• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Light-mediated CO2-responsiveness of metallopolymer microgels

    2022-06-18 10:53:14XiofeiWngXuezhenLinHuijunQiuJindXieZhengyuLuYusongWngWeitiWu
    Chinese Chemical Letters 2022年3期

    Xiofei Wng,Xuezhen Lin,Huijun Qiu,Jind Xie,Zhengyu Lu,Yusong Wng,Weiti Wu,d,?

    a State Key Laboratory for Physical Chemistry of Solid Surfaces,Collaborative Innovation Center of Chemistry for Energy Materials,The Key Laboratory for Chemical Biology of Fujian Province,and Department of Chemistry,College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China

    b School of Materials Science and Engineering,Xiamen University of Technology,Xiamen 361024,China

    c Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei 230026,China

    d School of Chemistry and Chemical Engineering,Ningxia University,Yinchuan 750021,China

    Keywords:Stimuli-responsive Metallopolymers Light Dilute CO2 Reversible uptake-release

    ABSTRACT Here,we report a finding on light-mediated CO2-responsiveness.It is found on the microgels that are made of side-chain type metallopolymers containing metalla-aromatics.Turbidity and laser light scattering studies on dilute aqueous dispersion of these microgels in dark indicate high CO2-responsivity,but poor reversibility upon N2 purge,which can be improved by exposing to light.This light-mediated CO2-responsiveness can be elucidated by the loss of aromaticity from initial photoexcitation and concurrent formation of a less reactive,antiaromatic excited state of relatively low CO2 binding affinity,and by subsequent relief of antiaromaticity that can enhance the CO2 removal.The finding is also checked by CO2 uptake-release experiments on the microgels,which enables both CO2 capture of high capacity and CO2 removal of good reversibility under a mild condition,allowing effective and reversible response to dilute CO2.

    Stimuli-responsive polymeric materials that can reversibly respond to CO2provides great opportunities [1–6].Besides the prospect of CO2capture and removal in easing the world’s energy and environmental problems,with CO2as a stimulus to induce polymer phase transitions,it is able to regulate properties of CO2-responsive polymeric materials for cell mimics,drug delivery,and many other applications [6–12].

    Because of the prospective applications,efforts have been made to explore fundamental principles of polymer design to enable CO2-responsiveness,including the choice of CO2-responsive moieties and how effective CO2-responsiveness can be expected to be under the conditions of interest [11,12].Up to now,CO2-responsive polymeric materials are principally synthesized by the functionalization of polymer chains with basic groups,which can react with acidic CO2in water based on acid–base pair theory [7–11].Owing to reversible nature of the acid–base equilibrium,CO2can be removed by bubbling with inert gases (e.g.,N2gas) under a mild condition.This offers an advantage of free of contamination by accumulated chemicals;yet,it also makes the materials barely respond to dilute CO2,due to low capacity of the CO2-responsive polymeric materials for CO2capture from dilute CO2sources,which undisputedly is a critical drawback [1–12].As a theoretical possibility,enhancing CO2binding affinity might allow CO2capture of high capacity [13–16],which paves the way to address this problem [11]and thus have recently received attention in CO2-responsiveness design [17,18].For instance,efforts are made by exploiting frustrated Lewis pair (FLP) [19],and use CO2to bridge FLPcontaining polymersviadynamic covalent bonding [17,18].However,high CO2binding affinity in turn leads to difficulty in CO2removal without heating (≥60 °C typically).The challenge of seeking stimuli-responsive polymeric materials of a distinct mechanism to allow both CO2capture of high capacity and CO2removal of good reversibility under a mild condition remains to be solved.

    In this work,we would like to report a concept of how to tune CO2binding affinity to mediate CO2-responsiveness by using sidechain type metallopolymers containing metalla-aromatics as CO2-responsive moieties on microgels.Unlike bases or FLP groups reported in previous articles that give rise to intra-/intermolecular acid-base activation of CO2viaionic or dynamic covalent bonding[1–14],metallopolymers (or organometallic polymers) with metal functionalities display typically high CO2binding affinityviastrong interactions (e.g.,metal complexes) [20–22],which however are rarely used for harnessing CO2-responsiveness.Here our intention to use those metallopolymers containing metalla-aromatics is because most metalla-aromatics are thermodynamic stable and possess properties of both organometallics and aromatics [23,24].An alteration in (anti)aromaticity is known to efficiently tune reactivity [25].For instance,(anti)aromaticity can promote reactivity of FLP groups with small molecules like CO2[26,27].Interestingly,light exposure could lead to a change in (anti)aromaticity,offering a facile way to vary reactivity [28–30].This tunning in reactivity may depend on a combination of properties: the number of electrons,the orbital topology,and the electronic state,in the sense that a change in each of these factors lead to a reversal in the allowedness and forbiddenness;in particular,the results pointed to a reversal of (anti)aromaticity following photoexcitation [28–30].Inspired by these,one wonders if it is possible to obtain polymeric materials,microgels [3,31–33]here of metallopolymers containing metalla-aromatics,of effective and reversible CO2-responsiveness by utilizing light as a mediator (Scheme 1).

    Scheme 1.Synthesis of metallopolymer microgels.

