• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Single molecule magnetic behavior and photo-enhanced proton conductivity in a series of photochromic complexes

    2022-06-18 10:53:10QianZhangJixiangHuQiLiDongxueFengZhenniGaoGuomingWang
    Chinese Chemical Letters 2022年3期

    Qian Zhang,Jixiang Hu,Qi Li,Dongxue Feng,Zhenni Gao,Guoming Wang

    College of Chemistry and Chemical Engineering,Qingdao University,Qingdao 266071,China

    Keywords:Multifunctional Electron transfer Photochromism Single molecule magnetic behavior Proton conductivity

    ABSTRACT Molecules with multifunctional properties are of immense interest in hybrid materials,while challenges still existed because of the limited compatibility of multiple functionalities in a single system.In this work,a series of metal-organic complexes were synthesized and characterized under the assembly of electron donor phosphonate,electron acceptor polypyridine ligand and spin carrier rare earth ions.All the compounds exhibited remarkable and reversible responses with photochromism and photomodulated fluorescence,originated from photogenerated radicals via electron transfer from phosphonates to polypyridine ligands.For the Dy analog,slow magnetic relaxation was observed at cryogenic temperature,indicating the single-molecule magnetic behavior.Furthermore,photogenerated radicals could enhance the proton conductive behavior,with about 2 times larger in magnitude after light irradiation for Dy and Y compounds.The introduction of photoluminescence,magnetism and proton conduction into metallic phosphonates can provide potential applications for photochromic materials.

    The field of chemistry and materials science has witnessed a boom of multifunctional materials in recent years [1–6].As promising candidates for smart materials,the multifunctional metal-organic complexes (MOCs) could be potentially utilized in across areas of optical switching,sensing,energy storage,etc.Meanwhile,the switch that can be realized in the MOCsviaexternal stimuli,such as light,temperature,humidity,and electrical/magnetic fields,provides unique opportunities for elucidating structure-function relationships and future applications [7–13].Light irradiation has been demonstrated as a powerful method for the dynamic control of these MOCs.In this aspect,electron transfer photochromic MOCs create more opportunities and provide a new strategy for researchers to design photochromic materials with a variety of potential functions.The combined bifunctional properties including semiconductors,magnetism,phosphorescence,proton conductivities and nonlinear optical properties have been realized in these electron transfer photochromic MOCs [14–21].However,the multiple functionalities,especially quadruple response of light actuated chromism,photoluminescence,single molecule magnets and proton conductivity in the same crystalline matter,has still a challenge for now.

    Metallic phosphonates,as an important class of MOCs,have manifold coordination modes and strong coordination ability,showing a variety of structure types and interesting properties[22–24].On the one hand,the electron-rich phosphonate components could be efficiently utilized as electron donors when assembly with the electron-deficient polypyridine derivatives,making them as a hot branch in the field of electron transfer photochromic MOCs.On the other hand,electron-rich O atoms in metal-phosphonates can further provide the main proton sources and are likely to be the crucial factor for the high proton conductivity.Since the O atoms on the organic phosphonic acid ligand can coordinate with metal ions to form a multi-structure framework,they can also act as donors or/and acceptors of hydrogen bonds to form hydrogen bonding networks with the guest molecule or other ligands,providing abundant transport paths for proton conduction in these MOCs.Combined with its good thermal/water stability and clear structure for exploring the proton conductive mechanism,these metal-phosphonates attract much attention for pursuing proton conductive materials with high performance [25–27].Furthermore,lanthanide ions with their unique 4f electrons render them as the ideal candidates for assembling multifunctional MOCs [28–30].Due to their larger magnetic anisotropy and intrinsic strong spin-orbit coupling interactions than transition metal ions,these lanthanide ions are widely exploited for constructing single-molecule magnets (SMMs) with a high relaxation barrier[31–35].

    Fig.1.(a) Asymmetric unit of the isostructural compounds.(b) The REdiphosphonate chain.Atom legend: P,light orange;N,blue;O,sea green;C,gray-40%;RE,gold.H atoms and water molecules are omitted for clarity.

    Based on the above considerations,we have synthesized and characterized a series of one-dimensional MOCs [RE2(HHEDP)(H2-HEDP)3]·H3-TPP·9H2O (RE=Dy for 1;Tb for 2;Y for 3 and Er for 4;HEDP=hydroxyethylidene diphosphonate,TPP=2,4,6-tris(4-pyridyl)pyridine) under the assembly of electron rich organic phosphonic acid,a new electron-deficient and photoactive polypyridine ligand and spin carrier rare earth ions.ViaXenon lamp irradiation,these photoactive compounds show remarkable coloration with colorless crystal changed to blue.The photochromism actuated from photogenerated radicals was an electron transfer process from diphosphonate chain,to protonated TPP components,as verified by UV-vis and electron spin resonance spectra.Photoluminescence measurements show direct and sharp decreases in luminescence intensity with the duration of light.For the Dy analog,detectable slow magnetic relaxation was observed at cryogenic temperature,indicating the single-molecule magnetic behavior.Moreover,due to the presence of the hydrophilic channel and a large number of hydrogen bonding interactions through the framework,proton conductivities for 1 and 3 were performed as examples under 100% relative humidity.After illumination,the values of proton conductivity in the temperature measurement region increased obviously,indicating photo improved proton conductive behaviors of these photochromic chain compounds.

