• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    “Series and parallel” design of ether linkage and imidazolium cation synergistically regulated four-armed polymerized ionic liquid for all-solid-state polymer electrolyte

    2022-06-18 10:53:10ZehuiXieYngZhouCnhuiLingXinlinZhuZhoFngXiolongFuWuweiYnYongYng
    Chinese Chemical Letters 2022年3期

    Zehui Xie,Yng Zhou,b,Cnhui Ling,Xinlin Zhu,Zho Fng,Xiolong Fu,Wuwei Yn,Yong Yng,?

    a Key Laboratory of Soft Chemistry and Functional Materials,Ministry of Education,School of Chemistry and Chemical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    b The Green Aerotechnics Research Institute of Chongqing Jiaotong University,Chongqing 401120,China

    c Xi’an Modern Chemistry Research Institute,Xi’an 710065,China

    d Shenzhen BTR Nanotechnology Company,Ltd.,Shenzhen 518106,China

    Keywords:Series and parallel Polymer electrolyte All-solid-state Lithium metal battery Four-armed

    ABSTRACT Developing all-solid-state polymer electrolytes (SPEs) with high electrochemical performances and stability is of great importance for exploiting of high energy density and safe batteries.Herein,ether linkage and imidazolium ionic liquid (ILs) are incorporated into the multi-armed polymer backbone though the series and parallel way.The parallel polymeric ionic liquid (P-P (PEGMA-IM)) maximizes the synergistic effect of ILs and ether linkage,which endowed the material with low crystallinity and high flame retardancy.The P-P (PEGMA-IM) based P-SPE presents a high ionic conductivity of 0.489 mS/cm at 60°C,an excellent lithium-ion transference number of 0.46 and a wide electrochemical window of 4.87 V.The assembled lithium metal battery using P-SPE can deliver a capacity of 151 mAh/g at 0.2 C,and the capacity retention ratio reaches 82% with a columbic efficiency beyond 99%.The overpotential of P-SPE based symmetric battery is 0.08 V,and there is no apparent magnifying even after 130 h cycling.This new design provides a new avenue for exploitation of advanced SPEs for the next-generation batteries.

    Traditional lithium-ion batteries (LIBs) present several drawbacks,such as safety issues,unsatisfied energy density,weak flexibility,though they have been widely used and respected as the first choice for energy storage device nowadays [1–3].In particular,the generally used organic liquid electrolyte significantly hinders the practical applications of some high capacity electrodes.The problems of leakage,environmental pollution,combustion and explosion also require to be overcome [4–7].

    As a promising tactic to deal with the above-mentioned conundrums,solid-state polymer electrolytes (SPEs) have aroused great research enthusiasm owing to their flexibility and facile tailored feature [8–11].Since the discovery of ion conductivity in polyethylene oxide (PEO),it has been comprehensively studied owing to the fundamental role of ether linkage (-CH2-CH2-O-)nin the backbone[12].The oxygen (O) atom in this unit presents a high donor number for Li+,which provides the driving force for ion transport.In addition,the high dielectric constant (ε≈5) of ether linkage facilitates the ion-pair dissociation in the Li salts,promoting the solvation of Li+[13–15].Nonetheless,the major challenge is that Li-ion migration is commonly restricted by the crystalline region in PEO,and the resulted low ionic conductivity (~10?7S/cm at room temperature) fails to suffice practical application [16–19].The flammability and low critical current density of PEO and most other SPEs also notoriously hinder their applications [20–23].To date,numerous efforts have been made to enhance the ionic conductivity of PEO-based SPEs in order to utilize the advantages of the ether linkage.Various inorganics (Al2O3,TiO2,Li7La3Zr2O12,etc.) [24–26]and organics (PU,PPO,PVP,etc.) [4,27,28]have been added into PEO matrix,and the crystallinity of PEO is effectively decreased.However,there is only weak interactions between these fillers and PEO by the physical blending.The superiorities of the ether linkage cannot be fully presented.

    Fig.1.(a) Illustration of the structural difference between series and parallel polymers.(b) Figmatic illustration of the fabrication of SPEs.