    The microgels were synthesized through electrochemical polymerization [34]of a Craig-type coplanar M?bius metalla-aromatic compound (OsHEMA;2.0 × 10?4mol/L) [35]with a crosslinkerN,N’-methylenebisacrylamide (MBAAm;2.0 × 10?6mol/L),and with copper nanoparticles (36 ± 5 nm;see Fig.S1 in Supporting information for TEM,XRD and UV-vis absorption results) as mediators for electron transfer,so as to avoid direct electrolysis of OsHEMA on the electrode that might lead to disproportional reactions [36].On an anodic scan,an oxidation starts to develop on copper nanoparticles at a low potential ofca.+0.2 VversusAg/AgCl (Fig.S2 in Supporting information),leading to formation of strong oxidizing copper species [36,37],which can attack MBAAm to form N-localized radicals [34,36].These N-localized radicals could trigger a cascade of reactions that typically involve the loss of a proton and formation of C-localized radicals,which then initiate polymerization on attacking vinyl groups of the monomer/crosslinker,making them enter into free radical polymerization [36]and particle growth processes in the electrochemical systems [34,38].In this circumstance,the synthesis should proceed upon applying a suitable potential of+0.3 V that is above the oxidation wave of copper nanoparticles,but below those of Os-HEMA (starting atca.+0.6 VversusAg/AgCl) and MBAAm (starting at+1.6 VversusAg/AgCl) (Fig.S3 in Supporting information),resulting in toroidal-like microgels (collected after reacting for 4 h at 25.0 °C,and purified before characterization;Fig.1a).The mean diameter of freeze-dried toroids is 1.46 ± 0.21 μm,and the width is 69 ± 23 nm;the outline is barely sharp due to the existence of corona [34,39]on surface that may be indistinctly seen in Fig.1b.Energy dispersive X-ray (EDX) elemental mapping results indicated

    Fig.1.(a,b) TEM images of the microgels.(c–f) Typical EDX elemental mapping of(c) carbon,(d) oxygen,(e) phosphorus,and (f) osmium on the single gel particle shown in (b).

    the existence of carbon,oxygen,phosphorus and osmium in an individual toroid;no copper salts or other inorganics were detected(Figs.1c-f).The edge of EDX elemental maps matches well that in annular dark-field TEM image (Fig.1b),indicating that those elements and corresponding moieties are distributed throughout microgels.31P NMR spectrum of the microgels (Fig.S4 in Supporting information) showed two signals of the metalla-aromatic moiety atca.13.0 (for CPPh3) and 3.6 ppm (for OsPPh3),and in1H NMR spectrum (Fig.S5 in Supporting information) atca.12.2 (for OsCH)and 7.1-8.2 ppm (for other aromatic protons) [35],indicating the integration of the metalla-aromatic moiety to the microgels.The weight percentage of the metalla-aromatic moiety was estimated to beca.95.4 wt%,viaanalyzing the percentage of osmium metal by inductively coupled plasma mass spectrometry [35],which was close to the feeding for microgel synthesis (ca.99.9 wt%).The microgels were hydrophilic (Fig.S6 in Supporting information) and kept stable in water (Fig.S7 in Supporting information).To verify the shape and composition of microgels (Table S1 in Supporting information),over five samples were repeated,and ten samples were prepared at 20–30 °C,which displays negligible influence on synthesis.The microgels were reproducible from batch to batch,with an average yield of ≥80%.

    Phase diagrams for aqueous microgel dispersion (0.015 wt%)were studied by UV-vis spectroscopy at a wavelengthλ=700 nm(of incident light intensityI0),where absorption is negligible (Fig.S8 in Supporting information).The decrease in transmitted light intensity (IT) can be associated with scattering,to give the normalized attenuation coefficientδλas [34]:

    where the light attenuationDλ=lg(I0/IT),cfor the microgel concentration (wt%),anddfor the cuvette thickness (1 cm).The tests were made at a slow temperature ramp (3 °C/h;using a temperature controller,±0.1 °C) followed by a long waiting (30 min,after temperature reaching equilibrium) and a rapid measurement time (<1 s),to ensure in the equilibrium state of microgels at each measurement.The dispersion was bubbled with N2or CO2gas (20.0 mL/min under 1 atm in dark) and equilibrated in a cuvette for tests.Upon purge with CO2at a set temperature in the range of 20–80 °C,theδ700changed immediately and reached equilibrium within 30 min of CO2purge (Fig.S9 in Supporting information),and theδ700(equilibrated;the same below) increased with the amount of CO2going through the dispersionviaadjusting purge time (Fig.2a).The increase in theδ700is possibly associated with the binding of CO2to the metalla-aromatic moiety[20–22],and ether oxygens as well [33],which could reduce hydrogen bonding of polymers with water and thus the hydrophilicity that lead to the drop of transmittance [34].Since this subtle variation can also disrupt counterbalance of hydrophilic and hydrophobic forces in microgels,which is a key factor responsible for thermo-responsiveness [39,40],then,temperature-dependence on theδ700was studied.Results indeed show an increasedδ700at elevated temperatures (Fig.2a),representing a possible transition atca.54.6 °C upon N2purge (Fig.S10 in Supporting information);the transition temperature drops toca.47.5 °C,43.3 °C and 41.8 °C,respectively,after a 30 s,5 min and 30 min of CO2purge (Figs.S10 and S11 in Supporting information).Those results demonstrate that the microgels are CO2-responsive.In further cyclic tests (Fig.2b and Fig.S9),purge again with N2following the CO2purge,theδ700cannot fully recover.The recovery ratioRδisca.5% at 20.0 °C,as estimated byRδ=(δCO2-δN2)/(δCO2-δ0),in whichδ0is the initialδ700,andδCO2is theδ700after a CO2purge andδN2is that after one cycle of CO2/N2purge.A largerRδappears at the higher temperature (Fig.2b and Fig.S12 in Supporting information).However,unsatisfying recovery ratios were recorded over the range of temperatures for turbidity analysis (20–80 °C;e.g.,Rδ≈45% at 80.0 °C),demonstrating a poor reversibility.