    Single-crystal X-ray diffraction (XRD) experiments uncover a series of isostructural chains,as they all crystallize in the sameC2/cspace group (Table S1 in Supporting information),only compound 1 is discussed here for clarity.As depicted in Fig.1a,each asymmetric unit contains two crystallographically unique Dy3+ions,four electron-rich diphosphonate units,one electron-deficient TPP cation,and nine free water molecules.The crystal field for each Dy3+ion indicates anisotropy with the Dy-O bonds range 2.2627(2)–2.39904(8) ?A and 2.22182(8)–2.4000(2) ?A for Dy1 and Dy2 (Table S2 in Supporting information),respectively,probably beneficial for the SMM behavior.Each [DyO7]core geometry with all O atoms from four separate HEDP units adopted a capped trigonal prism (C2v) (Tables S6-S9 in Supporting information),which is calculated with the SHAPE 2.0 program [36].The distinct HEDP components,acting as chelating and bridging ligands,respectively,further bridged two adjacent Dy3+cations to form an infinite zigzag chain (Fig.1b).The nearest intrachain and interchain Dy···Dy distances is 4.9518(7) and 12.7508(13) ?A,respectively,suggesting that the intrachain interaction are dominant with a negligible interchain dipole-dipole interaction.Hydrogen bonding interactions with the distances of 2.5674(9)–3.2982(7) ?A are formed among HEDP chains,protonated TPP ligands and isolated water molecules,providing an abundant electron and proton transfer path for photochromism and proton conduction.These chains are further connected by hydrogen bonds and form a three-dimensional network(Fig.S1 in Supporting information).The bonds and angles of compounds 2–4 are similar with 1 and listed in Tables S3–S5 (Supporting information).

    Powder X-ray diffraction experiments show that the measured peaks are in good agreement with the simulated PXRD,indicating the high purities of crystal phases in all the compounds (Fig.S2 in Supporting information).Thermogravimetric analyses (TGA) in nitrogen flow revealed that 1 undergoes a two-step weight loss upon heating (Fig.S3 in Supporting information).Before 152 °C,the desorption of nine free water molecules results in a first weightlessness of 9.98 wt%.After experiencing a platform,the framework begins to collapse from 220 °C with the decomposition of HEDP and TPP organic ligands.

    As a new photoactive electron acceptor unit,the photochromic behavior of the TPP itself is firstly explored at solid state.After Xenon lamp light illumination for 30 min,the light grey TPP powders turn to faint yellow (Fig.S4 in Supporting information),showing the characteristics of photoactivity.The solid-state UV-vis and photoluminescence spectra are recorded to quest the lightinduced color variations.As shown in Figs.S5 and S6 (Supporting information),a broad peak centered at 573 nm appears and increases in UV-vis spectra while a direct decrease occurs in emission spectra as the irradiation continued,suggesting the generation of TPP?radicals.Similar with the reported polypyridine-based photochromic complexes,the compounds constructed by this new photochromic ligand also show photoactive behavior with clear color changes.As shown in Fig.S7 (Supporting information),all the crystal compounds show eye-detectable photochromic transformation from colorless to blue upon Xenon lamp irradiation.The irradiated blue samples can then return to the initial colorless statesviabeing stayed in the dark at room temperature for several days or by heating at 120 °C in air for 12 h.The discolored samples also displayed color changes after irradiation again,discovering the high reversibility of this photochromic behavior.The PXRD and IR spectra for all the compounds after irradiation are measured and without significant variations (Figs.S2 and S8 in Supporting information),indicating that these photochromic transitions are originated from the photogenerated radicals and irrelevant with structural transformation or photolysis,as observed in many other electron transfer photochromic materials [37–39].

    Their photochromic behaviors were firstly characterized by solid state UV-vis spectra.As depicted in Fig.2,the irradiated samples show nearly the same characteristic bands around 572 nm for 1–4 in the UV-vis spectra,and their intensities gradually increase as the irradiation time increased.For 4,the additional absorption peaks are assigned to the4I15/2→4G11/2(378 nm),4I15/2→4F7/2(489 nm),4I15/2→2H11/2(521 nm) and4I9/2→2K15/2(652 nm) transitions of Er3+.After decoloration,these characteristic peaks disappear again,further suggesting the reversible photochromism.In view of detectable broad bands after illumination in the region of 480–610 nm for TPP ligand (Fig.S5),these enhanced absorptions for all the compounds presumably arose from the production of the H3-TPP?radicals.To test this hypothesis,the electron spin resonance (ESR) analyses were introduced to quest photogenerated radicals before and after irradiation under the same conditions.As shown in Fig.S9 (Supporting information),the ESR spectrum between 500 and 6500 G reveal the characteristic signal of the rare earth metal ions in the original samples,while a sharp signal around 3500 G is observed after irradiation,with thegvalue of 1.9995,2.0037,2.0037 and 2.0032 for 1–4,respectively.These results demonstrate that compounds 1–4 exhibit radical-actuated photochromic properties.

