• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low temperature fabrication for high-performance semitransparent CsPbI2Br perovskite solar cells

    2022-06-18 10:53:12XiogngYngJiejiHnWeiRunYnqingHuZhengynHeXingruiJiShufngZhngDehuWng
    Chinese Chemical Letters 2022年3期

    Xiogng Yng,Jieji Hn,,Wei Run,Ynqing Hu,,d,?,Zhengyn He,Xingrui Ji,Shufng Zhng,?,Dehu Wng,?

    a College of Environment and Safety Engineering,Qingdao University of Science &Technology,Qingdao 266042,China

    b School of Physics and Photoelectronic Engineering,Ludong University,Yantai 264025,China

    c College of Materials Science and Engineering,Nanjing University of Science &Technology,Nanjing 210094,China

    d College of Chemistry and Chemical Engineer,Nantong University,Nantong 226001,China

    Keywords:CsPbI2Br perovskite γ-Aminobutyric acid Stability Low-temperature fabrication Semitransparent solar cells

    ABSTRACT All-inorganic CsPbI2Br perovskite with suitable bandgap and excellent thermal stability has been reported as the most promising candidate for efficient perovskite solar cells (PSCs).However,the high annealing temperature (> 250 °C) and poor stability of α-CsPbI2Br greatly limit the future application in photovoltaic field.Herein,a facile method is reported to prepare α-CsPbI2Br perovskite film with high stability at low temperature (70 °C) by incorporating a small amount of γ-aminobutyric acid (GABA) in the precursor solutions.The devices exhibit reproducible photovoltaic performance with a champion efficiency up to 15.16%,along with the excellent stability,maintaining more than 80% of its initial efficiency after stored in ambient condition for 600 h without any encapsulation.Most importantly,the method enables fabrication of semitransparent CsPbI2Br PSCs with a PCE of 6.76%,as well as an average visible transparency (AVT) of 25.38%.To the best of our knowledge,this is the first attempt to apply CsPbI2Br to the semitransparent solar cells.

    Organic-inorganic halide perovskites have attracted enormous research interest in the photovoltaic community for their excellent performance as light harvesters [1-5].Benefited from their outstanding optical properties,the power conversion efficiency (PCE)of solar cells based on organic-inorganic halide has exceeded 25%in merely one decade [6,7].However,the poor long-term stability is still the major obstacle hindering commercial applications of organic–inorganic halide perovskite solar cells (PSCs) due to the intrinsic volatile and hydrophilic nature of the organic components in the hybrid perovskite framework,especially for the commonly used organic cations such as methylammonium (MA+)and formamidinium (FA+) [8,9].Alternatively,replacing the organic cations with inorganic caesium cation (Cs+) to build all-inorganic cesium lead halide perovskites (CsPbX3,X=I,Br,Cl or mixed halides) has been proved to be a feasible and effective approach for improving the thermal stability [10-12].

    Among the cesium lead halide perovskites,CsPbI2Br has attracted the most attention because of its balancing the tradeoff between band gap (~1.90 eV) and phase stabilization [13].Currently,the CsPbI2Br-based solar cells have achieved PCE exceeded 17% and exhibited excellent stability,indicating a great potential for industrial applications,especially as top cells for tandem solar cells [14].However,the cubic CsPbI2Br (α-phase) is still a metastable phase at room temperature,and can easily convert to a non-perovskite orthorhombic phase (δ-phase) when exposed to high humidity [15,16].To stabilize the cubicα-CsPbI2Br phase,several methods such as reducing grain size [17],enhancing film quality [18]and doping other elements [19,20]have been explored.On the other hand,theα-CsPbX3perovskites usually require high-temperature annealing (>250 °C) for obtaining theα-phase,which not only increases energy consumption but also greatly limits the applications in multi-junction tandem and flexible devices.Recently,several approaches have been attempted to prepareα-CsPbI2Br at low annealing temperature,such as using HPbI3in the precursor to instead of PbI2to lower the annealing temperature at 130 °C [21],and using a Lewis base to promote the growth process ofα-CsPbI2Br films at 120 °C [22].However,it is still challenging to obtain high-qualityα-CsPbI2Br with long-term stabilityvialow-temperature solution-processed methods.

    Herein,we demonstrate thatγ-aminobutyric acid (GABA),a common amino acid in the human body,can be used as an effective additive to obtainα-CsPbI2Br perovskite with long-term stability at a low annealing temperature of 70 °C (the lowest annealing temperature forα-CsPbI2Br ever report).It was found that the GABA molecules can effectively retard the fast crystallization of CsPbI2Br and reduce size of the coordination colloidal framework by interacting with ions and colloids in the precursors,and thus could help to obtaining a high qualityα-CsPbI2Br film as well as excellent moisture stability.The solar cells based on the obtainedα-CsPbI2Br films achieved a highest PCE of 15.16%,which is comparable to the CsPbI2Br solar cells fabricated at much higher annealing-temperature.Furthermore,this approach also show great potential in fabricating semitransparent perovskite solar cells,which are promising for some special application such as photovoltaic curtains,building-integrated photovoltaics,wearable electronics,and tandem cells [23-25].Consequently,we obtained a well-designed semitransparent solar with a PCE of 6.76%.This work not only provides a feasible route for preparing highquality CsPbI2Br perovskites at low temperature but also represents an important step for their application in high-performance and low-cost semitransparent electronics.