    The reversibility of CO2-responsiveness can be improved by irradiation to an ultraviolet lamp (offering 30.0 W/cm2area light of a wavelength 365 nm) (Fig.2b;keeping the temperature at the set value while turning off gas purge and the lamp for rapid measurements,the same below).This seems to be realized by altering the variations on theδ700under CO2/N2purge.Compared with results measured in dark,when the light was applied,the rising extent of theδ700upon purge with CO2became lower,whereas the reducing extent of theδ700became more significant upon purge again with N2.Taken together the two variation manners,light-mediated CO2-responsiveness could be achieved and theRδapproached 100% at 20.0 °C,indicating good reversibility under a mild condition.Similar results were obtained at other temperatures in the range of 20–80 °C (e.g.,at 80.0 °C,Fig.2b and Fig.S12).

    An examination on the observedδ700change may raise a few questions.The first possible question associates with aggregation:may the recordedδ700relate to aggregation of microgels? It has been reported that macromolecular clews in solutions below a critical concentration (ca.0.1 wt%) can conserve individuality [41].Given that theδ700was recorded on dispersions of a much lower concentration (0.015 wt%),aggregation of microgels may be excluded.This hypothesis is supported by particle dynamics,through characterizing particle diffusion using an exponentPthat is obtained by diffusing wave spectroscopy.If aggregation occurred,a change on particle dynamics can be reflected in a change from freely diffusive (P≈ 1) to subdiffusive motion (P <0.8) [42].Here,a constantPofca.1 is obtained in the temperature range of 20–80 °C (Fig.S13 in Supporting information),confirming that the microgels did not lose individuality.Theδ700change reflects transitions of individual microgels.To provide a direct evidence,dynamic light scattering (DLS) was used to monitor the average hydrodynamic radius0,which is “equivalent sphere radius” [43,44]that is obtained by angular extrapolation of apparent diffusion coefficient of microgels.As expected,the equilibrated0decreased as CO2purge time increasing (Fig.2c),rendering a large volumetric swelling ratio SW(N2/CO2)=(0(initial,N2)/0(after a 30 min of CO2purge)) [3]of 17.9 at 20.0 °C in dark,indicating a high CO2-responsivity.For each case of the same CO2purge time,the microgels deswelled at elevated temperatures until a sharp but continuous change around theδ700transition temperature (Fig.S14 in Supporting information),resulting in a smaller difference between0under N2/CO2purge at the higher temperature (e.g.,SW(N2/CO2)=3.5 at 80.0 °C).When the light was applied,full reversible CO2-responsiveness was also observed (Fig.2d),indicating existence of light-mediated CO2-responsiveness on individual microgels.

    The second possible question relates to the observation of lightmediated CO2-responsiveness of the microgels.The characteristics of the change inδ700and0upon CO2/N2purge in light is highly reminiscent of consequences of photoexcitation [45–47],which has been reported previously on metallopolymers that the internal energy absorbed from an exciting radiation could be lost by nonradiative processes among others [23,35].Internal conversion (driven by the kinetic coupling between electronic states;Fig.S15 in Supporting information) and the intersystem crossing (mediated by the spin–orbit coupling) are main intramolecular nonradiative processes [45–47].Note that most organics following photoexcitation undergo rapid internal conversion to the lowest excited singlet state (S1) [46,47],but the internal conversion from S1to the lowest singlet state S0is relatively slow,allowing time to promote intersystem crossing rapidly of S1-state to the lowest triplet state T1of organometallicsviaheavy-atom effect without significantly perturbing the excited-state dynamics [48],which facilitates formation of T1-state of metallapentalenes [24,49].As singlet and triplet states are distinct in nature [45],particularly(anti)aromaticity [28–30,47],the above explanation should be generalized for light-mediated CO2-responsiveness of the microgels.In a density functional theory (DFT) calculation,metallapentalene with osmium center and with a strongπ-acceptor ligand (like CO;Scheme 1) was proposed to be aromatic in S0-state,whereas antiaromatic in T1-state [49].(Anti)aromaticity refers to multidimensional manifestation in energetics,reactivity,electron delocalization and other properties,all of which in turn have been used to define numerous indices of (anti)aromaticity [24,28–30].For instance,the gain of aromaticity in FLP groups for the activation of asmall molecule (e.g.,CO2) may result in a gain of stability in both the corresponding transition state (leading to a lower barrier transformation),and in final adduct (making the process thermodynamically more favorable) [26,27].Thereby,it appears that lightmediated CO2-responsiveness is driven by the loss of aromaticity from initial photoexcitation and concurrent formation of a less reactive,antiaromatic excited state of relatively low CO2binding affinity,and by subsequent relief of antiaromaticity that can enhance CO2removal upon N2purge in light,that is,the origination of good reversibility.In comparison with results recorded at the same temperature in dark,the decrease inδ700(Fig.2b) and increase in0(Fig.2d) upon CO2purge in light should support the suppression of light for CO2binding,thus,indirectly reflect the feasibility of the explanation.

