectrum probe measurements to investigate the charge transfer at the strained PEC photocathode.The cathodes used here are made from mixed-dimensional vdWs heterostructure with 2D monolayered (1L) MoS2nanosheets and three-dimensional (3D) Cu2O nanorod arrays (NRAs).Here we choose 1L MoS2due to its high HER activities among 2D materials,and Cu2O as the traditional ptype semiconductor photocatalyst [11,12,33,34].Both of the materials have been reported for high HER catalytic activities.The unique feature detailed herein is the integration of the p-type Cu2O and ntype MoS2not only form a p-n junction for charge separation,but also Cu2O NRAs provide an essential nanopatterned structure for constructing MoS2/Cu2O heterostructure arrays with periodically strain-engineered interfaces.In this model system,we found the strain tuned heterostructures dramatically suppress the photoluminescence emission for 1L MoS2,indicating the enhanced charge separation at the heterostructure interface.As a result,both SECCMin-situmapping and PEC measurements demonstrate a promotion of the HER catalytic activities compared to photocathodes based on the pristine Cu2O,MoS2,and MoS2/Cu2O heterostructures without strain.

    Fig.2.(a) Schematic diagram of strain distribution for 1L MoS2 in different regions of Cu2O NRAs substrate.(b) Raman spectra of 1L MoS2 at different regions.(c) Schematic diagram of 1L MoS2 on the single Cu2O nanorod.(d) Raman spectra of 1L MoS2 at different heights of Cu2O nanorod.

    The periodically strained monolayer (1L) MoS2/Cu2O nanorodarrays (NRAs) mixed dimensional van der Waals (vdWs) heterostructures were prepared stepwise by the method depicted in Fig.1a and the “Experimental methods” section (Supporting information).First,the metallic Cu substrates were patterned by photo lithography and electron beam deposition (EBD) to form NRAs with diameters of ~4 μm,~100 nm to 200 nm in height,and intervals of 10 μm (Fig.1b).Then the patterned Cu NRAs were oxidized to Cu2O NRAs by anodizing,which were verified by Raman spectrum and X-ray photoelectron spectroscopy (XPS) (Figs.S1a and b in Supporting information).Second,the 1L MoS2prepared by chemical vaper deposition (CVD) method were transferred to the surface of Cu2O NRAs by polymer-assisted wet transfer processes(Fig.S2 in Supporting information for the optical image,Raman and photoluminescence (PL) characterization of the MoS2flakes)[35].Then the polymer was removed by acetone treatment.The scanning electron microscopy (SEM) images (Figs.1c and d),Raman scattering (Fig.S3a in Supporting information) and energy dispersive spectroscopy (EDS) mappings (see details in Figs.S3bg in Supporting information) of our samples suggest the successful fabrication of the 1L MoS2/Cu2O NRAs mixed dimensional vdWs heterostructure and intimate contact between the nanorods and flakes.

    In order to investigate the distribution of strain on MoS2,the confocal Raman measurements were performed under the laser excitation of 532 nm.For the convenience of analyzing,we deliberately divide the 1L MoS2into two regions: the area A (on the flat Cu2O substrate) and the area B (on the top of the Cu2O NRAs),as shown in Fig.2a.It could be observed from Fig.2b that compared with the spectrum from area A,there is a red shift for the E12gpeak in the spectrum from area B.With the height of Cu2O nanorod increasing from 100 nm to 200 nm,the E12gpeak gradually redshifts,as shown in Figs.2c and d.This is attributed to the strain induced by the nanorods that modified the in-plane vibration mode of 1L MoS2and thus a shift of the corresponding E12gpeak [36,37].The position of the E12gpeak is directly related to the strain in MoS2samples and is calculated to be 0.2%,0.4% and 0.6% for 100 nm,150 nm and 200 nm nanorods,respectively,using the methods previously reported [37].The E12gpeak shift is only observed at area B,further confirming that the interfacial strain of 1L MoS2was originated from the Cu2O NRAs induced structure deformation.Note that the strain causes the changes in the restoring force constant of both the out-of-plane and in-plane vibration mode,resulting the red shifts of both E12gand A1gpeaks [37,38].

    To spatiallyin-situinvestigate the PEC performance of the strained MoS2,a novel scanning electrochemical cell microscopy(SECCM) technique,in which the measured area on the samples could be confined in the scale of nano/micro-meters,was conducted on the 1L MoS2/Cu2O NRAs (see details in “Experimental methods” section in Supporting information).As shown in the schematic (Fig.3a),a single barrel nanopipette was filled with electrolyte solution (0.25 mmol/L KCl) and mounted on a zpiezoelectric positioner.The tip of the nanopipette probes were circle with the radii of approximately 250 nm.A bias of 0 Vvs.RHE,which would cause distinguished transient current upon the electrolyte at the pipet tip contacting the MoS2substrate,was applied between the quasi-reference counter electrode (QRCE) and the substrate.