    Cesium iodide (CsI,99.9%),lead iodide (PbI2,99.9%),lead bromine (PbBr2,≥98%),γ-aminobutyric acid (GABA,99.9%),titanium diisopropoxide bis(acetylacetonate) (75% inisopropanol),and dimethyl sulfoxide (DMSO,anhydrous,99.8%) were purchased from Sigma-Aldrich.All salts and solvents were used as purchased without any further purification.

    For the one-step solution method,the CsPbI2Br perovskite precursor solution was prepared by dissolving CsI (0.25982 g),PbI2(0.2035g),PbBr2(0.1835g) powder,and a certain amount (0 mol%,1 mol%,3 mol%,5 mol%,10 mol%,mole ratio of GABA to CsPbI2Br)of GABA in 1 mL DMSO solvent and then stirred at 70 °C overnight in a nitrogen-filled glove box.And a Fluorine-doped tin oxide(FTO) conducting glass (2 cm × 2cm,sheet resistance about 8 ohm/square) was ultrasonically cleaned by detergent,deionized water,and acetone for 30 min sequentially,and then treated by a UV/O3cleaner for 15 min.Then,a uniform dense TiO2layer was deposited on the substrate by spin coating 0.15 mol/L titanium diisopropoxide bis (acetylacetonate) in butanol at 3500 rpm and repeating the process for twice,and then sintering at 500 °C for 2 h.Then the perovskite layer was deposited on the glass/FTO/compact TiO2by the spin-coating the as-prepared precursor solution at 1000 rpm for 10 s and 3500 rpm for 35 s.Sequentially,the spin coated film was annealing at 70 °C for 5 min to form the perovskite film.Then,the film was covered by the hole transporter spiro-OMeTAD (99.5%,Xi’an Polymer Light Technology Corp).0.167 g spiro-OMeTAD was dissolved in 1.00 ml chlorobenzene,and 0.0103 g LiTFSI and 0.0298 gtert-butylpyridine (TBP)were used as additives and then the solution was deposited by spin-coating at 6500 rpm for 30 s.Finally,a 100-nm thick Au electrode was deposited on top of the device by thermal evaporation underca.1 × 10?6torr vacuum condition,through a shadow mask.For the semitransparent PSCs,the first few steps are the same,but the last step replaces Au electrode with Ag nanowires by spincoating.

    Fig.1.(a) XRD patterns of CsPbI2Br perovskite films without or with different mole percentages of GABA.(b) XRD patterns of CsPbI2Br perovskite films annealing at different temperature.(c) Absorbance spectra of CsPbI2Br perovskite films without or with different mole percentages of GABA.

    Powder X-ray diffraction (XRD) patterns of the perovskite films were recorded by a Bruker D8 diffractometer with Cu Kαradiation(λ=1.5406 ?A).FTIR spectra were measured using a Bruker Vertex 80v Fourier transform infrared spectrometer.The surface morphology of the perovskite films was observed by field-emission scanning electron microscopy (FE-SEM;Quanta 250FEG) and atomic force microscope (AFM;Brook Multimode 8),respectively.The size distributions of the colloid cluster in perovskite precursor solutions were tested by zeta potential analyzer (Brookhaven Zeta Plus).Absorption and transmittance spectra of the prepared films were measured with an UV-vis-NIR spectrophotometer (UV-3600,Shimadzu).The visible transparency was evaluated by an ISO standard method (ISO 9050:2003) of glass in buildings.The PL spectra of the films were obtained at room temperature by using a steady-state lifetime spectrofluorometer (Varian Cary Eclipse).The time-resolved photoluminescence decay of the perovskite film was measured using a Horiba Fluorolog-3 Time Correlated Single Photon Counting (TCSPC) system with an excitation wavelength at 412 and 704 nm for orthorhombic and cubic,respectively.The currentvoltage characteristic curves of the fabricated PSCs were measured under standard AM 1.5 sunlight (100 mW/cm2,WXS-90L2,Wacom)with 30 mV/s scanning rate.The effective area of the cell was defined as 0.09 cm2using a non-reflective metal mask.

    The CsPbI2Br films in this work were all preparedviaa one-step spin-coating process by employing perovskite precursor solutions with adding different concentrations of GABA and followed by annealing at 70 °C for 10 min in a glovebox filled with N2,the details are shown in the Experiment Section (Supporting information).Fig.S1 (Supporting information) show the chemical structure of GABA.The X-ray diffraction (XRD) patterns of the CsPbI2Br films with adding different concentrations of GABA in the precursor solutions were shown in Fig.1a.All samples present clear diffraction peaks at 14.6° and 29.5° and are well consistent with the typical (100)and (200) planes of theα-CsPbI2Br crystal.The absolute intensities of the (100) and (200) planes are getting stronger as the concentration of GABA increases and reach the maximum values when the concentration of GABA increases to 5 mol%,which indicates that moderate incorporation of GABA is beneficial to improve the perovskite crystallinity.As shown in Fig.1b,with the incorporation of GABA,the CsPbI2Br film even show a little stronger crystallinity intensity than that of the one processed at high-temperature (300°C).However,when increase the GABA concentration up to 10 mol%,the GABA molecule seems harmful to the crystallinity,showing the reduction of the peak intensity.To evaluate the optical properties of these CsPbI2Br films,the corresponding absorption spectra were shown in Fig.1c.With the increase of GABA concentration to 5 mol%,the absorption of CsPbI2Br films gradually increased and reached the strongest absorption,which was in good agreement with the XRD patterns.