    Incorporation of the ether linkage into the advanced functional polymersviachemical bonding can combine the merits of the respective constituents and maximize the synergy effects of the different units [15,29,30].In this context,PEO derived block copolymers,grafted polymers and crosslinking networks were prepared and investigated as SPEs.Among them,the multi-armed structure can suppress the crystallization of polymer chains easily,leading to increase of the amorphous regions and the improved ionic conductivity.Our group has prepared four-armed tetraalkylammonium and imidazolium based polymeric ionic liquid (PILs) as the solidstate electrolyte,the electrochemical and battery performances are all improved by virtue of the special macromolecular structure and the merits of PILs (high conductivity,nonflammable,thermal stability,etc.) [31].However,to the best of our knowledge,there is rare example on the combination of PILs with ether linkage.Since the introduction of ether groups can result in the change of intraand intermolecular interactions of a system [32],the combination mode of ether linkage with PILs should be tuned for optimized electrochemical performance.

    Herein,we firstly incorporate ether linkage from poly(ethylene glycol) monomethacrylate-OH (PEGMA-OH) and poly(ethylene glycol) monomethacrylate-CH3(PEGMA-CH3) into the multi-armed imidazolium-based PILs.In the S-P(PEGMA-IM) with series structure,imidazolium cation is hanged on the ether linkage.In comparison,when the two functional units are distributed separately on different branches,the parallel structure (P-P(PEGMA-IM)) is defined.For the electrochemical measurements,P-P(PEGMA-IM)derived SPE shows the higher ion conductivity,Li+transference number and stability than that of the S-P(PEGMA-IM).After assembling Li metal batteries,the P-P(PEGMA-IM)-based LMBs present higher specific capacity,better cycling stability,and superior rate performance.These improvements and the corresponding mechanism attributable to the parallel structure are investigated in detail.

    The four-armed polymers based on PEGMA-OH and PEGMACH3were synthesizedviathe atom transfer radical polymerization(ATRP) with the as-prepared initiator.Accordingly,S-P(PEGMA-IM)was obtained from bromination,imidazolium grafting and ion exchange for PPEGMA-OH.P-P(PEGMA-IM) was developed by subsequent ATRP of vinyl imidazole,bromination and ion exchange on PPEGMA-CH3.The detailed procedure is shown in Text S2 and Fig.S1 (Supporting information).The structural disparity between S-P(PEGMA-IM) and P-P (PEGMA-IM) can be well defined in Fig.1a.The fabrication of SPEs based on series and parallel polymers is illustrated in Fig.1bviaa solvent casting technique,and the translucent and flexible membranes can be obtained ultimately.

    To verify the structure of S-P(PEGMA-IM) and P-P (PEGMAIM),FTIR and1H NMR tests are conducted and displayed in Figs.2a and b.The peaks at 1640 cm?1can be assigned to the stretching vibration of C=C in the PEGMA-based monomers.In contrast,the peaks vanish from the spectra of polymers,suggesting the thorough polymerization.The broad absorption around 3250-3600 cm?1demonstrates the existence of -OH in PEGMA-OH,where as it cannot be found in S-P(PEGMA-IM).The presence of a peak at 1350 cm?1is originated from the C-N,which declares the successful integration of imidazolium.Additionally,the characteristic peaks at 1740 cm?1are attributed to C=O,while the absorption at 3140 cm?1and 2950 cm?1can be,respectively designated to the unsaturated and saturated stretching vibration of C-H.Moreover,the successful introduction of TFSI?is validated by the peaks at 1130,1050,740 and 567 cm?1,which agrees well with previously reports [33,34].In the1H NMR,peaks at 1.4 ppm and 1.8 ppm further verify the polymerization of C=C bond,whose characteristic signal commonly appears at lower field.Imidazolium’s proton signals present at 7.4 and 8.7 ppm.Meanwhile,the peaks at 4.4 ppm,4.2 ppm and 3.8 ppm are corresponding to -O-CH3,-N-CH2- and N-CH3,respectively.In particular,the two samples can be distinguished by the peaks around 0.9 ppm,where P-P(PEGMA-IM) manifests strong signal due to the additional -CH3linked to the ether chain.The molecular weight of S-P(PEGMA-IM)and P-P(PEGMA-IM) can also be calculated to be 75,000 and 61,000 based on the integral areas in1H NMR as shown in Fig.S2(Supporting information).