    Fig.3.(a) Diagram of SECCM measurement for 1L MoS2/Cu2O NRAs.(b) Linear sweep voltammetry of strain region at different height heterojunction.(c-e) SECCM photocurrent images of 1L MoS2/Cu2O NRAs with different heights.Scalar bar: 4 μm.

    Fig.4.(a) Schematic diagram of strain distribution for 1L MoS2 in different regions of Cu2O NRAs substrate.(b) Scanning PL map with integrated peak intensity of the MoS2 on Cu2O NRAs.(c) PL spectra of 1L MoS2 at different regions.(d) PL spectra of 1L MoS2 at different heights of Cu2O nanorod.

    The linear sweep voltammograms (LSVs) obtained from the strain regions (area B) show that under the illumination of 50 mW/cm2,the photo-current gradually increases by almost four times with increasing the height of Cu2O nanorod from 100 nm to 200 nm (Fig.3b).This photo-current dependence on nanorod heights was also observed in SECCM mappings as shownin Figs.3ce.Specially,by means of SECCM mapping,the HER activities of the heterostructures with or without strain can be compared in-situ.From Figs.3c-e,all the strained 1L MoS2/Cu2O NRAs heterostructures show a higher photo-current than the unstrained part,directly revealing the strain enhanced HER performance.

    To study the mechanism of the enhanced PEC performance at the interface of 1L MoS2/Cu2O NRAs vdWs heterostructure,we performed a comprehensive PL measurement to reveal the charge transfer at the interface.As shown in Figs.4a and b,the PL intensities for the strained area B of the 1L MoS2/Cu2O NRAs vdWs heterostructures were almost 5 times lower than that for the unstrained area A,indicating a suppressed charge recombination at the heterostructure interfaces.We note that both the strain gradient and the band offset of p-n junction (in our case,1L MoS2/Cu2O heterostructure) could induce a build-in field [39].This field would adjust the carrier transfer at the interface,thus affecting the PL emission of 1L MoS2.To distinguish these two effects,we abrupt the MoS2-Cu2O interactions by depositing an insulating layer of 20 nm Al2O3on the surface of Cu2O NRAs,before the transfer of MoS2layers (Fig.S3a in Supporting information).Thus,only the strain in 1L MoS2would affect the PL signal.As shown in the PL intensity mapping of MoS2/Al2O3NRAs vdWs heterostructure (Fig.S3b in Supporting information),the built-in field induced by strain can dramatically enhance the PL intensity of 1L MoS2on the strain region,which is agreed with the previously reported funneling effects caused by the strain induced band-bending of MoS2[40–42].Thus,the effect of strain induced build-in field in MoS2layer could be excluded in our MoS2/Cu2O NRAs vdWs heterostructure from the opposite trend of the PL intensity.The decreased PL signal was mainly related to the suppressed charge recombination at the heterostructure interfaces.

    Besides,as shown in the PL spectra for 1L MoS2/Cu2O NRAs vdWs heterostructure at regions with or without strain (Fig.4c),a red shift of A-exiton from 1.88 eV to 1.79 eV was observed for the strained area B with a 200 nm height Cu2O nanorod.And the red shift trend showed the height dependence of Cu2O nanorods(Fig.4d),indicating that the band gap of 1L MoS2decreases with the strain increases.The reduction of the optical band gap results from the biaxial tensile strain,which has been demonstrated in previous reports [43].These results indicated that the strain can effectively tune the band off-set and charge transfer at the interfaces of heterostructures,inducing a more efficient separation of photogenerated carriers,and thus exhibit an enhancement of HER activity.The strain induced charge separation is further proved by the enhanced photocurrent measured from the two-terminal phototransistor made by 1L MoS2/Cu2O NRAs heterostructures (Fig.S5 in Supporting information).