    Given that the difference in CO2binding affinity can lead to a change in CO2uptake/release capacity [13–17],single-gas uptakerelease experiments were performed.Fig.3a indicates a larger CO2uptake capacity of the microgels in dark than that acquired in light at the same temperature of 20.0 °C,in agreement with the variation in theδ700and0upon CO2purge between in dark and in light.Experiments at other temperatures in the range of 20–80 °C and over a pressure range from 0.1 atm to 1 atm indicated similar results (Fig.S16 in Supporting information).These results also demonstrate the dominate impact of the intersystem crossing,although the influence of the heat generated by internal conversion is ineluctable.Based on those isotherms (Fig.S17 in Supporting information),apparent isosteric heat of CO2uptake (Qapp) for the microgels was estimated (Fig.3b) [50].The reduction on theQappwas apparent on light exposure (e.g.,Qapp≈50.6 kJ/mol at zero loading and at 20.0 °C),compared to that in dark (Qapp≈62.4 kJ/mol at zero loading at 20.0 °C).It is reasonable that light had acted as a mediator to tune CO2binding affinity [13–16].This is further supported by CO2removal ability (Fig.3a).Over 95% of the CO2captured in light was released by N2purge also in light at the same temperature,standing in contrast against barely or partial (<54%) release in case of uptake/release in dark (Fig.S18 in Supporting information).The observation is consistent with turbidity and DLS results,well connecting light-mediated CO2-responsiveness to CO2uptake/release capacity.

    Further optimizing the experimentsviaa combination of CO2capture in dark and CO2removal in light,the former can enable a large CO2uptake capacity ofca.4.2 mmol/g under 1 atm CO2pressure at 20.0 °C,and the latter allows partial release (by keeping CO2purge while exposing to light) or full release (by N2purge in light) of CO2under ambient pressure at 20.0 °C (Fig.4a).This finding is curious,since both CO2capture of high capacity and CO2removal of good reversibility are realized under a mild condition,without large temperature swings (Fig.S19 in Supporting information) that is required for CO2uptake/release reported previously (Table S2 in Supporting information) [1–18].It is the change in the heat of uptake that produces large differences in binding of CO2to polymers: CO2capture in dark favors the formation of strong interactions (theQappabove 60 kJ/mol;e.g.,metal complexes),and light exposure facilitates weak interactions (theQappbelow 60 kJ/mol;e.g.,quadrupole-π) coming to dominate[20,51,52].As strong interactions favor CO2capture from dilute sources,one may wonder how low a CO2level can induce an effective CO2-responsiveness.To this end,the dispersion was bubbled with CO2/N2mixed-gases (Fig.4b).Distinctly,the microgels could respond to CO2at low CO2levels,as evidenced by attainment of a plateau of CO2uptake capacity ≥3.9 mmol/g even with CO2level lower down to 30 vol% in dark (Fig.4c);correspondingly,the microgels deswelled,with0≤68.2 nm (Fig.4d) or SW(N2/CO2)≥13.1 (Fig.S20 in Supporting information).If we defined the effective CO2-responsiveness as a CO2level under which a 10%0change was measured,the critical CO2level wasca.1 vol% in dark,which increased toca.70 vol% in light.This also indicates that,for the mixed-gas containing 1–70 vol% CO2,the microgels could effectively respond in dark,and nearly recover by simply exposing to light.

    Fig.4.(a) CO2 capacity of uptake in dark upon CO2 purge,and that release in light upon CO2 purge or N2 purge.(b) Time-domain volume of CO2 in the gas flow,upon purge with 1 vol% CO2 gas.(c) CO2 uptake capacity in dark and in light,upon purge with CO2/N2 mixed-gases,and (d) changes in the 0 after the corresponding treatments.Spontaneous uptake from the solution without any microgels was subtracted.All tests were under ambient pressure at 20.0 °C.

    Light-mediated CO2-responsiveness was also observed on spherical metallopolymer microgels (Fig.S21 in Supporting information).These spherical microgels could also exhibit both CO2capture of high capacity (ca.3.9 mmol/g under 1 atm at 20.0 °C in dark) and CO2removal of good reversibility (by exposing to light)under a mild condition (Fig.S22 in Supporting information).

    In summary,we demonstrate the concept of mediating CO2-responsiveness through tuning CO2binding affinity by using sidechain type metallopolymers containing metalla-aromatics as CO2-responsive moieties on microgels.Studies on the dilute aqueous dispersions of these microgels in dark indicate high CO2-responsivity,but poor reversibility upon N2purge,which can be improved by applying light exposure.This light-mediated CO2-responsiveness can be elucidated by the loss of aromaticity from initial photoexcitation and concurrent formation of a less reactive,antiaromatic excited state of relatively low CO2binding affinity,and by subsequent relief of antiaromaticity that can enhance CO2removal.Our results underscore the vast potential of bridging metalla-aromatic chemistry and polymer science to enable both CO2capture of high capacity and CO2removal of good reversibility under a mild condition,providing a novel strategy for the design of valuable materials that can effectively,reversibly respond to dilute CO2.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (Nos.21774105,21805164,20923004),Chuying Plan Youth Top-notch Talents of Fujian Province,and National Fund for Fostering Talents of Basic Science (No.J1310024).