    Fig.2.Time-dependent UV-vis spectra of the original,irradiated and decolored samples (a) 1,(b) 2,(c) 3 and (d) 4.Insert: the photos of the coloration process upon irradiation.

    Since the photogenerated radicals can influence the fluorescence properties of the complexes,solid state photoluminescence spectra of all the complexes were performed under ambient conditions.Upon excitation at 272 nm for 1,the emission spectrum exhibits strong fluorescence emission at 373 nm,which should be assigned to theπ→π?intraligand fluorescence emission of TPP,as confirmed in this ligand’s spectra (Fig.S6) and other compounds containing 2,4,6-tris(4-pyridyl)pyridine [40].The strong emission peak also appears at 482 nm,corresponding to4F9/2→6H15/2transition of the Dy3+centers in 1.Upon continuous irradiation by Xenon lamp,the emission intensities of compound 1 decrease gradually accompanied with the color of powder samples gradually changed to blue (Fig.S10 in Supporting information).After being irradiated for 60 min,the intensity of the main peak sharply decreases to 30 % of the initial value,indicating that photogenerated radicals result in an overlap of emission band and absorption band,and finally quench the photoluminescent behavior.The rest compounds also exhibited the similar photoluminescence quenching during coloration.

    Fig.3.Plots of χ’(a) and χ’’(b) versus T for compound 1 in a 2000 Oe dc field.

    The dc magnetic susceptibility measurements for complex 1 are explored between 2 K and 300 K in the presence of 1 kOe external magnetic field (Fig.S11 in Supporting information).The experimentalχTvalue of compound 1 is 28.04 cm3K/mol at 300 K,which is slightly lower than the expected theoretical value of 28.34 cm3K/mol for two non-interacting Dy3+(S=5/2,L=5,g=4/3).Originated from thermal depopulation of the excited stark sublevels of the anisotropic Dy3+,the curve on cooling mode directly declines to a minimum value 20.53 cm3K/mol at 2 K.The field dependence of magnetizationM vs.Hfor complex 1 is measured at 2 K,with theMvalues gradually reach to 10.94 Nβat 50 kOe(Fig.S12 in Supporting information).For further quest the magnetization relaxation dynamics of 1,ac magnetic susceptibilities are measured under a zero dc and 3.5 Oe ac field.As shown in Fig.S13 (Supporting information),in the frequency-dependent ac susceptibility data,both the in-phase (χ’) and out-of-phase (χ’’) components exhibit frequency dependence,showing the slow magnetic relaxation and might be an indication of SMM.However,similar to other reported Dy-based complexes [41–43],no peaks for bothχ’andχ’’components are observed down to 2 K,which should be originated from fast quantum tunnelling of magnetization (QTM).Assuming only one characteristic relaxation process of the Debye type occurred in 1,the Debye model is thus employed to estimate the energy barrierEa/kBandτ0based on the relationship ln(χ’’/χ’)=ln(ωτ0)+Ea/kBT(Fig.S14 in Supporting information).Best linear fit to the experimental data yieldsEa/kB=15.4 K andτ0=8.9 × 10-6s,consistent with a superparamagnetic-like character of the relaxation dynamics and confirming the SMM behavior [44–46].Since the tunneling mechanism might be suppressed by an additional field [47],a 2 kOe dc field is introduced to further perform the ac susceptibility measurements.As shown in Fig.3,χ’signals are more visible and show frequency dependent peaks,while the peak ofχ’’components is still not observed,indicating that the strong quantum tunneling effect was minimized but not effectively suppressed.Furthermore,the magnetization relaxation dynamics after light irradiation are also explored since photogenerated radicals as another spin carriers introduced to this chain system may magnetically couple with Dy3+centers.However,no obvious variations detected in the dc and ac susceptibility measurements (Figs.S11 and S15 in Supporting information).The neglectable changes of susceptibility data in this photomagnetic measurements may be due to the weakly magnetic couplings between Dy3+and photogenerated radicals,originated from shielding effect of 4f orbitals in Dy3+centers and relatively long distances between Dy3+ions and TPP?radicals.The magnetic properties for other compounds were also measured while no SMM behavior was observed.

    Fig.4.Time Nyquist plots of impedance spectra of 1 (a) and 1a (b) at 100% RH and different temperatures ranging from 303 K to 353 K.