    Fig.2.(a) Optical images of the fresh-coated CsPbI2Br perovskite films without or with different mole percentages of GABA stored in glovebox as a function of time.(b) FTIR spectroscopy characterization of GABA,CsPbI2Br and a complex of both.(c)Size distributions of the colloidal particles in CsPbI2Br solutions mixed with different mole percentages of GABA.

    Top view SEM images of the as-prepared CsPbI2Br films (Fig.S2 in Supporting information) indicated that the incorporation of GABA greatly influences the morphology of the films.The CsPbI2Br film without GABA exhibits numerous big voids on the film surface,which could greatly influence the photoelectric performance.After incorporating 1 mol% GABA into the precursor solution,voids on the surface became less and smaller.Better coverage of the film surface was obtained when the GABA concentration was gradually increased to the optimum value of 5 mol%,which is highly consistent with the results of XRD spectra.However,with further increase of GABA,the film surface became uneven and non-uniform.

    To investigate the mechanism of GABA molecule affecting the crystallization process of CsPbI2Br films,we observed the color changing process of the films without annealing.As shown in Fig.2a,the film without GABA changed to light brown in a short time,suggesting the formation of perovskite crystals.In contrast,the fresh films incorporating with different concentration of GABA are almost transparent in 1 h.The color of the films with low concentration of GABA gradually changed into light brown after 1 hour,while the films with 5 mol% and 10 mol% GABA still kept transparent after 2 h.This observation clearly indicated the incorporation of GABA can effectively retard the rapid crystallinity of CsPbI2Br,which facilitates to form uniform perovskite films with excellent crystallinity [26,27].In order to verify the interaction of GABA with cations in the precursor solution,we carried out Fourier transform infrared spectroscopy (FTIR) measurements and tested the size distributions of colloidal particlesviaa zeta potential analyzer.As shown in Fig.2b,a strong peak was observed at 1645 cm?1in the FTIR spectrum of GABA powder,which can be ascribed to the typical stretching of group C=O.The C=O vibration band of the CsPbI2Br films incorporated with GABA molecule was shifted to 1637 cm?1,indicating an interaction between functional groups of GABA and cations in the precursor [28-30].In addition,1H NMR spectra were also used to examine the interaction of GABA with cations in DMSO-d6(Fig.S3 in Supporting information),which shows a slight chemical shift compared with pure GABA,implying a stronger interaction between GABA and perovskite precursors.Further proof for the interaction between GABA molecules and the cations was that the average size of colloids in the precursor solution was gradually reduced while increasing the GABA concentration in the precursor solution,which was revealed by testing the size distributions of colloidal particlesviaa zeta potential analyzer (Fig.2c).On the other hand,the XRD patterns of the no-annealing films with or without GABA after spin-coating were shown in Fig.S4 (Supporting information),the obvious XRD diffraction peaks were observed in the spun films without GABA,indicating the quick crystallization ofδ-phase at room temperature without annealing.In contrast,the spun film with GABA was in an amorphous phase without any obvious XRD peaks except the peaks of the substrate.This demonstrated that the GABA molecules can effectively suppress the rapid crystallization of CsPbI2Br.

    Fig.3.Mechanism of GABA-induced high quality of CsPbI2Br films.

    According to the test results,we propose a probable grain formation process of the CsPbI2Br films,as illustrated in Fig.3.In the CsPbI2Br precursor solution without GABA incorporation,Pb[I/Br]2coordinated with DMSO molecules forming a crystallized Pb[I/Br]2·(DMSO)xcolloid [26,31].With the addition of GABA,the structure of the Pb[I/Br]2·(DMSO)xcolloids may change to a new Pb[I/Br]2·(DMSO)x·(GABA)ystructure due to the interaction between GABA and Pb[I/Br]2.In the meanwhile,free GABA molecules among Pb[I/Br]2·(DMSO)xcolloids further suppressed the combination of Pb[I/Br]2·(DMSO)xcolloids with Cs+,and the crystallization speed of CsPbI2Br was lowed.Consequently,with the help of GABA,smoother CsPbI2Br films were formed with smaller grains and less defects [32-34],which is consistent with the results of SEM and AFM (Figs.S2 and S5 in Supporting information).

    We further carried out time-resolved photoluminescence(TRPL) decay measurements to investigate carrier lifetime of the CsPbI2Br films with and without GABA with a configuration of glass/perovskite.As shown in Fig.4a,the decay curves well fitted with single-exponential components.A longer average PL decay time of the CsPbI2Br film with GABA (12.4 ns) than that of the pure CsPbI2Br film (9.7 ns) was observed.The prolonged PL decay time of the CsPbI2Br film was the result of suppressed non-radiative recombination channels in the perovskite film.To evaluate the photovoltaic performance of the devices based on the CsPbI2Br films,we further fabricated regular planar PSCs with the configuration of FTO/TiO2/CsPbI2Br/Spiro-OMeTAD/Au.The current density-voltage(J-V) curves of the devices based on the CsPbI2Br film without and with 5 mol% GABA are shown in Fig.4b and the corresponding photovoltaic parameters are summarized in Table S1 (Supporting information).The pristine device with pure CsPbI2Br exhibited a relatively poor performance with aJSCof 14.34 mA/cm2,aVOCof 1.17 V,a FF of 75.34%,and a PCE of 12.64%,which was due to an incomplete coverage film with low crystallinity fabricated at a low annealing temperature (70 °C).The performance of the PSCs improved gradually with the increase of incorporation of GABA (Table S2 in Supporting information).Especially,a champion PCE of 15.16% along with theJSCof 16.45 mA/cm2,VOCof 1.21 V and FF of 76.16% were obtained with CsPbI2Br film incorporated with 5 mol% GABA.The great enhancement of the photovoltaic performance arises from the improved crystallinity and reduced nonradiative recombination in the perovskite.The hysteresis is unavoidable in inorganic PSCs with mixed halide compositions due to the iodide and bromide phase segregation under illumination[35].In this work,a negligibleJ–Vhysteresis from forward and reverse scanning of the PSCs can be observed.The external quantum efficiency (EQE) is obtained to confirm the validity of theJ–Vscan results.As shown in Fig.4c,the integrated photocurrent density of the device with 5 mol% GABA is 15.96 mA/cm2.The statistics of PCE distribution for over 30 devices demonstrated the high reliability and repeatability of the prepared PSCs (Fig.4d).