    a级毛色黄片| 亚洲av中文av极速乱| 久久久久精品久久久久真实原创| 久久99精品国语久久久| 成人亚洲欧美一区二区av| 赤兔流量卡办理| 亚洲av在线观看美女高潮| 色视频www国产| 国产成人aa在线观看| 下体分泌物呈黄色| 性色avwww在线观看| 天天躁日日操中文字幕| 美女xxoo啪啪120秒动态图| 97在线视频观看| 日韩中文字幕视频在线看片 | 水蜜桃什么品种好| 成人无遮挡网站| 色视频在线一区二区三区| 麻豆国产97在线/欧美| 一区二区av电影网| 亚洲av成人精品一二三区| 人人妻人人澡人人爽人人夜夜| 成人免费观看视频高清| 在线播放无遮挡| 男女国产视频网站| 777米奇影视久久| 多毛熟女@视频| 成年人午夜在线观看视频| 中文在线观看免费www的网站| 国产白丝娇喘喷水9色精品| 哪个播放器可以免费观看大片| 国产精品爽爽va在线观看网站| 午夜免费鲁丝| 久久久久人妻精品一区果冻| 久久精品久久精品一区二区三区| 久久人人爽人人片av| 晚上一个人看的免费电影| 美女视频免费永久观看网站| 免费黄频网站在线观看国产| 99热这里只有是精品50| 观看免费一级毛片| 久久精品久久久久久久性| 婷婷色av中文字幕| 亚洲欧美日韩东京热| 91aial.com中文字幕在线观看| 欧美国产精品一级二级三级 | 婷婷色av中文字幕| 女人久久www免费人成看片| 日本午夜av视频| 天堂8中文在线网| 久久人人爽人人片av| 日韩欧美一区视频在线观看 | 精品午夜福利在线看| 国语对白做爰xxxⅹ性视频网站| 久久精品国产亚洲av天美| 十八禁网站网址无遮挡 | 亚洲精品久久午夜乱码| 国产在线一区二区三区精| 久久女婷五月综合色啪小说| 爱豆传媒免费全集在线观看| 亚洲av免费高清在线观看| 少妇精品久久久久久久| 午夜福利高清视频| 成人漫画全彩无遮挡| 青春草国产在线视频| 亚洲欧美成人精品一区二区| 26uuu在线亚洲综合色| 女人十人毛片免费观看3o分钟| 国产一级毛片在线| 日本黄色日本黄色录像| 在线观看一区二区三区| 性色avwww在线观看| 精品亚洲成国产av| 亚洲欧美成人综合另类久久久| 激情 狠狠 欧美| 在线免费十八禁| 亚洲丝袜综合中文字幕| 在线观看免费日韩欧美大片 | 国产精品免费大片| 韩国高清视频一区二区三区| 大香蕉久久网| 各种免费的搞黄视频| 大片免费播放器 马上看| 亚洲图色成人| 人人妻人人澡人人爽人人夜夜| 日本vs欧美在线观看视频 | 亚洲国产精品国产精品| 亚洲av日韩在线播放| 中文精品一卡2卡3卡4更新| 国产精品嫩草影院av在线观看| 成人美女网站在线观看视频| 在线观看av片永久免费下载| 久久人人爽av亚洲精品天堂 | 少妇人妻一区二区三区视频| 国产精品久久久久久av不卡| 国产色爽女视频免费观看| 天堂中文最新版在线下载| av又黄又爽大尺度在线免费看| 大香蕉97超碰在线| 亚洲丝袜综合中文字幕| 日韩中字成人| 久久国内精品自在自线图片| 99久久精品一区二区三区| 婷婷色麻豆天堂久久| 一级毛片久久久久久久久女| 亚洲国产成人一精品久久久| 亚洲成人av在线免费| 国产成人免费观看mmmm| 国产亚洲精品久久久com| 男人添女人高潮全过程视频| 哪个播放器可以免费观看大片| 少妇猛男粗大的猛烈进出视频| 久久精品国产亚洲av天美| 日本免费在线观看一区| 自拍欧美九色日韩亚洲蝌蚪91 | 80岁老熟妇乱子伦牲交| 黄片无遮挡物在线观看| 美女内射精品一级片tv| 亚洲国产毛片av蜜桃av| 日产精品乱码卡一卡2卡三| 青青草视频在线视频观看| 嘟嘟电影网在线观看| 国产在线免费精品| 久久99热这里只有精品18| 夜夜骑夜夜射夜夜干| 精品亚洲成a人片在线观看 | 中文精品一卡2卡3卡4更新| 男女国产视频网站| 黄色日韩在线| 人人妻人人澡人人爽人人夜夜| av在线蜜桃| 男女下面进入的视频免费午夜| 黄色怎么调成土黄色| 少妇人妻精品综合一区二区| 丝瓜视频免费看黄片| 人人妻人人爽人人添夜夜欢视频 | 婷婷色av中文字幕| 欧美最新免费一区二区三区| 亚洲欧洲日产国产| 久久久久久久大尺度免费视频| 久久女婷五月综合色啪小说| 国产精品爽爽va在线观看网站| 一级av片app| 看十八女毛片水多多多| 一级毛片电影观看| 国产在线一区二区三区精| 身体一侧抽搐| 久久ye,这里只有精品| 免费看日本二区| 大陆偷拍与自拍| 久久久国产一区二区| 成年免费大片在线观看| 