    Due to the abundant water-filled channels,good thermal/water stability,these series of compounds could be utilized as potential proton conductors.Obviously,large numbers of hydrogen bonding interactions formed in this chain structure,with the average O···O and O···N distances of 2.832 ?A among lattice water molecules,HEDP components and TPP cations (Tables S10–S13 in Supporting information).These remarkable hydrogen bond networks could be in favor of the proton transfer,further resulting in enhanced proton conductivity.The AC impedance of the pressed sample of compound 1 is measured at 100% RH and different temperatures.The proton conductivities are calculated from the fitting of the Nyquist plots.As shown in Fig.4 and Table S14 (Supporting information),all Nyquist diagrams show incomplete semicircles and sloping tails at high and low frequencies,respectively exhibiting the characteristic bulk and grain boundary resistances of proton conductors.The initial proton conductivity is determined as 9.33 × 10-5S/cm at 30°C,then the conductivities increased with the resistance values decreased upon heating,showing a typical proton conducting behavior.The optimized proton conductivities for 1 reach to be 3.06 × 10-4S/cm at 80 °C,with the magnitude about 3 times than the initial value.The activation energy of compound 1 calculated by Arrhenius equation is 0.23 eV.This value implies that the proton conduction process mainly follows the typical Grotthus mechanism with proton hops in the hydrogen bond channels (<0.4 eV)[48,49].

    To further explore the effect of photogenerated free radicals on the proton conductivity,the irradiated blue 1a sample are used for AC impedance measurement under the same conditions.As shown in Table S14,the conductivities of 1a in the measured temperature regions show an average increase about 100% than 1.This indicated that photoinduced stable free radicals could promote proton conduction,resulting in an increase in overall electrical conductivity.The fitted activation energy of 0.40 eV (Fig.S16 in Supporting information) suggested the dominated Grotthus mechanisms in 1a,and vehicle mechanisms may begin to participate in the proton transfer process.Upon coloration,H+in H3-TPP components may be easily dissociated upon forming the stable TPP?radicals,the increased protons offer more hydrogen bonding networks and further contribute to the improved proton conductivities.After measured these conductivities before and after light irradiation,the samples still remain the frame structures,as confirmed by the PXRD patterns of the pressed samples (Fig.S17 in Supporting information).Due to the isostructural compounds,the impedance of complex 3 is also performed as an example and exhibit a similar behavior with 1 (Figs.S18 and S19 in Supporting information).At 100% RH and 80°C,the proton conductivity reached 2.90 × 10-4S/cm and 6.34 × 10-4S/cm for 3 and 3a (Table S15 in Supporting information),respectively,showing a photogenerated radicals actuated conductivity enhancement behavior.

    In conclusion,viaassociation of phosphonate donor,TPP acceptor and rare earth spin carriers under hydrothermal conditions,a quadruple functionality with photochromism,photoluminescence,SMM behavior and photo-enhanced proton conductivity was achieved in a series of rare earth phosphonates.The coloration behavior is induced by photogenerated radicals originated from electron transfer process from diphosphonate chain to protonated TPP components.Light irradiation also induces large decreases in luminescence intensity,showing the photoluminescence quenching effect for all the compounds.For the Dy analog,detectable slow magnetic relaxation is observed at cryogenic temperatures,indicating the single-molecule magnetic behavior.Moreover,due to the presence of the hydrophilic channel and a large number of hydrogen bonding interactions through the framework,proton conductivities for 1 and 3 are performed under 100% relative humidity.After light irradiation,the proton conductivity values show obvious increases at the measured temperature region with an average 100% increase in magnitude,exhibiting light enhanced proton conductivity in these series of photochromic chain compounds.This work innovatively reveals a kind of MOC material which integrates photochromic,photoluminescence,SMM and proton conduction,providing an idea for the development of intelligent molecular materials with reconfigurable properties in molecular devices and sensors.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.21901133 and 22071126),Key Research and Development Project of Shandong Province (No.2019GGX102006)and the State Key Laboratory of Fine Chemicals (No.KF1905).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.08.029.