    Fig.4.(a) Time-resolved photoluminescence (TRPL) spectra of the films on glass.(b) J-V curves of pure CsPbI2Br and CsPbI2Br with 5 mol% GABA PSCs under forward(FS) and reverse scan (RS).(c) The EQE spectra and corresponding integrated Jsc of CsPbI2Br PSCs.(d) Histogram of average efficiencies for 20 devices based on pure CsPbI2Br and CsPbI2Br with 5 mol% GABA.

    To study the effect of GABA molecule on long-term stability,we tested the water contact angle of the controlled film and the film incorporated with 5 mol% GABA.As shown in Figs.5a and b,after incorporating GABA,the contact angle increases from 57.1° to 63.7°,indicating that hydrophobicity of the film was improved.This was further illustrated by the atomic force microscope (AFM) images(Fig.S5).With the GABA incorporation,the prepared films obtain smoother surface of root?mean?squared (RMS) roughness from 68.4 nm to 35.6 nm,which do great favor to increasing the contact angle [36,37].Therefore,the improved resistance against moisture of the film incorporated with 5 mol% GABA was expected.The absorption spectra of the above two kinds of films within 240 h (60%humidity,25 °C) are shown in Figs.5c and d,respectively.There were only slight changes in the absorption spectra of the GABAincorporated films,while the absorption intensity of the controlled pure CsPbI2Br films significantly decreased and an obvious characteristic absorption peak ofδ-CsPbI2Br appeared,suggesting the CsPbI2Br partially changed fromα-phase toδ-phase.Furthermore,the PCE of the GABA-incorporated cells retained more than 80% of its initial value in 600 h,while the controlled CsPbI2Br cells kept only less than 50% of its initial PCE after 200 h,as shown in Fig.5e.We also compared the thermal stability of the prepared films incorporated with different ratio of GABA,as shown in Fig.S6 (Supporting information).After annealing at 100 °C for 1 h in ambient condition,the XRD pattern of the pure CsPbI2Br films exhibit characteristic diffraction peak ofδ-phase,while the compared ones with 5 mol% GABA still stay in cubicα-phase.

    Fig.5.(a) The average contact angle of the pure CsPbI2Br.(b) The average contact angle of the CsPbI2Br with 5 mol% GABA.(c) The changes in absorbance with time of the pure CsPbI2Br.(d) The changes in absorbance with time of the CsPbI2Br with 5 mol% GABA.(e) The normalized PCE of a device without and with 5 mol% GABA kept in an ambient environment as a function of storage time.

    During this work,we found that the 5 mol% GABAincorporated CsPbI2Br film fabricated at low annealing temperature shows contain degree of transparency.We attempted to fabricate it into semitransparent PSCs with a configuration of FTO/TiO2/CsPbI2Br/Spiro-OMeTAD/Ag nanowires (Fig.S7a in Supporting information).On the basis of a ~250 nm thick GABAincorporated CsPbI2Br film,an optimal device exhibits an average visible transparency (AVT) of 25.38% ranging from 380 nm to 780 nm (Fig.S7b in Supporting information),which is slightly higher than the required AVT for application of power-generating window of ~25% [38].The high average transmittance of 82.6% in the infrared band exhibits a great potential application in tandem solar cells.TheJ–Vcharacteristic shown in Fig.S7c (Supporting information) exhibits a high PCE of 6.76% for the semitransparent PSC.To the best of our knowledge,this is the first attempt to apply CsPbI2Br to semitransparent PSCs,and the performance is comparable to organic ones based on CH3NH3PbI3[39,40].

    In summary,we developed a route to prepare CsPbI2Br with excellent performance and better stability at low temperatureviaGABA-incorporation.It was demonstrated that the GABA molecules would reduce the size of CsPbI2Br colloids by interacting with cations in the precursors and effectively suppress the rapid crystallization of CsPbI2Br.Perovskite films with high quality were obtained through this way.Conventional structural PSCs based on such CsPbI2Br achieved a high PCE of 15.16% and semitransparent PSCs gain a PCE of 6.76%.This work provides a new viewpoint for understanding the phase stability of inorganic perovskites and introduces a new member to the family of semitransparent PSCs.

    Declaration of competing interest

    The authors declare no competing financial interest.