    The crystallinity of series and parallel PILs were studiedviaXRD.As shown in Fig.2c,the two samples display analogical diffraction patterns,where a diffusion peak at 2θ=21° and a wide diffraction within the range of 2θ=30°–41° can be observed.What is noticeable is that contrasted with S-P(PEGMA-IM),P-P(PEGMA-IM) exhibits weaker diffraction intensity,indicating a decreased crystallinity in the parallel configuration which is conducive to the transportation of Li+.

    TGA was adopted to clarify the thermostability of the two PILs.As it can be seen in Fig.2d,the trivial weight loss below 200 °C is owing to the moisture.Apparently,the two samples exhibit similar profiles and a thermo stability up to 260 °C,which mainly stems from the virtually identical four-arm configuration and chemical composition.From the inset,it is well observed that P-SPE is flame retardant and can mitigate the safety hazard against flaming.Glass transition temperature (Tg) is a critical property that intimately related to the crystallinity of polymer,further manipulating the Li+migration.DSC characterizations were thus conducted to probe into the phase evolution andTgof the PILs,and the corresponding profiles are revealed in Fig.2e.There is apparently no melting peaks below 100 °C in both PILs,suggesting the as-prepared polymer are amorphous,which coordinates with the result of XRD.In addition,Tgof the PILs can be indicated by the descending point of the curve,where P-P(PEGMA-IM) exhibits aTgof -30 °C,lower than that of S-P(PEGMA-IM).This may be ascribed to the imidazolium branched onto the polymer backbone,which prohibits the close-packing of ether linkage in PEGMA.

    Mechanical strength is a fundamental feature for SPEs,which can be efficacious in suppressing dendrite growth.Stress-strain tests were accordingly carried out (Fig.2f).S-SPE exhibits a fracture stress of 1.52 MPa when applied to the maximum strain of 180.6%.Contrastively,an enhanced fracture stress of 1.66 MPa at the maximum strain of 140.7% is rendered by P-SPE.This indicates that P-SPE is more durable against the dendrites growth.The block polymerization of PEGMA-CH3and imidazolium resulted in the close interaction between them,interrupting the crystallinity of ether linkage.Moreover,the increased intermolecular interactions and physical cross-links can be endowed.This strengthens the fracture stress for P-SPE.Despite that,the elongation degree is undermined compared with S-SPE,because the slip between polymer segments becomes difficult.The moderate mechanical strength (~106Pa) of both SPEs is tough enough to suppress dendrite growth when utilized in lithium metal battery according to the previous literature [35].

    Electrochemical impedance spectroscopy (EIS) was conducted in order to make a thorough inquiry into the impact of temperature and content of lithium salt on the ionic conductivity of SPEs.The temperature dependence of the ionic conductivities of both SPEs with incremental lithium salt loading was depicted in Fig.3a and Fig.S3 (Supporting information).As can be noted,the maximum ionic conductivity is reached with 20 wt% LiTFSI for both S-SPE and P-SPE.The ionic conductivity ceases to increase as LiTFSI is further added,the culprit of which may be the effect of charge accumulation brought by the excessive amount of lithium salts [36].Regarding the temperature,a quantitative relationship can be concretized by Vogele Tammane Fulcher (VTF) equation (Eq.S2 in Supporting information).According to Eq.S2,the activation energy (Ea) of each SPE can be calculated (Table S1 in Supporting information).The ionic conductivity has a notably inverse relationship withEa,which can also be extrapolated from the equation.At the optimal content of lithium salt,P-SPE exhibits an ionic conductivity of 7.91 × 10?5S/cm at room temperature,three times of the series one.Additionally,an ameliorated ionic conductivity of 0.489 mS/cm can be monitored at 60 °C owing to the phase changing to a more amorphous state,which confers extra entropy and free volume for segment motion [12].The relatively lowerEa(3.1~4.2 kJ/mol) for PSPE also denotes a declined energy barrier for Li transportation.The mechanism of Li+transport in the two topologies is demonstrated in Fig.3e.The enhanced ion conduction in P-SPE is majorly originated from the formation of a “green channel” based on the well-organized ether-linkage and imidazolium regions.As emphasized in the framed up region,the dissociated Li+can facilely enter in the low crystalline ether-linkage region for fast transfer without the hindrance of imidazolium groups.Regarding the series structure,the coordination between Li+and the ether linkage requires squeezing of Li+into the closely packed segments of PEGMA.The migration of Li+will be interrupted by the widely distributed imidazolium groups.