    一级毛片电影观看| 一本一本久久a久久精品综合妖精| 欧美黑人欧美精品刺激| 这个男人来自地球电影免费观看| www.精华液| 女人爽到高潮嗷嗷叫在线视频| 丝袜在线中文字幕| 欧美激情极品国产一区二区三区| 如日韩欧美国产精品一区二区三区| 人妻久久中文字幕网| 99九九在线精品视频| 亚洲精品国产区一区二| 欧美黑人欧美精品刺激| 麻豆av在线久日| 久久久国产一区二区| 成人永久免费在线观看视频 | 国产成人一区二区三区免费视频网站| 国产av国产精品国产| 一区二区三区激情视频| 日本精品一区二区三区蜜桃| 久久久国产成人免费| 国产人伦9x9x在线观看| 国产精品99久久99久久久不卡| 国产野战对白在线观看| 天堂中文最新版在线下载| 精品久久久久久电影网| 一本大道久久a久久精品| 五月天丁香电影| 少妇粗大呻吟视频| 人人妻人人爽人人添夜夜欢视频| 久久天躁狠狠躁夜夜2o2o| 久久久国产一区二区| 欧美国产精品va在线观看不卡| 午夜精品国产一区二区电影| 丝袜喷水一区| 精品高清国产在线一区| 中国美女看黄片| 欧美在线一区亚洲| 99国产综合亚洲精品| 久久精品国产亚洲av高清一级| 少妇裸体淫交视频免费看高清 | 亚洲人成77777在线视频| www.999成人在线观看| 久久中文字幕一级| 99久久国产精品久久久| 色综合婷婷激情| 中文字幕制服av| 国产精品二区激情视频| 精品熟女少妇八av免费久了| 成人精品一区二区免费| 亚洲欧美色中文字幕在线| 叶爱在线成人免费视频播放| 亚洲人成伊人成综合网2020| 大片免费播放器 马上看| 自线自在国产av| 国产三级黄色录像| bbb黄色大片| 亚洲情色 制服丝袜| 我要看黄色一级片免费的| 精品国产乱码久久久久久小说| 丁香六月欧美| 人人澡人人妻人| 国产精品一区二区免费欧美| 亚洲精品久久午夜乱码| 午夜91福利影院| 国产精品久久久久久精品电影小说| 亚洲中文字幕日韩| 在线亚洲精品国产二区图片欧美| 亚洲专区中文字幕在线| 亚洲国产成人一精品久久久| 亚洲av成人不卡在线观看播放网| 精品亚洲成国产av| 在线永久观看黄色视频| 久久久久久久精品吃奶| h视频一区二区三区| 99re在线观看精品视频| 天天躁夜夜躁狠狠躁躁| 国产野战对白在线观看| h视频一区二区三区| 欧美激情 高清一区二区三区| 成人免费观看视频高清| 久久人妻熟女aⅴ| 母亲3免费完整高清在线观看| 69精品国产乱码久久久| 国产97色在线日韩免费| 免费av中文字幕在线| 色视频在线一区二区三区| 国产av国产精品国产| 三上悠亚av全集在线观看| 岛国毛片在线播放| 久久精品国产99精品国产亚洲性色 | 亚洲av片天天在线观看| 天天影视国产精品| 交换朋友夫妻互换小说| 国产日韩一区二区三区精品不卡| 亚洲 国产 在线| 人人妻人人澡人人爽人人夜夜| 菩萨蛮人人尽说江南好唐韦庄| 精品久久久精品久久久| 欧美变态另类bdsm刘玥| 在线观看免费日韩欧美大片| 99久久99久久久精品蜜桃| 91成人精品电影| 男女免费视频国产| 欧美中文综合在线视频| 欧美日韩黄片免| 国产精品九九99| 精品久久久久久电影网| 大片免费播放器 马上看| 女同久久另类99精品国产91| 在线天堂中文资源库| 亚洲人成伊人成综合网2020| 777久久人妻少妇嫩草av网站| 一进一出好大好爽视频| 日韩有码中文字幕| 女性被躁到高潮视频| 国产精品久久久人人做人人爽| 最新的欧美精品一区二区| 我的亚洲天堂| 午夜福利视频在线观看免费| 日韩大码丰满熟妇| 日日摸夜夜添夜夜添小说| 亚洲av成人不卡在线观看播放网| 一级片免费观看大全| 黑人欧美特级aaaaaa片| 国产男靠女视频免费网站| 久久人妻福利社区极品人妻图片| 婷婷丁香在线五月| 亚洲精品国产区一区二| 久久中文字幕一级| 欧美久久黑人一区二区| 极品少妇高潮喷水抽搐| 这个男人来自地球电影免费观看| 国产成人精品久久二区二区免费| 免费少妇av软件| 1024视频免费在线观看| 美女福利国产在线| 日韩欧美一区二区三区在线观看 | 在线观看免费日韩欧美大片| 一区二区三区乱码不卡18| 搡老岳熟女国产| 国内毛片毛片毛片毛片毛片| 天堂中文最新版在线下载| 狠狠精品人妻久久久久久综合| 久久国产精品男人的天堂亚洲| 一本一本久久a久久精品综合妖精| 狠狠婷婷综合久久久久久88av| 这个男人来自地球电影免费观看| 热99re8久久精品国产| 法律面前人人平等表现在哪些方面| 午夜福利视频精品| 亚洲精品成人av观看孕妇| 黑人巨大精品欧美一区二区蜜桃| 