    Acknowledgments

    We acknowledge the financial support from the Taishan Scholar Project of Shandong Province (No.tsqn201812098),the Shandong Provincial Natural Science Foundation (Nos.ZR2020MF103,ZR2019MF057 and ZR2019MA066),National Natural Science Foundation of China (No.21701080).The SEM and AFM experiments were performed at the Materials Characterization Facility of Nanjing University of Science and Technology.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.08.039.

    丝袜人妻中文字幕| 亚洲中文字幕日韩| 久久人妻熟女aⅴ| 一级a爱视频在线免费观看| av片东京热男人的天堂| 亚洲中文av在线| 超碰97精品在线观看| xxxhd国产人妻xxx| 日本精品一区二区三区蜜桃| 国产精品99久久99久久久不卡| 91国产中文字幕| 国产蜜桃级精品一区二区三区| 午夜福利影视在线免费观看| 琪琪午夜伦伦电影理论片6080| 身体一侧抽搐| 成人精品一区二区免费| 人人妻人人澡人人看| 日本精品一区二区三区蜜桃| 中文亚洲av片在线观看爽| 成年女人毛片免费观看观看9| 黑人巨大精品欧美一区二区蜜桃| cao死你这个sao货| 男男h啪啪无遮挡| 国产欧美日韩精品亚洲av| 黄色a级毛片大全视频| 久久精品国产清高在天天线| 不卡av一区二区三区| 丰满迷人的少妇在线观看| 久久精品国产亚洲av香蕉五月| 黄色毛片三级朝国网站| 女人精品久久久久毛片| 日韩三级视频一区二区三区| 黄色成人免费大全| 性色av乱码一区二区三区2| 大码成人一级视频| 午夜a级毛片| 欧美乱码精品一区二区三区| 国产精品 国内视频| 久久精品国产综合久久久| 国产极品粉嫩免费观看在线| 免费在线观看完整版高清| 热99国产精品久久久久久7| 黄色女人牲交| 国产亚洲精品久久久久久毛片| 国产区一区二久久| 女人高潮潮喷娇喘18禁视频| 国产成人av激情在线播放| 女人爽到高潮嗷嗷叫在线视频| 18禁裸乳无遮挡免费网站照片 | 超碰97精品在线观看| 日韩三级视频一区二区三区| 国产亚洲精品久久久久久毛片| 欧美日韩亚洲国产一区二区在线观看| 久久久国产成人免费| 日本免费a在线| 久久精品影院6| 99国产极品粉嫩在线观看| 亚洲中文字幕日韩| 亚洲专区字幕在线| 黄片播放在线免费| 熟女少妇亚洲综合色aaa.| 热99re8久久精品国产| 久久亚洲真实| 免费女性裸体啪啪无遮挡网站| 久久天堂一区二区三区四区| 日韩精品青青久久久久久| 在线观看66精品国产| 国产精品98久久久久久宅男小说| 不卡av一区二区三区| 国产成人欧美在线观看| 69精品国产乱码久久久| 午夜福利在线观看吧| 交换朋友夫妻互换小说| 在线永久观看黄色视频| 麻豆久久精品国产亚洲av | 亚洲三区欧美一区| 可以在线观看毛片的网站| 国产成人欧美在线观看| 欧美成狂野欧美在线观看| 在线观看午夜福利视频| 亚洲av日韩精品久久久久久密| 日韩欧美一区视频在线观看| 欧美av亚洲av综合av国产av| 亚洲三区欧美一区| 激情在线观看视频在线高清| 无限看片的www在线观看| 国产成人av激情在线播放| 色尼玛亚洲综合影院| 99久久综合精品五月天人人| 夜夜夜夜夜久久久久| 亚洲熟妇熟女久久| 国产一区在线观看成人免费| 亚洲av成人一区二区三| 亚洲在线自拍视频| 精品午夜福利视频在线观看一区| 欧美日韩视频精品一区| 久久久久国内视频| 欧美色视频一区免费| 午夜亚洲福利在线播放| 国产一区二区在线av高清观看| 亚洲片人在线观看| 久久人妻福利社区极品人妻图片| 午夜精品在线福利| 午夜精品久久久久久毛片777| 高清毛片免费观看视频网站 | 久久久久国内视频| 三级毛片av免费| 久久天躁狠狠躁夜夜2o2o| 日韩人妻精品一区2区三区| 欧美日韩乱码在线| 国产精品爽爽va在线观看网站 | 久久国产精品男人的天堂亚洲| 91字幕亚洲| 国产成人欧美| 日本黄色视频三级网站网址| 亚洲五月色婷婷综合| 亚洲一区中文字幕在线| 欧美精品啪啪一区二区三区| 久久久久国产精品人妻aⅴ院| 欧美日韩国产mv在线观看视频| 美国免费a级毛片| 在线观看舔阴道视频| 国产熟女xx| 搡老熟女国产l中国老女人| 