    The efficient PEC performance of our strained array suggests a potential strategy of designing and optimizing PEC cathodes.To demonstrate the scalability of our devices,the PEC water splitting of photocathodes based on centimeter sized array samples were measured in 0.5 mol/L Na2SO4aqueous solution (pH 7) as electrolyte,under simulated solar irradiation (AM 1.5 G,100 mW/cm2)(see details in “Experimental methods” section and Fig.S4 in Supporting information for the schematic diagram of the PEC device and reaction process).Fig.5 summarized the PEC performances for pristine MoS2,Cu2O photocathodes before heterostructure assembly,1L MoS2/Cu2O film heterostructure without inducing strain,and the strain tuned 1L MoS2/Cu2O NRAs photocathode,respectively (Fig.S5 in Supporting information for the optical images of the representative photoelectrodes).As shown in Fig.S6 (Supporting information),all the photoelectrodes were tested in the dark for the current curve.While under illumination,compared to the pristine MoS2,Cu2O photocathodes,the MoS2/Cu2O film heterostructure yields a photocurrent density of–1.4 mA/cm2at 0 Vvs.reversible hydrogen electrode (RHE),34.7 times and 1.2 times higher than those for MoS2(–0.04 mA/cm2) and Cu2O photocathodes (–1.2 mA/cm2),respectively (Fig.5a),suggesting that the construction of MoS2/Cu2O p-n heterostructure was beneficial for the HER performance.As a control experiment,we use ptype MoS2for creating the heterostructure and found a smaller photocurrent,albeit the similar strain effect is expected for the two types of MoS2.The result suggests that the p-n junction interface is crucial to the photo-generated electron-hole separation (Fig.S9 in Supporting information).Moreover,the introduction of strain further improved the photocurrent density of 1L MoS2/Cu2O NRAs vdWs heterostructure photocathode to–3.1 mA/cm2,which was 2.2 times higher than those for 1L MoS2/Cu2O film heterostructure without strain.It was also observed from the chopped photocurrent-potential (J-V) curves of related photocathodes (Fig.5b) and open circuit voltage attenuation curves (Fig.S7 in Supporting information) of related photocathodes,the 1L MoS2/Cu2O NRAs photocathode delivered the most obvious photocurrent responses.The enlarged part of the choppedJ-Vcurves was depicted in Fig.5c.The 1L MoS2/Cu2O NRAs photocathode exhibited a positively shifted turn-on voltage of 0.59 Vvs.RHE,larger than that of 1L MoS2/Cu2O (0.56 V) film and Cu2O (0.45 V) photocathodes.The positive shift of the switching voltage indicates that the catalytic reaction consumes less energy [44–46].All these results indicate the importance of the strain in the heterostructure electrodes.The strain enhanced HER performance was further confirmed by the improved photocurrent response of the MoS2on Cu2O NRAs with various heights (Fig.S11 in Supporting information).We also investigated the influence of the size and density of nanorods to the current density,and found an optimized condition of nanorods with diameter of 2-4 μm and intervals of 10–20 μm for high HER performance (Figs.S12 and S13 in Supporting information).

    Fig.5.(a) LSV curves under simulated light in 0.5 mol/L Na2SO4.(b) Chopped photocurrent-potential curves of Cu2O NRAs,MoS2/Cu2O Film and MoS2/Cu2O NRAs.(c) Local enlarged chopped J-V curves.(d,e) Transient photocurrents for Cu2O NRAs,MoS2/Cu2O Film and MoS2/Cu2O NRAs photocathodes measured at 0 V vs.RHE.(f) IPCE spectra of Cu2O NRAs and 1L MoS2/Cu2O NRAs photocathodes at 0 V vs.RHE.

    Photocurrent density-time curves of the photocathodes were also measured under intermittent illumination at 0 Vvs.RHE to further investigate the HER activities and the stability of the photocathodes.As shown in Figs.5d and e,all the photocathodes showed photocurrent response at the moment of illumination,indicating the rapid photoelectric charge generation.Compared with bare Cu2O NRAs which photocurrent density decays by 70% in 500 s,an improvement of the photocurrent stability was observed on the vdWs heterostructure photocathode (Fig.5d) with negligible photocurrent decay for long-term measurements up to 5 h (Fig,S14 in Supporting information).The enhancement of the photo response from the 1L MoS2/Cu2O NRAs heterostructure with strain further confirm the key role of strain in enhancing HER performance.

    To investigate the wavelength dependence of the photocathodes,the incident photoelectric conversion efficiency (IPCE) tests were conducted and IPCE was calculated using the following equation:

    where the characterIstand for the photocurrent density,λis the wavelength of the incident light,andJlightrepresents the incident light power intensity.The IPCE data showed that the photo-active range of 1L MoS2/Cu2O NRAs vdWs heterostructure photocathode covers the full visible light range (350–700 nm) (Fig.5f).And the IPCEs of 1L MoS2/Cu2O NRAs photocathode were much higher than that of the Cu2O NRAs photocathodes in the range between 350 nm and 700 nm.The maximal IPCE value is up to 28% at 540 nm.These results all suggested that the strain tuned p-n heterostructure can effectively improve the PEC efficiency of photoelectrode,which can be attributed to the synergistic effect of band offset in the p-n heterointerface and strain gradient.