黄色日韩在线| 国产精品精品国产色婷婷| 女的被弄到高潮叫床怎么办| 国产精品久久久久久久电影| 偷拍熟女少妇极品色| 欧美成人精品欧美一级黄| 99视频精品全部免费 在线| 国产国拍精品亚洲av在线观看| 在线免费观看不下载黄p国产| 久久精品国产亚洲av涩爱| 七月丁香在线播放| 国产精品久久久久久精品古装| 成人亚洲精品一区在线观看 | 亚洲不卡免费看| 制服丝袜香蕉在线| 久久97久久精品| 一级爰片在线观看| av在线观看视频网站免费| 男男h啪啪无遮挡| 免费少妇av软件| 街头女战士在线观看网站| 毛片一级片免费看久久久久| 日韩电影二区| 亚洲国产av新网站| a 毛片基地| 十八禁网站网址无遮挡 | 国产精品久久久久成人av| 80岁老熟妇乱子伦牲交| av免费在线看不卡| 免费看日本二区| 免费观看av网站的网址| av国产精品久久久久影院| av在线app专区| 中文字幕av成人在线电影| 亚洲精品久久午夜乱码| 亚洲av成人精品一区久久| 亚洲精品久久久久久婷婷小说| 午夜福利视频精品| 国产伦精品一区二区三区四那| 少妇被粗大猛烈的视频| 秋霞在线观看毛片| 免费观看在线日韩| 高清不卡的av网站| av视频免费观看在线观看| 精品国产三级普通话版| 99热全是精品| 亚洲欧美精品自产自拍| 免费观看性生交大片5| 久久久久久久亚洲中文字幕| 精品国产乱码久久久久久小说| 亚洲精品日本国产第一区| 国产精品99久久久久久久久| 又粗又硬又长又爽又黄的视频| 久久精品国产亚洲网站| 国产免费福利视频在线观看| 久久 成人 亚洲| 国产欧美日韩精品一区二区| 久久国产亚洲av麻豆专区| 久久久久久久国产电影| 男人舔奶头视频| 好男人视频免费观看在线| 久久婷婷青草| 我的女老师完整版在线观看| 纯流量卡能插随身wifi吗| 我的老师免费观看完整版| 人人妻人人添人人爽欧美一区卜 | 少妇丰满av| 亚洲欧美中文字幕日韩二区| 你懂的网址亚洲精品在线观看| 成人漫画全彩无遮挡| 精品亚洲成国产av| 视频区图区小说| 精品人妻熟女av久视频| 欧美三级亚洲精品| 美女内射精品一级片tv| 国产一区二区三区综合在线观看 | 日韩国内少妇激情av| 日韩三级伦理在线观看| 欧美高清性xxxxhd video| 日韩欧美 国产精品| 久久97久久精品| 成人午夜精彩视频在线观看| 各种免费的搞黄视频| 极品教师在线视频| freevideosex欧美| 久久久久精品性色| 亚洲国产高清在线一区二区三| 青青草视频在线视频观看| 欧美97在线视频| 少妇被粗大猛烈的视频| 亚洲精品第二区| 久久久久久久久久人人人人人人| 嫩草影院新地址| 成年女人在线观看亚洲视频| 五月玫瑰六月丁香| 直男gayav资源| 国产亚洲5aaaaa淫片| 亚洲av免费高清在线观看| 九草在线视频观看| 欧美性感艳星| 成人午夜精彩视频在线观看| 少妇的逼好多水| 高清毛片免费看| 2022亚洲国产成人精品| 亚洲欧美中文字幕日韩二区| 国产成人精品久久久久久| 91精品伊人久久大香线蕉| 国产成人午夜福利电影在线观看| 亚洲欧洲日产国产| 黄色欧美视频在线观看| 久久久成人免费电影| 国产亚洲一区二区精品| 国产高潮美女av| 美女内射精品一级片tv| 国产精品.久久久| 99九九线精品视频在线观看视频| 99久久精品一区二区三区| 高清日韩中文字幕在线| 精品亚洲乱码少妇综合久久| 国产真实伦视频高清在线观看| 国产片特级美女逼逼视频| 网址你懂的国产日韩在线| 欧美性感艳星| 中文资源天堂在线| 舔av片在线| 国产成人精品一,二区| 亚洲美女视频黄频| 99热这里只有精品一区| av国产免费在线观看| 免费黄色在线免费观看| 22中文网久久字幕| 国产精品久久久久成人av| 看十八女毛片水多多多| 久久国产亚洲av麻豆专区| 国产毛片在线视频| 一级毛片电影观看| 人妻 亚洲 视频| 国产一区亚洲一区在线观看| 中文字幕人妻熟人妻熟丝袜美| 久久国产乱子免费精品| 韩国高清视频一区二区三区| 国产极品天堂在线| 99热全是精品| 国产极品天堂在线| 日韩一区二区三区影片| 亚洲精品亚洲一区二区| 久久精品夜色国产| 亚洲精品视频女| 老司机影院成人| 欧美最新免费一区二区三区| 精品久久久久久久末码| 女性生殖器流出的白浆| 久久国产亚洲av麻豆专区| 内射极品少妇av片p| 欧美国产精品一级二级三级 | 午夜福利高清视频| 国产精品一区www在线观看| 肉色欧美久久久久久久蜜桃| 