在线观看免费高清a一片| 黄色毛片三级朝国网站| 色综合婷婷激情| 啦啦啦在线免费观看视频4| 91老司机精品| 我的亚洲天堂| 欧美最黄视频在线播放免费 | 自线自在国产av| 色婷婷久久久亚洲欧美| 一级毛片女人18水好多| 一级片'在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久性视频一级片| 久久久久久久久久久久大奶| 一个人观看的视频www高清免费观看 | 午夜日韩欧美国产| 久久国产精品人妻蜜桃| 制服人妻中文乱码| 色尼玛亚洲综合影院| 黑人猛操日本美女一级片| 亚洲第一欧美日韩一区二区三区| 99热国产这里只有精品6| 午夜精品在线福利| 最近最新免费中文字幕在线| 老鸭窝网址在线观看| 夜夜爽天天搞| 免费人成视频x8x8入口观看| 满18在线观看网站| 满18在线观看网站| 色精品久久人妻99蜜桃| 国产成人一区二区三区免费视频网站| 狂野欧美激情性xxxx| 久久久国产成人精品二区 | 欧美日韩av久久| 国产精品一区二区精品视频观看| 国产精品免费视频内射| 日韩中文字幕欧美一区二区| 激情视频va一区二区三区| 不卡一级毛片| 好男人电影高清在线观看| 最好的美女福利视频网| 伊人久久大香线蕉亚洲五| 免费在线观看影片大全网站| 国产一区二区三区视频了| 12—13女人毛片做爰片一| 一区二区三区激情视频| 丝袜在线中文字幕| 纯流量卡能插随身wifi吗| 亚洲专区中文字幕在线| 亚洲国产欧美日韩在线播放| 男人舔女人的私密视频| 身体一侧抽搐| 午夜影院日韩av| 亚洲成人精品中文字幕电影 | 少妇被粗大的猛进出69影院| 欧美午夜高清在线| 国产主播在线观看一区二区| 欧美午夜高清在线| 亚洲激情在线av| 亚洲久久久国产精品| 十八禁网站免费在线| 国产精品二区激情视频| 日韩三级视频一区二区三区| 女性生殖器流出的白浆| 日韩视频一区二区在线观看| 视频区欧美日本亚洲| 免费高清在线观看日韩| 男女下面插进去视频免费观看| 日韩高清综合在线| 午夜精品在线福利| 黄色片一级片一级黄色片| 国产97色在线日韩免费| 婷婷丁香在线五月| 国产亚洲欧美精品永久| 欧美另类亚洲清纯唯美| av天堂久久9| 高清在线国产一区| 久久久久久久久免费视频了| 女性被躁到高潮视频| 夜夜看夜夜爽夜夜摸 | 亚洲欧美日韩无卡精品| 一级a爱片免费观看的视频| 国产精品国产av在线观看| 亚洲精品美女久久av网站| 亚洲狠狠婷婷综合久久图片| 在线看a的网站| 久久久久九九精品影院| 中文字幕人妻熟女乱码| 久久久久国产一级毛片高清牌| 久久热在线av| 国产伦一二天堂av在线观看| 精品国产亚洲在线| 亚洲精品一区av在线观看| 国产欧美日韩一区二区三| 久久久久久久午夜电影 | 久久精品国产综合久久久| 777久久人妻少妇嫩草av网站| 国产无遮挡羞羞视频在线观看| 国产野战对白在线观看| 精品国产美女av久久久久小说| videosex国产| 老鸭窝网址在线观看| 无人区码免费观看不卡| 麻豆av在线久日| 午夜老司机福利片| www.精华液| 男男h啪啪无遮挡| 侵犯人妻中文字幕一二三四区| 精品电影一区二区在线| 亚洲第一av免费看| 国产成人欧美| 丰满的人妻完整版| 亚洲激情在线av| 亚洲国产毛片av蜜桃av| 免费观看人在逋| 一个人观看的视频www高清免费观看 | 国产在线观看jvid| av视频免费观看在线观看| 色综合站精品国产| cao死你这个sao货| 欧美色视频一区免费| 国产麻豆69| 熟女少妇亚洲综合色aaa.| 亚洲 欧美一区二区三区| 老司机深夜福利视频在线观看| 一区二区三区激情视频| 男女床上黄色一级片免费看| 又大又爽又粗| av片东京热男人的天堂| 最新美女视频免费是黄的| 91在线观看av| 亚洲欧美日韩另类电影网站| 12—13女人毛片做爰片一| 亚洲第一av免费看| 日本精品一区二区三区蜜桃| 亚洲精品中文字幕一二三四区| 国产熟女午夜一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 亚洲 欧美一区二区三区| a级毛片黄视频| 丝袜在线中文字幕| 久久国产精品男人的天堂亚洲| 91精品三级在线观看| 国产成人精品无人区| 中国美女看黄片| 免费不卡黄色视频| 91老司机精品| 国产精品乱码一区二三区的特点 | 中文字幕精品免费在线观看视频| 亚洲熟女毛片儿| 亚洲专区中文字幕在线| 少妇被粗大的猛进出69影院| 极品教师在线免费播放| 国产精品成人在线| 国产单亲对白刺激| 99国产精品99久久久久| 黑人巨大精品欧美一区二区mp4| 久久久久亚洲av毛片大全| 亚洲av美国av| 日韩av在线大香蕉| 国产成人av教育| 亚洲精品国产色婷婷电影| 亚洲一区二区三区不卡视频| 