    Fig.3.(a) Ionic conductivity of S-SPE and P-SPE at different temperatures.(b) Electrochemical windows test of S-SPE and P-SPE at 60 °C.(c) Impedance profiles for Li/SPE/Li cells assembled by S-SPE and P-SPE over different aging period at 60 °C.(d) Chronoamperometry profile and AC impedance spectra (inset) before and after polarization for Li/SPE/Li cells with P-SPE at 60 °C.(e) The mechanism of Li+ conduction in S-SPE and P-SPE.

    Considering one of the major inadequacies of SPE is the weak chemical stability against high-energy-density cathodes,a wide electrochemical window is extraordinarily appreciated.In this case,the electrochemical stability of S-SPE and P-SPE was investigatedvialinear sweep voltammetry (LSV) at 60 °C,as is demonstrated in Fig.3b.A tardy increment of the current density is observed when the voltage applied on the electrodes escalates,and the current intensity significantly increased as the voltage exceeded 4.5 V.After curve fitting,the oxidative degradation points of the two SPEs can be identified.The point starts at approximately 4.83 V for the SSPE and 4.87 V for the P-SPE,suggesting the two SPEs are stable up to 4.8 V.

    To further probe into the interfacial compatibility and stability between the Li metal and SPEs,Li/SPE/Li symmetric battery was assembled,which was subsequently examined to clarify the resistance transmission at different storage time.As displayed in Fig.3c,the brief profile of the resistance curves are semicircles.According to the classic theory [37],bulk resistance (Rb) of the SPEs and the interfacial resistance (Rf) between the electrolyte and electrode are obtainable,corresponding to the initial and span values of the semicircles.TheRbof the S-SPE and P-SPE are 276Ωand 85Ω,respectively.Also,it is apparent thatRfof both electrolytes increase upon the aging process.This can be attributed to the infiltration of the electrolyte into the electrode as the prolonging of storage time,when a passivation layer is generated and the interfacial impedance then increases.It is worth noting that theRfof S-SPE is evidently higher than that of P-SPE,and theRfincrement of S-SPE is also more obvious compared to P-SPE whoseRfremains quite stable with a sluggish increase from 317Ωto 396Ωduring the 20-day’s aging.This suggests the interfacial compatibility of P-SPE is more prominent than S-SPE when contacted with the electrode.

    Fig.4.Electrochemical performance of Li/LiFePO4 batteries at 60 °C assembled with S-SPE and P-SPE: (a) rate performance,(b) voltage distance between the charge and discharge curves,(c) cycle stability at 0.2 C.(d) Polarization tests for symmetric Li/S-SPE/Li and Li/P-SPE/Li batteries.(e,f) SEM images of the surface of lithium electrode after polarization tests for S-SPE and P-SPE.

    Moreover,the transference number of lithium ion (tLi+) was studiedviachronoamperometry and electrochemical impedance spectroscopy (EIS) as described in the experimental section.The equivalent circuit is simulated accordingly.For Li/S-SPE/Li symmetric cell (Fig.S4 in Supporting information),theI0andIsare measured to be 3.2 μA and 1.2 μA,and theR0andRsare 600Ωand 650Ω,respectively.ThetLi+can be calculated to be 0.41 based on Eq.S3 (Supporting information).Whereas thetLi+for the Li/PSPE/Li cell (Fig.3d) turns out to be 0.46.The hightLi+of the two SPEs is mainly attributable to the multi-armed topologies which significantly decreased the crystallinity of polymers compared with the linear counterpart.Additionally,the imidazolium cations have electrostatic interactions with TFSI?anions,partly prohibiting the motion of the anions and thus enhancing thetLi+.The parallel structure is more favorable for ion transference majorly owing to the synergistic effect of imidazolium groups and ether linkage.