国产有黄有色有爽视频| 十八禁人妻一区二区| 一级片'在线观看视频| 夜夜骑夜夜射夜夜干| av视频免费观看在线观看| 国产熟女午夜一区二区三区| 色老头精品视频在线观看| 久久中文看片网| 日本一区二区免费在线视频| 黄色成人免费大全| 日本精品一区二区三区蜜桃| 老司机福利观看| 国产精品亚洲一级av第二区| 大香蕉久久网| 亚洲精华国产精华精| 狂野欧美激情性xxxx| 精品少妇内射三级| 亚洲伊人色综图| 人成视频在线观看免费观看| 亚洲成人手机| 国产精品久久久人人做人人爽| 欧美日韩福利视频一区二区| 国产精品一区二区精品视频观看| 国产男女超爽视频在线观看| 国产日韩一区二区三区精品不卡| 日本五十路高清| 69av精品久久久久久 | 久久久精品免费免费高清| 久久午夜亚洲精品久久| 久久久久网色| 国产精品久久电影中文字幕 | 亚洲全国av大片| 久久人妻熟女aⅴ| 黑人欧美特级aaaaaa片| 国产精品麻豆人妻色哟哟久久| 亚洲精华国产精华精| 国产1区2区3区精品| 午夜福利欧美成人| 一区二区av电影网| 精品一区二区三区视频在线观看免费 | 超碰成人久久| 国产午夜精品久久久久久| 亚洲成国产人片在线观看| 精品少妇一区二区三区视频日本电影| 叶爱在线成人免费视频播放| 丰满迷人的少妇在线观看| 亚洲av成人不卡在线观看播放网| 久久免费观看电影| 欧美乱码精品一区二区三区| 99re6热这里在线精品视频| 亚洲免费av在线视频| 少妇 在线观看| 国产亚洲欧美在线一区二区| 一级毛片电影观看| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕人妻熟女乱码| 一级黄色大片毛片| 男女免费视频国产| 日日爽夜夜爽网站| 蜜桃在线观看..| aaaaa片日本免费| 国产日韩欧美视频二区| 免费女性裸体啪啪无遮挡网站| 国产日韩一区二区三区精品不卡| 国产淫语在线视频| 亚洲国产av影院在线观看| 变态另类成人亚洲欧美熟女 | 欧美性长视频在线观看| 国产精品.久久久| 成人三级做爰电影| 欧美 日韩 精品 国产| 亚洲av第一区精品v没综合| xxxhd国产人妻xxx| 久热这里只有精品99| 日本一区二区免费在线视频| 国产精品免费视频内射| 最近最新中文字幕大全免费视频| 99久久99久久久精品蜜桃| 午夜福利一区二区在线看| 波多野结衣一区麻豆| 老司机亚洲免费影院| 亚洲熟妇熟女久久| 黑人欧美特级aaaaaa片| 国产精品久久久人人做人人爽| 日本vs欧美在线观看视频| 国产视频一区二区在线看| 俄罗斯特黄特色一大片| 美女福利国产在线| 捣出白浆h1v1| 久久国产精品人妻蜜桃| 日韩欧美一区视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 午夜精品国产一区二区电影| 日本av免费视频播放| www日本在线高清视频| 国产精品.久久久| av天堂久久9| 欧美精品高潮呻吟av久久| 后天国语完整版免费观看| 老熟妇乱子伦视频在线观看| 久久国产精品大桥未久av| 精品一区二区三区av网在线观看 | 亚洲成a人片在线一区二区| 在线观看www视频免费| 俄罗斯特黄特色一大片| 亚洲成a人片在线一区二区| 亚洲精品av麻豆狂野| 1024香蕉在线观看| 性高湖久久久久久久久免费观看| 国产精品 国内视频| av一本久久久久| 热99国产精品久久久久久7| 在线观看一区二区三区激情| 国产精品.久久久| 一区在线观看完整版| 免费av中文字幕在线| 黑人巨大精品欧美一区二区mp4| 十八禁高潮呻吟视频| 飞空精品影院首页| 国产欧美亚洲国产| 精品久久久久久电影网| 女人被躁到高潮嗷嗷叫费观| 桃红色精品国产亚洲av| 黄色视频在线播放观看不卡| 亚洲成av片中文字幕在线观看| 一进一出抽搐动态| 一本一本久久a久久精品综合妖精| 女人久久www免费人成看片| 欧美成狂野欧美在线观看| svipshipincom国产片| 国产亚洲精品一区二区www | 亚洲欧美激情在线| kizo精华| 日本a在线网址| 亚洲精品国产一区二区精华液| 夜夜骑夜夜射夜夜干| 精品人妻1区二区| 丝袜美腿诱惑在线| 久久精品国产99精品国产亚洲性色 | 国产精品98久久久久久宅男小说| 亚洲欧美一区二区三区黑人| 亚洲专区字幕在线| 久久久国产精品麻豆| 精品第一国产精品| 18禁国产床啪视频网站| 男女高潮啪啪啪动态图| 日韩精品免费视频一区二区三区| 人妻久久中文字幕网| 免费看a级黄色片| 欧美人与性动交α欧美精品济南到| 国产精品一区二区精品视频观看| 