    In summary,we have successfully prepared a 1L MoS2/Cu2O vdWs heterostructure photocathode material by nanoindentation technique.The effects of strain on promoting charge separation were verified by the enhanced performances in PEC hydrogen evolution reaction of vdWs heterostructure.The interfaces in the vdWs heterostructure were investigated by various characterization.Insituobservations further reveal that strain can be accurately applied in the vdWs heterostructure by controlling the height of the Cu2O NRAs.This work demonstrates the strain modulation is an effective method for regulating interface charge and promoting photoelectrochemical efficiency.Moreover,due to the large family of novel 2D materials and the compatibility of van der Waals heterostructures based on them,our results demonstrate a versatile method for the fabrication of effective PEC system and accurate understandings of the charge transfer processes in heterostructure.Furthermore,the strain engineer is introduced as a strategy of tunning the charge separation in mixed-dimensional vdWs heterostructures and is expected to be widely used in photoelectrochemistry,photo/electro-catalysis,photo-electronics,and so on.

    Declaration of competing interest

    The authors declare no competing interests.

    Acknowledgments

    The experimental work was supported by the National Key R&D Program of China (Nos.2018YFA0306900 and 2018YFA0209500),the National Natural Science Foundation of China (Nos.21872114,21972121 and 21908253),the Science and Technology Plan Project of Guangdong Province (No.2018A030310300),and the China Postdoctoral Science Foundation (No.2020M682616).Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research (No.61155-DNI5).H.Ren and M.Li also thank the Defense Advanced Research Project Agency (DARPA) and the Army Research Office for the financial support (No.W911NF-20-1-0304).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.08.062.