    LiFePO4/Li batteries using lithium anode and LiFePO4as cathode was assembled to evaluate the overall performance of these two SPEs.Fig.4a shows the rate performance of batteries using different SPEs.The discharge capacity of Li/P-SPE/LiFePO4can reach 157 mAh/g,151 mAh/g,110 mAh/g and 70 mAh/g at 0.1 C,0.2 C,0.5 C and 1 C,respectively.While Li/S-SPE/LiFePO4cell delivers an inferior capacity.When transferring from 1 C to 0.1 C,both SPEs present a highly reversible discharge capacity without loss,suggesting there is no irreversible polarization during cycling.It is noteworthy that P-SPE have a more optimal capacity and rate performance due to the better interfacial compatibility andtLi+.The voltage distance (ΔV) between the charge and discharge curves represents the IR drops caused by the polarization.Fig.4b illustrates the dependence ofΔVon cycling rates after fitting.It is obvious that theΔVof Li/P-SPE/LiFePO4is smaller than that of the series one,indicating the less irreparable capacity and energy decay using the parallel electrolyte.The total resistance (Rband polarization resistance) can be calculated to be 350 and 170Ωfor S-SPE and P-SPEviathe slope of the relationship curves.Considering that the value ofRbis predominantly determined by the immanent properties of the electrolyte,the elevating ofΔVis largely originated from the concentration polarization as the current density increases.Due to the relatively hightLi+,the vicious impact on the capacity brought by the high discharge rates has been alleviated for P-SPE.

    The cycling performance of the as-prepared LiFePO4/Li batteries was then investigated at 0.2 C and 60 °C.As illustrated in Fig.4c,the cells using S-SPE and P-SPE as electrolyte renders an initial discharge capacity of 135 mAh/g and 151 mAh/g,respectively.After 100 cycles,the retained capacity is 102 mAh/g with a declining rate of approximately 0.33 mAh/g per cycle for S-SPE.The capacity retention and columbic efficiency are 75 and 98%.By contrast,for Li/P-SPE/LiFePO4,the declining rate is 0.29 mAh/g per cycle.It maintains a capacity of 128 mAh/g after 100 cycles with a capacity retention of 81%.In addition,the average columbic efficiency also proves to be above 99% apart from the initial cycle.From the comparison above,it is noticeable that the P-SPE achieves better reversibility and cyclability,though the ester groups in the two SPEs are both unstable against Li metal.This may result from the improved interfacial contact and ionic conductivity compared with S-SPE.Since interface impedance is an essential parameter for a high reversible battery,EIS was carried out before and after the cycling tests.Fig.S5 (Supporting information) depicts thatRiincreases from 300Ωto 1350Ωfor the S-SPE based cell.With respect to P-SPE,the initialRiis smaller with a minor increase (from 164Ωto 265Ω),verifying the better cycling performance using P-SPE.

    Moreover,the dendrite growth behavior of the batteries was also investigated by galvanostatic cycling of the symmetric Li/SPE/Li cells.As revealed in Fig.4d,Li/S-SPE/Li exhibits an initial overpotential of 0.2 V and it gradually increases as further cycling.In stark contrast,the initial overpotential for Li/P-SPE/Li is 0.08 V,and there is no apparent magnifying even after 130 h.After polarization,the surface of lithium anode was scrutinized by SEM.As displayed in Figs.4e and f,the morphology of the lithium electrode from the P-SPE based symmetric cell is flatter,suggesting that the planting and stripping process of lithium is uniform and highly reversible using P-SPE as the electrolyte.Here the interface compatibility is the fundamental factor that brings about the different polarization behavior.It is because P-P (PEGMA-IM) is more flexible that the contact between the anode and electrolyte becomes much compact and homogeneous.So the “hot spots” which are favorable for dendrite growth are less likely to be induced [38].Viathe discussion above and the comparison with other ether-linkage or PIL based electrolytes (listed in Table S2 in Supporting information),it can be concluded that the incorporation of ether linkage and imidazolium ionic liquid,especially the parallel structure,does make this SPE qualified for all-solid-state lithium metal batteries.