一区二区三区乱码不卡18| 岛国毛片在线播放| 国产免费视频播放在线视频| 看免费成人av毛片| 少妇裸体淫交视频免费看高清| a级一级毛片免费在线观看| 成人国产av品久久久| 亚洲va在线va天堂va国产| 女人久久www免费人成看片| 人人妻人人添人人爽欧美一区卜 | 又粗又硬又长又爽又黄的视频| 又爽又黄a免费视频| 少妇被粗大猛烈的视频| 蜜桃久久精品国产亚洲av| av国产免费在线观看| 久久精品久久久久久久性| 亚洲一区二区三区欧美精品| 日韩一区二区三区影片| av播播在线观看一区| 麻豆乱淫一区二区| 日日啪夜夜撸| 建设人人有责人人尽责人人享有的 | 久久久久久伊人网av| 久久久久久久国产电影| 亚洲av成人精品一二三区| 国产欧美日韩一区二区三区在线 | 亚洲精品自拍成人| 久久精品国产亚洲网站| 在线观看免费日韩欧美大片 | 人妻少妇偷人精品九色| 久久久亚洲精品成人影院| 男人和女人高潮做爰伦理| 熟女电影av网| 中文字幕精品免费在线观看视频 | 人妻系列 视频| 国产爱豆传媒在线观看| 最近的中文字幕免费完整| 1000部很黄的大片| 亚洲国产精品成人久久小说| 高清黄色对白视频在线免费看 | 日日啪夜夜爽| 美女国产视频在线观看| 涩涩av久久男人的天堂| 国产精品人妻久久久影院| 极品少妇高潮喷水抽搐| 我的女老师完整版在线观看| 欧美日韩亚洲高清精品| 久久精品人妻少妇| 日产精品乱码卡一卡2卡三| 婷婷色综合大香蕉| 日韩欧美精品免费久久| 免费大片黄手机在线观看| 又粗又硬又长又爽又黄的视频| 少妇熟女欧美另类| 日本免费在线观看一区| 亚洲婷婷狠狠爱综合网| 国产成人一区二区在线| 国产成人精品婷婷| 最近最新中文字幕大全电影3| 日韩伦理黄色片| 久久久久视频综合| 亚洲av免费高清在线观看| 97超碰精品成人国产| 亚洲国产精品专区欧美| 麻豆成人午夜福利视频| 精品少妇黑人巨大在线播放| 中文精品一卡2卡3卡4更新| 欧美成人精品欧美一级黄| 制服丝袜香蕉在线| 欧美一区二区亚洲| 精品亚洲成a人片在线观看 | 国模一区二区三区四区视频| 免费看不卡的av| 国产伦精品一区二区三区视频9| 18禁裸乳无遮挡免费网站照片| 另类亚洲欧美激情| 精品国产乱码久久久久久小说| 亚洲精品日本国产第一区| 看免费成人av毛片| 亚洲欧洲日产国产| 久久精品国产a三级三级三级| av在线观看视频网站免费| 国产精品熟女久久久久浪| 国产免费福利视频在线观看| 国产黄色视频一区二区在线观看| 国产精品福利在线免费观看| 午夜精品国产一区二区电影| 国产成人免费观看mmmm| 青春草视频在线免费观看| 日本猛色少妇xxxxx猛交久久| 在线观看免费视频网站a站| 欧美少妇被猛烈插入视频| 97超碰精品成人国产| 天堂8中文在线网| 久久鲁丝午夜福利片| 午夜福利视频精品| 天堂中文最新版在线下载| 成年人午夜在线观看视频| 天天躁夜夜躁狠狠久久av| 少妇 在线观看| 在线观看免费日韩欧美大片 | 秋霞在线观看毛片| 日本色播在线视频| 欧美高清性xxxxhd video| 亚洲av.av天堂| 又黄又爽又刺激的免费视频.| 色吧在线观看| 国产欧美日韩精品一区二区| 欧美一区二区亚洲| 亚洲经典国产精华液单| 亚洲精品国产av成人精品| 两个人的视频大全免费| 久久久久国产精品人妻一区二区| 成人黄色视频免费在线看| 中文字幕制服av| 亚洲怡红院男人天堂| 中文字幕人妻熟人妻熟丝袜美| av又黄又爽大尺度在线免费看| 国产欧美日韩精品一区二区| 天堂8中文在线网| 女人久久www免费人成看片| 一级毛片我不卡| 三级国产精品欧美在线观看| 三级国产精品片| 日本色播在线视频| av在线app专区| 国产亚洲欧美精品永久| 人妻一区二区av| 深爱激情五月婷婷| 人人妻人人澡人人爽人人夜夜| 免费观看的影片在线观看| 久久久久久九九精品二区国产| 久久久久久久久久人人人人人人| av国产久精品久网站免费入址| 欧美xxⅹ黑人| 青春草国产在线视频| 国产一区二区在线观看日韩| 老女人水多毛片| 大片电影免费在线观看免费| 高清视频免费观看一区二区| videossex国产| 成人毛片60女人毛片免费| 久久久久国产精品人妻一区二区| 精华霜和精华液先用哪个| 高清在线视频一区二区三区| 大片电影免费在线观看免费| 欧美人与善性xxx| 六月丁香七月| 两个人的视频大全免费| 国产无遮挡羞羞视频在线观看| 成人国产麻豆网| 观看免费一级毛片| 噜噜噜噜噜久久久久久91| 