    淫妇啪啪啪对白视频| 国产一区二区三区视频了| 一二三四在线观看免费中文在| 亚洲三区欧美一区| 精品国产国语对白av| 亚洲自偷自拍图片 自拍| 天天躁日日躁夜夜躁夜夜| 下体分泌物呈黄色| 亚洲精品中文字幕在线视频| 午夜免费成人在线视频| 国产不卡一卡二| 一本一本久久a久久精品综合妖精| 女性生殖器流出的白浆| 视频在线观看一区二区三区| 日本wwww免费看| 精品久久蜜臀av无| 窝窝影院91人妻| 女人爽到高潮嗷嗷叫在线视频| 老司机在亚洲福利影院| 纯流量卡能插随身wifi吗| 日本五十路高清| 一区福利在线观看| 老司机影院毛片| av网站免费在线观看视频| 男女下面插进去视频免费观看| 国产精品 国内视频| 男人操女人黄网站| 国产精品免费大片| 一级毛片精品| 亚洲专区国产一区二区| 精品人妻1区二区| 人妻 亚洲 视频| 一二三四社区在线视频社区8| 十八禁网站网址无遮挡| 成年人免费黄色播放视频| 欧美激情 高清一区二区三区| 91成年电影在线观看| 亚洲av欧美aⅴ国产| 99香蕉大伊视频| 中文字幕色久视频| 国产成人免费无遮挡视频| 久久久久网色| 国产精品影院久久| 深夜精品福利| 国产成人精品无人区| 波多野结衣一区麻豆| 亚洲成国产人片在线观看| 两个人看的免费小视频| 亚洲一区中文字幕在线| 嫩草影视91久久| 午夜福利乱码中文字幕| 亚洲精品美女久久av网站| 亚洲七黄色美女视频| 亚洲熟女精品中文字幕| 欧美精品av麻豆av| 超碰成人久久| 精品亚洲成a人片在线观看| 欧美黑人精品巨大| 天天影视国产精品| av有码第一页| 人成视频在线观看免费观看| 久久久国产精品麻豆| 一级毛片精品| 国产欧美日韩一区二区精品| 高清视频免费观看一区二区| 亚洲专区中文字幕在线| 岛国在线观看网站| 国产成人精品久久二区二区免费| 国产一区二区在线观看av| 久久九九热精品免费| 国产男女超爽视频在线观看| 一区福利在线观看| 久久婷婷成人综合色麻豆| 一级黄色大片毛片| 一二三四在线观看免费中文在| 香蕉久久夜色| 一级毛片电影观看| 久久人妻av系列| 精品卡一卡二卡四卡免费| 女性被躁到高潮视频| 国产亚洲一区二区精品| av欧美777| 老汉色av国产亚洲站长工具| 亚洲一区二区三区欧美精品| 一本—道久久a久久精品蜜桃钙片| 黄片播放在线免费| 又黄又粗又硬又大视频| 中文亚洲av片在线观看爽 | 国产aⅴ精品一区二区三区波| 亚洲成人手机| 12—13女人毛片做爰片一| 久久精品熟女亚洲av麻豆精品| 18禁国产床啪视频网站| 一个人免费在线观看的高清视频| 日本wwww免费看| 青青草视频在线视频观看| 不卡一级毛片| 中文字幕人妻丝袜制服| 欧美日韩亚洲国产一区二区在线观看 | 在线观看免费视频网站a站| 免费观看人在逋| 精品久久蜜臀av无| 热re99久久精品国产66热6| 在线观看www视频免费| 日韩制服丝袜自拍偷拍| 黄色视频不卡| 在线观看免费午夜福利视频| xxxhd国产人妻xxx| 欧美日韩亚洲高清精品| 一本一本久久a久久精品综合妖精| 69av精品久久久久久 | 黄色成人免费大全| 国产精品麻豆人妻色哟哟久久| 在线天堂中文资源库| 男女边摸边吃奶| 在线av久久热| 搡老熟女国产l中国老女人| 悠悠久久av| 精品一品国产午夜福利视频| 久久中文字幕人妻熟女| aaaaa片日本免费| 色视频在线一区二区三区| 成年版毛片免费区| 日韩 欧美 亚洲 中文字幕| 日韩欧美一区视频在线观看| 51午夜福利影视在线观看| 免费在线观看黄色视频的| 多毛熟女@视频| 99久久99久久久精品蜜桃| 国产老妇伦熟女老妇高清| 黄色成人免费大全| 精品国产一区二区三区四区第35| 精品亚洲成国产av| 99在线人妻在线中文字幕 | 欧美老熟妇乱子伦牲交| 精品福利永久在线观看| 老司机福利观看| 香蕉久久夜色| 丝瓜视频免费看黄片| 91av网站免费观看| 国产成人免费观看mmmm| 香蕉久久夜色| 十八禁高潮呻吟视频| 亚洲中文av在线| 国产黄频视频在线观看| 精品第一国产精品| 999久久久精品免费观看国产| 80岁老熟妇乱子伦牲交| 精品福利永久在线观看| 亚洲成国产人片在线观看| 热re99久久国产66热| 一本久久精品| 国产xxxxx性猛交| 人人妻人人澡人人爽人人夜夜| 久久九九热精品免费| 欧美久久黑人一区二区| 热re99久久精品国产66热6| 久久天堂一区二区三区四区| 亚洲一码二码三码区别大吗| 欧美成狂野欧美在线观看| 丰满人妻熟妇乱又伦精品不卡| 超碰成人久久| 日韩欧美一区视频在线观看| 欧美亚洲 丝袜 人妻 在线| www.