在线看a的网站| 天天躁日日躁夜夜躁夜夜| 日本精品一区二区三区蜜桃| 国产片内射在线| 久久久国产欧美日韩av| 亚洲伊人久久精品综合| 好男人电影高清在线观看| 欧美乱妇无乱码| 久久国产精品影院| 久久免费观看电影| 久热爱精品视频在线9| 精品免费久久久久久久清纯 | 精品亚洲乱码少妇综合久久| 无人区码免费观看不卡 | 午夜精品久久久久久毛片777| 欧美日韩av久久| 18禁美女被吸乳视频| 咕卡用的链子| 成在线人永久免费视频| 中文字幕高清在线视频| 19禁男女啪啪无遮挡网站| 国产高清国产精品国产三级| 少妇被粗大的猛进出69影院| 国产人伦9x9x在线观看| 精品乱码久久久久久99久播| 青青草视频在线视频观看| 国产主播在线观看一区二区| 国产亚洲午夜精品一区二区久久| 亚洲国产看品久久| 国产精品亚洲av一区麻豆| 日韩免费av在线播放| 欧美精品一区二区免费开放| 国产精品久久久久久精品古装| 亚洲人成电影观看| 亚洲色图av天堂| 欧美激情高清一区二区三区| 一区二区三区乱码不卡18| 免费高清在线观看日韩| 一本久久精品| 香蕉丝袜av| 亚洲av片天天在线观看| 国产精品av久久久久免费| 色播在线永久视频| 国产一区二区三区在线臀色熟女 | 91老司机精品| 欧美黑人欧美精品刺激| 精品国内亚洲2022精品成人 | 国产亚洲精品久久久久5区| 王馨瑶露胸无遮挡在线观看| 欧美日韩亚洲综合一区二区三区_| netflix在线观看网站| 黄色视频不卡| 亚洲国产欧美网| 人人妻人人澡人人爽人人夜夜| 99国产精品99久久久久| 极品教师在线免费播放| 两性午夜刺激爽爽歪歪视频在线观看 | 日本五十路高清| 精品久久久久久电影网| 波多野结衣av一区二区av| 国产97色在线日韩免费| 国产xxxxx性猛交| 色综合欧美亚洲国产小说| 在线观看人妻少妇| 中文字幕色久视频| 国产不卡一卡二| 国产亚洲欧美精品永久| 久热这里只有精品99| 国产亚洲午夜精品一区二区久久| 国产91精品成人一区二区三区 | 老司机影院毛片| 99久久99久久久精品蜜桃| 久久国产精品大桥未久av| 精品国产国语对白av| 国产av精品麻豆| 美国免费a级毛片| 久久人妻福利社区极品人妻图片| 女性被躁到高潮视频| 久久久久久久精品吃奶| 在线观看66精品国产| 久久久久国内视频| 999精品在线视频| 中文字幕人妻熟女乱码| 精品亚洲乱码少妇综合久久| 老司机午夜福利在线观看视频 | 免费不卡黄色视频| 天天影视国产精品| 成人18禁在线播放| 18禁国产床啪视频网站| 国产99久久九九免费精品| 国产三级黄色录像| 搡老熟女国产l中国老女人| 叶爱在线成人免费视频播放| 成年人午夜在线观看视频| 人成视频在线观看免费观看| 亚洲欧美激情在线| 别揉我奶头~嗯~啊~动态视频| 国产高清视频在线播放一区| 久久久精品国产亚洲av高清涩受| 少妇精品久久久久久久| 2018国产大陆天天弄谢| 日韩欧美一区二区三区在线观看 | 欧美日韩国产mv在线观看视频| 国产有黄有色有爽视频| 欧美日韩精品网址| 国产黄频视频在线观看| 天天躁夜夜躁狠狠躁躁| 一本—道久久a久久精品蜜桃钙片| 国产xxxxx性猛交| √禁漫天堂资源中文www| 国产免费av片在线观看野外av| 久久午夜综合久久蜜桃| 国产欧美日韩精品亚洲av| 真人做人爱边吃奶动态| 叶爱在线成人免费视频播放| 国产精品久久久久久精品电影小说| 久久天躁狠狠躁夜夜2o2o| 成人特级黄色片久久久久久久 | 国产精品亚洲一级av第二区| 国产熟女午夜一区二区三区| 国产男靠女视频免费网站| 可以免费在线观看a视频的电影网站| 国产在线观看jvid| 亚洲精品国产色婷婷电影| 国产精品免费一区二区三区在线 | 中文字幕精品免费在线观看视频| 日韩三级视频一区二区三区| 丝袜美足系列| 一夜夜www| 国产精品国产高清国产av | 久久国产精品人妻蜜桃| 亚洲中文av在线| 香蕉久久夜色| 久久久久久久久久久久大奶| 婷婷成人精品国产| 日本wwww免费看| 老熟妇仑乱视频hdxx| 久久性视频一级片| 在线观看66精品国产| 国产成人精品无人区| 99国产精品99久久久久| 深夜精品福利| 亚洲精品国产一区二区精华液| 一区二区日韩欧美中文字幕| 怎么达到女性高潮| 叶爱在线成人免费视频播放| 亚洲欧美精品综合一区二区三区| 香蕉国产在线看| 自线自在国产av| 精品久久蜜臀av无| 久久中文看片网| 国产免费视频播放在线视频| 久久精品国产亚洲av高清一级| 一级黄色大片毛片| 免费在线观看黄色视频的| 