精品少妇黑人巨大在线播放| 国产在视频线精品| 午夜福利在线在线| 亚洲美女搞黄在线观看| 久久人人爽人人爽人人片va| 99re6热这里在线精品视频| 一区二区三区免费毛片| 国产女主播在线喷水免费视频网站| 国产中年淑女户外野战色| 少妇被粗大猛烈的视频| 欧美一级a爱片免费观看看| 舔av片在线| 国产黄片美女视频| 丝袜脚勾引网站| 亚洲精品久久久久久婷婷小说| 国产成人aa在线观看| 成人毛片a级毛片在线播放| 99热6这里只有精品| 哪个播放器可以免费观看大片| 韩国高清视频一区二区三区| 国产精品成人在线| 九九爱精品视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 久久久精品免费免费高清| 综合色丁香网| 日本-黄色视频高清免费观看| 久久人人爽人人片av| 亚洲欧洲国产日韩| 免费少妇av软件| 国产精品女同一区二区软件| 黑丝袜美女国产一区| 欧美xxxx性猛交bbbb| av免费观看日本| 国产高清三级在线| 偷拍熟女少妇极品色| 成人亚洲欧美一区二区av| 最近2019中文字幕mv第一页| 最黄视频免费看| 黄色欧美视频在线观看| 日本av手机在线免费观看| 欧美日韩一区二区视频在线观看视频在线| 国产乱来视频区| 国产精品av视频在线免费观看| 成年女人在线观看亚洲视频| 欧美zozozo另类| 制服丝袜香蕉在线| 干丝袜人妻中文字幕| 亚洲一级一片aⅴ在线观看| 91精品一卡2卡3卡4卡| 99久久综合免费| 国产高潮美女av| 亚洲av不卡在线观看| 又粗又硬又长又爽又黄的视频| 精品少妇黑人巨大在线播放| 99久国产av精品国产电影| 亚洲精品,欧美精品| 99久久人妻综合| 欧美国产精品一级二级三级 | 亚洲综合色惰| 午夜免费男女啪啪视频观看| 男男h啪啪无遮挡| 国产乱人视频| 久久精品国产a三级三级三级| 欧美国产精品一级二级三级 | 亚洲综合色惰| 欧美老熟妇乱子伦牲交| 最后的刺客免费高清国语| freevideosex欧美| videos熟女内射| 狂野欧美激情性xxxx在线观看| 看十八女毛片水多多多| 久久久久国产精品人妻一区二区| 少妇人妻久久综合中文| 熟女av电影| 精品久久久精品久久久| av播播在线观看一区| 又黄又爽又刺激的免费视频.| 在线观看美女被高潮喷水网站| 免费观看在线日韩| 国产精品伦人一区二区| 亚洲一级一片aⅴ在线观看| 高清视频免费观看一区二区| 一本一本综合久久| 免费观看a级毛片全部| 青春草视频在线免费观看| 国精品久久久久久国模美| 寂寞人妻少妇视频99o| 特大巨黑吊av在线直播| 国产精品三级大全| 欧美最新免费一区二区三区| 麻豆精品久久久久久蜜桃| 美女国产视频在线观看| 人人妻人人爽人人添夜夜欢视频 | 男人狂女人下面高潮的视频| 中文精品一卡2卡3卡4更新| 国产成人精品福利久久| 少妇 在线观看| 国产成人免费观看mmmm| 99re6热这里在线精品视频| 在线 av 中文字幕| 视频区图区小说| 蜜桃在线观看..| 我要看黄色一级片免费的| 精华霜和精华液先用哪个| 国产欧美日韩精品一区二区| 精品久久久久久久末码| 日本与韩国留学比较| 黄色欧美视频在线观看| 久久韩国三级中文字幕| 亚洲精品视频女| 久久久a久久爽久久v久久| 亚洲精品久久午夜乱码| 欧美精品一区二区大全| 国产在线一区二区三区精| 国产精品精品国产色婷婷| 制服丝袜香蕉在线| 国产爽快片一区二区三区| 国产亚洲最大av| 免费观看av网站的网址| 美女xxoo啪啪120秒动态图| 亚洲欧美一区二区三区黑人 | 老司机影院毛片| 国产69精品久久久久777片| 亚洲精品乱久久久久久| 岛国毛片在线播放| 国产中年淑女户外野战色| 一本色道久久久久久精品综合| 亚洲国产日韩一区二区| 欧美精品亚洲一区二区| 色吧在线观看| 欧美激情极品国产一区二区三区 | 精品一区二区免费观看| 尾随美女入室| 男人爽女人下面视频在线观看| 日韩制服骚丝袜av| 日日摸夜夜添夜夜添av毛片| 色婷婷久久久亚洲欧美| 亚洲怡红院男人天堂| 国产精品99久久久久久久久| 乱系列少妇在线播放| 99久久中文字幕三级久久日本| 国产在线视频一区二区| 少妇人妻精品综合一区二区| 日韩三级伦理在线观看| 看十八女毛片水多多多| 啦啦啦啦在线视频资源| 男女边吃奶边做爰视频| 熟女电影av网| 亚洲人成网站在线播| 舔av片在线| 边亲边吃奶的免费视频| 中文在线观看免费www的网站|