熟女人妻精品国产| 脱女人内裤的视频| 男人舔女人的私密视频| 亚洲男人天堂网一区| 国产成人影院久久av| 男人操女人黄网站| 国产1区2区3区精品| 国产精品影院久久| 99精国产麻豆久久婷婷| 精品一区二区三区四区五区乱码| 咕卡用的链子| 涩涩av久久男人的天堂| 日韩熟女老妇一区二区性免费视频| 久久午夜亚洲精品久久| 一级毛片精品| 日韩免费av在线播放| 十八禁网站免费在线| 久久九九热精品免费| 国产高清国产精品国产三级| 国产精品久久久av美女十八| 亚洲人成电影观看| 亚洲欧美一区二区三区久久| 午夜两性在线视频| 国产高清激情床上av| 夜夜爽天天搞| 中文字幕最新亚洲高清| 激情视频va一区二区三区| 久久天堂一区二区三区四区| 国产欧美日韩一区二区精品| 精品高清国产在线一区| 久久婷婷成人综合色麻豆| 99精品欧美一区二区三区四区| 91国产中文字幕| 91大片在线观看| 中文亚洲av片在线观看爽 | 激情在线观看视频在线高清 | 久久精品熟女亚洲av麻豆精品| 欧美日韩亚洲综合一区二区三区_| 精品一区二区三区四区五区乱码| 亚洲av片天天在线观看| 日韩成人在线观看一区二区三区| 夜夜爽天天搞| 国产精品一区二区在线不卡| 欧美性长视频在线观看| av在线播放免费不卡| cao死你这个sao货| 欧美精品av麻豆av| 飞空精品影院首页| 国产精品.久久久| 久久亚洲真实| 久久ye,这里只有精品| 久热爱精品视频在线9| 久久精品国产亚洲av香蕉五月 | 久久亚洲真实| 国产男女内射视频| 麻豆乱淫一区二区| 亚洲熟妇熟女久久| 国产欧美日韩综合在线一区二区| 热re99久久国产66热| 精品人妻1区二区| 中文字幕另类日韩欧美亚洲嫩草| 老司机午夜福利在线观看视频 | 又黄又粗又硬又大视频| 国产av一区二区精品久久| 亚洲精品自拍成人| 两个人看的免费小视频| 老司机靠b影院| 国产亚洲欧美在线一区二区| 最近最新免费中文字幕在线| 欧美黄色淫秽网站| 9热在线视频观看99| 欧美黑人精品巨大| 日本av免费视频播放| 窝窝影院91人妻| 日韩制服丝袜自拍偷拍| 91av网站免费观看| 欧美另类亚洲清纯唯美| 丰满饥渴人妻一区二区三| 亚洲成av片中文字幕在线观看| 亚洲精华国产精华精| 欧美另类亚洲清纯唯美| 精品国产亚洲在线| 午夜福利欧美成人| 亚洲精品国产精品久久久不卡| 18在线观看网站| tocl精华| 天堂俺去俺来也www色官网| 曰老女人黄片| 免费在线观看视频国产中文字幕亚洲| 一区在线观看完整版| 精品国产乱码久久久久久小说| 国产成人av激情在线播放| 黄网站色视频无遮挡免费观看| 国产欧美日韩一区二区三| 亚洲欧美一区二区三区黑人| 亚洲综合色网址| 老司机亚洲免费影院| 涩涩av久久男人的天堂| 久久中文字幕一级| 十分钟在线观看高清视频www| 99九九在线精品视频| 午夜免费成人在线视频| 精品国产一区二区三区久久久樱花| 操出白浆在线播放| 高清欧美精品videossex| 黄色视频不卡| 怎么达到女性高潮| av视频免费观看在线观看| 免费不卡黄色视频| 男人舔女人的私密视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲专区国产一区二区| 亚洲av欧美aⅴ国产| 欧美日韩国产mv在线观看视频| 久久中文看片网| 大片电影免费在线观看免费| 在线观看人妻少妇| 日本wwww免费看| 亚洲精品国产区一区二| 久久九九热精品免费| 下体分泌物呈黄色| 欧美在线一区亚洲| www日本在线高清视频| av有码第一页| 国产成人av激情在线播放| 80岁老熟妇乱子伦牲交| 午夜成年电影在线免费观看| 国产在线观看jvid| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品中文字幕在线视频| 国产色视频综合| 欧美日韩精品网址| 久久99一区二区三区| 色综合婷婷激情| 亚洲成av片中文字幕在线观看| 免费av中文字幕在线| 免费黄频网站在线观看国产| 亚洲免费av在线视频| 大型黄色视频在线免费观看| 国产精品美女特级片免费视频播放器 | 精品第一国产精品| 少妇被粗大的猛进出69影院| 2018国产大陆天天弄谢| 涩涩av久久男人的天堂| 国产成人免费观看mmmm| 精品亚洲成a人片在线观看| 99热国产这里只有精品6| 午夜两性在线视频| a在线观看视频网站| 757午夜福利合集在线观看| 国产av精品麻豆| 午夜精品久久久久久毛片777| 午夜激情av网站| 亚洲欧美一区二区三区黑人| 欧美精品啪啪一区二区三区| 99国产综合亚洲精品| 亚洲精品av麻豆狂野| 欧美激情 高清一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 五月天丁香电影| 亚洲性夜色夜夜综合| 色视频在线一区二区三区| 蜜桃在线观看..