动漫黄色视频在线观看| 亚洲片人在线观看| 午夜福利在线免费观看网站| 高清毛片免费观看视频网站 | 夜夜躁狠狠躁天天躁| 欧美精品啪啪一区二区三区| 欧美+亚洲+日韩+国产| 欧美黄色片欧美黄色片| 免费搜索国产男女视频| 精品久久久久久电影网| 怎么达到女性高潮| 久热爱精品视频在线9| 欧美在线黄色| 五月开心婷婷网| 麻豆国产av国片精品| 搡老乐熟女国产| 一级毛片精品| 999精品在线视频| 久久中文看片网| 电影成人av| 一级片'在线观看视频| 亚洲专区字幕在线| 最好的美女福利视频网| 久久久久久大精品| 日韩有码中文字幕| 欧美久久黑人一区二区| 亚洲专区国产一区二区| 在线观看免费视频网站a站| 久久人妻熟女aⅴ| 亚洲欧美激情综合另类| 国产精品电影一区二区三区| 国产一区二区三区视频了| 黄片小视频在线播放| 1024视频免费在线观看| 精品久久蜜臀av无| 香蕉久久夜色| 97碰自拍视频| 成人亚洲精品一区在线观看| 在线观看日韩欧美| 脱女人内裤的视频| 动漫黄色视频在线观看| 1024香蕉在线观看| 老鸭窝网址在线观看| 欧美另类亚洲清纯唯美| 久久久久国产精品人妻aⅴ院| 天天影视国产精品| 久久人妻熟女aⅴ| 久久精品国产99精品国产亚洲性色 | 激情视频va一区二区三区| 国产一区二区激情短视频| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩大尺度精品在线看网址 | 麻豆成人av在线观看| 欧美黑人精品巨大| а√天堂www在线а√下载| 大码成人一级视频| 久久精品亚洲熟妇少妇任你| 巨乳人妻的诱惑在线观看| 高清黄色对白视频在线免费看| www国产在线视频色| 欧美 亚洲 国产 日韩一| 国产男靠女视频免费网站| 淫秽高清视频在线观看| 午夜老司机福利片| 热re99久久国产66热| 每晚都被弄得嗷嗷叫到高潮| 亚洲久久久国产精品| 欧美人与性动交α欧美精品济南到| 中文字幕最新亚洲高清| 侵犯人妻中文字幕一二三四区| 国产av一区二区精品久久| 久久亚洲真实| 国产高清videossex| 侵犯人妻中文字幕一二三四区| 国产免费av片在线观看野外av| 视频在线观看一区二区三区| 国产高清国产精品国产三级| 少妇 在线观看| 黄色女人牲交| 国产精品成人在线| 欧美日韩亚洲国产一区二区在线观看| 欧美精品亚洲一区二区| 女性生殖器流出的白浆| 性少妇av在线| 在线观看舔阴道视频| 色在线成人网| 欧美成人性av电影在线观看| 国产激情久久老熟女| 少妇 在线观看| 国产精品国产av在线观看| 一边摸一边抽搐一进一小说| 欧美久久黑人一区二区| 身体一侧抽搐| av在线天堂中文字幕 | 成人影院久久| 天堂俺去俺来也www色官网| 亚洲精品美女久久久久99蜜臀| 午夜精品久久久久久毛片777| 国产精品电影一区二区三区| 大型黄色视频在线免费观看| 色综合站精品国产| 极品人妻少妇av视频| 国产熟女xx| 丁香欧美五月| 久久精品91无色码中文字幕| 欧美大码av| 亚洲三区欧美一区| 午夜福利,免费看| 久9热在线精品视频| 看片在线看免费视频| 亚洲伊人色综图| 丝袜美腿诱惑在线| 老司机午夜福利在线观看视频| 欧美日韩瑟瑟在线播放| 日本 av在线| 日韩人妻精品一区2区三区| 免费在线观看日本一区| 好男人电影高清在线观看| 国产成人精品在线电影| 欧美丝袜亚洲另类 | 91大片在线观看| 国产精品免费视频内射| 久久精品影院6| 精品国产一区二区久久| 热99国产精品久久久久久7| 午夜福利一区二区在线看| 成人手机av| 黄色毛片三级朝国网站| 免费少妇av软件| 丝袜人妻中文字幕| 人妻丰满熟妇av一区二区三区| 嫩草影视91久久| 男女下面插进去视频免费观看| 久久国产精品人妻蜜桃| 久久久久亚洲av毛片大全| 久久精品国产亚洲av高清一级| 最新美女视频免费是黄的| www.自偷自拍.com| 一个人免费在线观看的高清视频| 欧美中文日本在线观看视频| 一级黄色大片毛片| 国产黄a三级三级三级人| 女人精品久久久久毛片| av免费在线观看网站| 老汉色av国产亚洲站长工具| 久久这里只有精品19| 热99国产精品久久久久久7| 亚洲男人天堂网一区| 国产精品秋霞免费鲁丝片| 欧美日韩精品网址| 一二三四社区在线视频社区8| 无人区码免费观看不卡| 一本大道久久a久久精品| 他把我摸到了高潮在线观看| 99久久国产精品久久久| 一本大道久久a久久精品| 午夜免费观看网址| 黄色片一级片一级黄色片| 免费日韩欧美在线观看| 亚洲男人天堂网一区| 久久这里只有精品19| 岛国在线观看网站| 精品乱码久久久久久99久播| 日本wwww免费看| 美女国产高潮福利片在线看| 亚洲成av片中文字幕在线观看| 可以免费在线观看a视频的电影网站| 