精品亚洲成国产av| 国产片内射在线| 在线天堂中文资源库| 一区二区三区乱码不卡18| av网站免费在线观看视频| 精品一区二区三区视频在线观看免费 | videos熟女内射| 亚洲国产中文字幕在线视频| 国产欧美日韩精品亚洲av| 91九色精品人成在线观看| 亚洲精品中文字幕一二三四区 | 亚洲国产av新网站| 精品视频人人做人人爽| 人人澡人人妻人| 免费高清在线观看日韩| 九色亚洲精品在线播放| 国产欧美日韩一区二区精品| 国产男靠女视频免费网站| 午夜久久久在线观看| 欧美黑人欧美精品刺激| 一本综合久久免费| 18在线观看网站| 大型黄色视频在线免费观看| 成人三级做爰电影| 精品少妇黑人巨大在线播放| 无限看片的www在线观看| 免费看十八禁软件| 韩国精品一区二区三区| 午夜成年电影在线免费观看| 欧美激情极品国产一区二区三区| 色婷婷久久久亚洲欧美| 国产精品成人在线| 精品亚洲成国产av| 最近最新中文字幕大全电影3 | 久久亚洲真实| 久久久久久人人人人人| 成人三级做爰电影| 老汉色av国产亚洲站长工具| 久久精品亚洲熟妇少妇任你| 国产色视频综合| 女人高潮潮喷娇喘18禁视频| 国产精品欧美亚洲77777| 十八禁网站免费在线| 天天躁日日躁夜夜躁夜夜| 麻豆av在线久日| 91字幕亚洲| 亚洲国产中文字幕在线视频| 国产精品九九99| 成年人午夜在线观看视频| 亚洲色图 男人天堂 中文字幕| av天堂在线播放| www.熟女人妻精品国产| 国产成人精品在线电影| 97人妻天天添夜夜摸| 免费观看a级毛片全部| 亚洲伊人色综图| 男女高潮啪啪啪动态图| 露出奶头的视频| 成年版毛片免费区| 最黄视频免费看| 精品国产一区二区三区四区第35| 国产在线精品亚洲第一网站| 少妇裸体淫交视频免费看高清 | 法律面前人人平等表现在哪些方面| 亚洲成av片中文字幕在线观看| 精品卡一卡二卡四卡免费| 国产精品 国内视频| 天天躁夜夜躁狠狠躁躁| 成人18禁在线播放| 亚洲av电影在线进入| 少妇 在线观看| 国产麻豆69| 他把我摸到了高潮在线观看 | 久久久久久久久久久久大奶| 91字幕亚洲| 黑人猛操日本美女一级片| 成人免费观看视频高清| 亚洲专区国产一区二区| aaaaa片日本免费| 亚洲成人国产一区在线观看| 亚洲欧美一区二区三区久久| 丝袜人妻中文字幕| 亚洲成人免费av在线播放| 国产高清国产精品国产三级| 国内毛片毛片毛片毛片毛片| 妹子高潮喷水视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲熟妇熟女久久| 老司机在亚洲福利影院| 国产精品秋霞免费鲁丝片| 精品人妻在线不人妻| 亚洲av片天天在线观看| 超色免费av| 丁香六月天网| 亚洲欧美日韩高清在线视频 | 亚洲三区欧美一区| 国产成人欧美在线观看 | 最黄视频免费看| 精品一品国产午夜福利视频| 久久国产亚洲av麻豆专区| 久久天躁狠狠躁夜夜2o2o| 午夜免费成人在线视频| 国产在线精品亚洲第一网站| 亚洲av日韩在线播放| 国产高清视频在线播放一区| 国产精品 欧美亚洲| 久久国产精品大桥未久av| 亚洲三区欧美一区| 亚洲第一欧美日韩一区二区三区 | 亚洲欧洲精品一区二区精品久久久| 91成年电影在线观看| 亚洲熟女毛片儿| 少妇的丰满在线观看| 成年人免费黄色播放视频| 水蜜桃什么品种好| 性少妇av在线| 国产伦理片在线播放av一区| 丁香六月欧美| 免费观看人在逋| 伦理电影免费视频| 水蜜桃什么品种好| 高清黄色对白视频在线免费看| 757午夜福利合集在线观看| 中文字幕人妻丝袜制服| 老司机在亚洲福利影院| 美女主播在线视频| 免费少妇av软件| 黄片播放在线免费| 黄色视频,在线免费观看| 激情在线观看视频在线高清 | 国产午夜精品久久久久久| 黑人操中国人逼视频| av超薄肉色丝袜交足视频| 激情视频va一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美+亚洲+日韩+国产| 国产成人欧美在线观看 | 亚洲成av片中文字幕在线观看| 99国产精品99久久久久| 国产伦人伦偷精品视频| 久久国产精品影院| 99香蕉大伊视频| 国产日韩欧美亚洲二区| 亚洲avbb在线观看| 男女床上黄色一级片免费看| 亚洲午夜理论影院| 国产精品 国内视频| 999精品在线视频| 亚洲成a人片在线一区二区| 日韩视频在线欧美| 久久国产精品人妻蜜桃| 亚洲精品美女久久av网站| 亚洲专区字幕在线| 麻豆av在线久日| 国产一区二区三区视频了| 欧美日韩福利视频一区二区|