| 2018国产大陆天天弄谢| 99re在线观看精品视频| 色综合欧美亚洲国产小说| 精品人妻1区二区| 无人区码免费观看不卡 | 菩萨蛮人人尽说江南好唐韦庄| 美女视频免费永久观看网站| 欧美日韩视频精品一区| 国产无遮挡羞羞视频在线观看| 最近最新免费中文字幕在线| 亚洲欧美日韩另类电影网站| 亚洲人成电影观看| 动漫黄色视频在线观看| 成人手机av| 亚洲欧美激情在线| 欧美乱妇无乱码| 亚洲专区国产一区二区| 汤姆久久久久久久影院中文字幕| 在线观看免费视频日本深夜| 又大又爽又粗| 中文亚洲av片在线观看爽 | 精品久久蜜臀av无| 无遮挡黄片免费观看| 精品久久久久久电影网| 狠狠精品人妻久久久久久综合| cao死你这个sao货| 亚洲欧美精品综合一区二区三区| 丝袜人妻中文字幕| 热re99久久精品国产66热6| 亚洲av国产av综合av卡| 亚洲色图av天堂| 欧美在线一区亚洲| 久热爱精品视频在线9| 久久天躁狠狠躁夜夜2o2o| 国产精品1区2区在线观看. | tocl精华| 久久久久久人人人人人| 日韩有码中文字幕| 日韩免费av在线播放| 免费在线观看黄色视频的| 久久久久久久国产电影| 黄色片一级片一级黄色片| 少妇粗大呻吟视频| 操出白浆在线播放| 极品少妇高潮喷水抽搐| 国产精品亚洲av一区麻豆| 久久久国产欧美日韩av| 日韩中文字幕视频在线看片| 精品视频人人做人人爽| 亚洲欧洲精品一区二区精品久久久| 久久精品aⅴ一区二区三区四区| 99热国产这里只有精品6| 亚洲专区中文字幕在线| 黄色片一级片一级黄色片| 成人国产一区最新在线观看| 极品人妻少妇av视频| 十八禁高潮呻吟视频| 夜夜夜夜夜久久久久| 国产男靠女视频免费网站| 日韩大片免费观看网站| 一区福利在线观看| 制服人妻中文乱码| 中文字幕人妻丝袜一区二区| 少妇猛男粗大的猛烈进出视频| 大香蕉久久网| 精品卡一卡二卡四卡免费| 99国产综合亚洲精品| 中文字幕精品免费在线观看视频| 亚洲七黄色美女视频| 激情在线观看视频在线高清 | www.精华液| 少妇被粗大的猛进出69影院| 青青草视频在线视频观看| 十八禁网站网址无遮挡| av国产精品久久久久影院| 欧美激情 高清一区二区三区| 黄片播放在线免费| 亚洲av日韩精品久久久久久密| 啦啦啦在线免费观看视频4| videosex国产| 一本久久精品| av网站免费在线观看视频| av电影中文网址| 中文字幕人妻丝袜一区二区| 美女主播在线视频| 免费在线观看黄色视频的| av不卡在线播放| 亚洲精品美女久久久久99蜜臀| 日韩有码中文字幕| 九色亚洲精品在线播放| 亚洲视频免费观看视频| 国产一区二区在线观看av| 亚洲精品国产区一区二| 久久99一区二区三区| 黄色毛片三级朝国网站| 一区福利在线观看| 99热网站在线观看| 女人被躁到高潮嗷嗷叫费观| 久久99一区二区三区| 脱女人内裤的视频| 久久精品熟女亚洲av麻豆精品| 欧美日韩一级在线毛片| 侵犯人妻中文字幕一二三四区| 国产精品自产拍在线观看55亚洲 | 久久精品91无色码中文字幕| 日韩免费高清中文字幕av| av在线播放免费不卡| 国产av又大| 欧美精品啪啪一区二区三区| 欧美黄色片欧美黄色片| 国产极品粉嫩免费观看在线| 大片免费播放器 马上看| 国产深夜福利视频在线观看| 亚洲黑人精品在线| 国产精品电影一区二区三区 | 国产一区二区三区综合在线观看| 最近最新中文字幕大全电影3 | 午夜福利欧美成人| 久久人妻av系列| 欧美激情极品国产一区二区三区| 又黄又粗又硬又大视频| 亚洲一区二区三区欧美精品| 免费在线观看影片大全网站| 一区二区av电影网| 精品一区二区三卡| 久久影院123| 十八禁网站免费在线| 色综合婷婷激情| 狠狠狠狠99中文字幕| 777久久人妻少妇嫩草av网站| 老汉色∧v一级毛片| 欧美精品一区二区免费开放| 