国产精品99久久99久久久不卡| 成年人免费黄色播放视频| www国产在线视频色| 女同久久另类99精品国产91| 美女高潮到喷水免费观看| 成熟少妇高潮喷水视频| 久久香蕉国产精品| 成人三级黄色视频| 两性夫妻黄色片| 精品国产国语对白av| 99re在线观看精品视频| 如日韩欧美国产精品一区二区三区| 国产伦一二天堂av在线观看| 午夜福利,免费看| 亚洲一区高清亚洲精品| 热re99久久精品国产66热6| 天堂中文最新版在线下载| xxxhd国产人妻xxx| 久久国产精品男人的天堂亚洲| 欧美成狂野欧美在线观看| 女性被躁到高潮视频| 琪琪午夜伦伦电影理论片6080| 丰满人妻熟妇乱又伦精品不卡| 亚洲 国产 在线| 大香蕉久久成人网| 日韩国内少妇激情av| 国产精品一区二区三区四区久久 | 99精品在免费线老司机午夜| 一a级毛片在线观看| 18禁黄网站禁片午夜丰满| 侵犯人妻中文字幕一二三四区| 国内毛片毛片毛片毛片毛片| 91老司机精品| 日韩 欧美 亚洲 中文字幕| 午夜精品久久久久久毛片777| 精品一区二区三区视频在线观看免费 | 少妇被粗大的猛进出69影院| 久久久久久亚洲精品国产蜜桃av| 亚洲精品在线美女| а√天堂www在线а√下载| 可以在线观看毛片的网站| 久久精品aⅴ一区二区三区四区| 嫁个100分男人电影在线观看| 久久精品亚洲精品国产色婷小说| 国产黄a三级三级三级人| 日本三级黄在线观看| 新久久久久国产一级毛片| 国产av又大| 国产精品免费视频内射| 国产精品av久久久久免费| 最新美女视频免费是黄的| 精品国产一区二区三区四区第35| 日本一区二区免费在线视频| 一级a爱视频在线免费观看| 国产精品自产拍在线观看55亚洲| 国产av一区在线观看免费| 亚洲欧美日韩无卡精品| 成人黄色视频免费在线看| 久久久久国产精品人妻aⅴ院| 日韩三级视频一区二区三区| www国产在线视频色| 黑人巨大精品欧美一区二区mp4| 久久国产精品男人的天堂亚洲| 极品教师在线免费播放| 别揉我奶头~嗯~啊~动态视频| 亚洲精品国产色婷婷电影| 久久国产精品人妻蜜桃| 黄片播放在线免费| 午夜两性在线视频| 88av欧美| √禁漫天堂资源中文www| 村上凉子中文字幕在线| 99热国产这里只有精品6| 999久久久精品免费观看国产| 夜夜爽天天搞| 757午夜福利合集在线观看| 一个人免费在线观看的高清视频| 人妻丰满熟妇av一区二区三区| 黄色女人牲交| av网站在线播放免费| 男女午夜视频在线观看| 国产极品粉嫩免费观看在线| 夜夜看夜夜爽夜夜摸 | 女人被狂操c到高潮| 久久欧美精品欧美久久欧美| 制服诱惑二区| 天堂俺去俺来也www色官网| 最近最新免费中文字幕在线| 岛国在线观看网站| 久久人妻福利社区极品人妻图片| 黄片播放在线免费| 久久中文看片网| 国内久久婷婷六月综合欲色啪| 欧美在线黄色| 亚洲第一欧美日韩一区二区三区| 欧美日本亚洲视频在线播放| x7x7x7水蜜桃| 天天躁夜夜躁狠狠躁躁| 69精品国产乱码久久久| 天堂俺去俺来也www色官网| 中亚洲国语对白在线视频| 亚洲一区中文字幕在线| 久久人妻熟女aⅴ| 国产伦一二天堂av在线观看| 极品教师在线免费播放| 色综合婷婷激情| 免费高清视频大片| 高潮久久久久久久久久久不卡| 午夜免费观看网址| 国产av一区在线观看免费| 欧美黑人精品巨大| 成人国语在线视频| 国产精品影院久久| x7x7x7水蜜桃| 国产精品影院久久| 精品国产一区二区久久| 欧美+亚洲+日韩+国产| bbb黄色大片| 乱人伦中国视频| 日韩有码中文字幕| 午夜精品国产一区二区电影| 99精品久久久久人妻精品| 色哟哟哟哟哟哟| 一区在线观看完整版| 黄色 视频免费看| 欧美人与性动交α欧美精品济南到| 999精品在线视频| 如日韩欧美国产精品一区二区三区| 变态另类成人亚洲欧美熟女 | 99精国产麻豆久久婷婷| 亚洲av片天天在线观看| 午夜福利免费观看在线| 日日摸夜夜添夜夜添小说| 亚洲成av片中文字幕在线观看| 夫妻午夜视频| 国产不卡一卡二| 亚洲精品国产一区二区精华液| 精品国产一区二区三区四区第35| 色综合欧美亚洲国产小说| 国产不卡一卡二| 日本三级黄在线观看| 日韩欧美一区二区三区在线观看| 黄色丝袜av网址大全| 精品乱码久久久久久99久播| 高潮久久久久久久久久久不卡| 一二三四社区在线视频社区8| 黄色a级毛片大全视频| 欧美黑人欧美精品刺激| 看免费av毛片| 国产精品日韩av在线免费观看 | 两个人看的免费小视频| 亚洲精品美女久久久久99蜜臀| 国产精品电影一区二区三区| 日本精品一区二区三区蜜桃| 亚洲欧美日韩高清在线视频| 国产午夜精品久久久久久| 国产成人精品久久二区二区免费| 午夜免费观看网址| 91老司机精品| 亚洲中文av在线| 一本综合久久免费|