伊人久久大香线蕉亚洲五| 夜夜夜夜夜久久久久| 一区福利在线观看| 久久久久久久久免费视频了| 捣出白浆h1v1| 亚洲 欧美一区二区三区| 国产不卡av网站在线观看| 精品国产乱码久久久久久小说| 久久久久国产一级毛片高清牌| 国产成人欧美| 亚洲av日韩在线播放| 国精品久久久久久国模美| 另类亚洲欧美激情| 亚洲国产欧美在线一区| 亚洲精品在线观看二区| 久久午夜亚洲精品久久| 精品久久久精品久久久| 国产一区二区激情短视频| 人人澡人人妻人| a级片在线免费高清观看视频| 国产欧美日韩精品亚洲av| 国产精品欧美亚洲77777| avwww免费| 亚洲国产欧美在线一区| tube8黄色片| 在线av久久热| videos熟女内射| 亚洲成a人片在线一区二区| 久久婷婷成人综合色麻豆| 两性夫妻黄色片| 757午夜福利合集在线观看| 免费女性裸体啪啪无遮挡网站| 王馨瑶露胸无遮挡在线观看| 少妇被粗大的猛进出69影院| 午夜成年电影在线免费观看| 日韩 欧美 亚洲 中文字幕| 亚洲avbb在线观看| 天堂动漫精品| 超碰成人久久| 欧美乱妇无乱码| 免费看a级黄色片| 国产精品久久电影中文字幕 | 国产免费av片在线观看野外av| 国产精品电影一区二区三区 | 人妻久久中文字幕网| 亚洲成人国产一区在线观看| 亚洲欧美一区二区三区久久| 久久精品成人免费网站| 999久久久国产精品视频| 狂野欧美激情性xxxx| 黄片小视频在线播放| 亚洲午夜理论影院| 日韩人妻精品一区2区三区| 丝袜在线中文字幕| 91麻豆av在线| 国产一区二区三区综合在线观看| 色婷婷久久久亚洲欧美| 国产熟女午夜一区二区三区| 国产精品久久久av美女十八| 国产精品一区二区免费欧美| 肉色欧美久久久久久久蜜桃| 午夜两性在线视频| 国产97色在线日韩免费| 午夜福利,免费看| 99久久99久久久精品蜜桃| 久久天躁狠狠躁夜夜2o2o| 自线自在国产av| 多毛熟女@视频| 亚洲av日韩精品久久久久久密| 亚洲色图av天堂| 日韩有码中文字幕| 久久精品aⅴ一区二区三区四区| 丁香六月欧美| 欧美在线一区亚洲| 91字幕亚洲| 亚洲精品国产一区二区精华液| 欧美日本中文国产一区发布| 欧美性长视频在线观看| 麻豆国产av国片精品| 精品一区二区三卡| 一级毛片精品| 电影成人av| 99久久人妻综合| 久久ye,这里只有精品| 黑丝袜美女国产一区| 在线观看免费视频日本深夜| 女人精品久久久久毛片| 高清视频免费观看一区二区| 热99国产精品久久久久久7| 波多野结衣一区麻豆| 亚洲国产看品久久| 亚洲 欧美一区二区三区| 精品福利永久在线观看| 久久人人97超碰香蕉20202| 色尼玛亚洲综合影院| 国产精品.久久久| 亚洲欧美精品综合一区二区三区| 亚洲伊人久久精品综合| 国产不卡av网站在线观看| 一区二区三区乱码不卡18| 丝袜人妻中文字幕| 一个人免费看片子| 久久青草综合色| av网站免费在线观看视频| 黑人巨大精品欧美一区二区蜜桃| 国产高清国产精品国产三级| 中文字幕人妻丝袜制服| 飞空精品影院首页| 午夜成年电影在线免费观看| 老司机影院毛片| 亚洲中文字幕日韩| 18禁裸乳无遮挡动漫免费视频| 午夜福利,免费看| 热99国产精品久久久久久7| 99精品久久久久人妻精品| av在线播放免费不卡| 男男h啪啪无遮挡| 十八禁人妻一区二区| 欧美精品高潮呻吟av久久| 黄色怎么调成土黄色| 亚洲黑人精品在线| 99国产极品粉嫩在线观看| 9色porny在线观看| 天堂中文最新版在线下载| 黄色 视频免费看| 一级片'在线观看视频| 美女高潮到喷水免费观看| 欧美精品亚洲一区二区| e午夜精品久久久久久久| 91精品三级在线观看| 成年版毛片免费区| 色婷婷av一区二区三区视频| 国产精品免费一区二区三区在线 | 一边摸一边做爽爽视频免费| 国产单亲对白刺激| 大香蕉久久网| 麻豆乱淫一区二区| 婷婷丁香在线五月| 人人妻人人澡人人爽人人夜夜| 成人特级黄色片久久久久久久 | 精品人妻1区二区| 50天的宝宝边吃奶边哭怎么回事| 国产福利在线免费观看视频| 日韩制服丝袜自拍偷拍| 黑人欧美特级aaaaaa片| 国产精品久久久久久人妻精品电影 | 五月开心婷婷网| 久热爱精品视频在线9| 国产成人欧美在线观看 | 国产成人av教育| 黄片小视频在线播放| 激情在线观看视频在线高清 | 又黄又粗又硬又大视频| 国产欧美日韩综合在线一区二区| 国产精品免费一区二区三区在线 | 亚洲精品在线美女|