    In summary,the multi-arm series/parallel structured PILs were fabricatedviathe ATRP of PEGMA-based monomer and the follow-up imidazolium grafting onto the four-arm initiator.P-P(PEGMA-IM) was corroborated to be more amorphous,and the distribution of imidazolium groups and ether linkage onto different chains has a synergistic effect on the migration of lithium-ions.Superior to the series one,P-P(PEGMA-IM) presents an ionic conductivity of 0.489 mS/cm (60 °C) and atLi+up to 0.46.The assembled Li/P-SPE/LiFePO4battery shows an initial discharge specific capacity of 151 mAh/g at 0.2 C,and the capacity retention rate reaches 81% after 100 cycles.By incorporating ILs into the multi-armed polymer backbone,our study reveals the significance of structural regulation on the modification of SPEs and broaden the approaches to design advanced SPEs for the next-generation energy storage devices.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We are grateful to the National Natural Science Foundation of China (No.51303083),the Natural Science Foundation of Jiangsu Province (No.BK20191293),and the Fundamental Research Funds for the Central Universities (No.30920021123) for financial support.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.08.031.

    91精品伊人久久大香线蕉| tube8黄色片| 欧美老熟妇乱子伦牲交| 精品人妻偷拍中文字幕| 伦理电影免费视频| 大香蕉97超碰在线| 欧美一级a爱片免费观看看| 夫妻性生交免费视频一级片| 草草在线视频免费看| 啦啦啦中文免费视频观看日本| 一级黄片播放器| 久久婷婷青草| 午夜福利网站1000一区二区三区| 色哟哟·www| 亚洲综合精品二区| av线在线观看网站| 国产白丝娇喘喷水9色精品| 亚洲美女黄色视频免费看| 久久ye,这里只有精品| 下体分泌物呈黄色| 赤兔流量卡办理| 中文天堂在线官网| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲欧美精品永久| a 毛片基地| 夜夜爽夜夜爽视频| 国产永久视频网站| 久久久久人妻精品一区果冻| 青春草国产在线视频| 中文字幕久久专区| 22中文网久久字幕| 偷拍熟女少妇极品色| 久久精品国产亚洲网站| 久久精品国产亚洲av涩爱| 亚洲精品,欧美精品| 国产视频首页在线观看| 啦啦啦啦在线视频资源| 少妇的逼水好多| 久久免费观看电影| 黑人猛操日本美女一级片| 久久久久网色| 少妇被粗大的猛进出69影院 | av女优亚洲男人天堂| av在线老鸭窝| 国内少妇人妻偷人精品xxx网站| 国产男女内射视频| 久久精品国产亚洲网站| 伊人久久精品亚洲午夜| 国产一区二区在线观看日韩| 啦啦啦视频在线资源免费观看| 欧美成人精品欧美一级黄| 欧美人与善性xxx| 只有这里有精品99| 偷拍熟女少妇极品色| 久久精品久久久久久久性| 亚洲国产精品999| 亚洲精品,欧美精品| 国产精品女同一区二区软件| 国产爽快片一区二区三区| 成年人免费黄色播放视频 | 国产美女午夜福利| 日韩在线高清观看一区二区三区| 2022亚洲国产成人精品| av在线播放精品| 建设人人有责人人尽责人人享有的| 国产精品人妻久久久久久| 亚洲av中文av极速乱| av一本久久久久| 亚洲欧美一区二区三区国产| 成人美女网站在线观看视频| 日韩av在线免费看完整版不卡| 一边亲一边摸免费视频| 久久精品夜色国产| 国产伦理片在线播放av一区| 欧美精品一区二区免费开放| 毛片一级片免费看久久久久| 中文字幕久久专区| 亚洲av中文av极速乱| 成人18禁高潮啪啪吃奶动态图 | 蜜桃久久精品国产亚洲av| 伦理电影大哥的女人| 搡女人真爽免费视频火全软件| 日日爽夜夜爽网站| 高清在线视频一区二区三区| 边亲边吃奶的免费视频| 97在线视频观看| 少妇 在线观看| 日韩成人伦理影院| 久久国产乱子免费精品| 久久午夜福利片| 精品人妻一区二区三区麻豆| 国产免费福利视频在线观看| 九色成人免费人妻av| 日韩 亚洲 欧美在线| 80岁老熟妇乱子伦牲交| 3wmmmm亚洲av在线观看| 国产精品熟女久久久久浪| 精品一品国产午夜福利视频| 日本av免费视频播放| 校园人妻丝袜中文字幕| 亚洲不卡免费看| 美女脱内裤让男人舔精品视频| 国产精品人妻久久久影院| 在线 av 中文字幕| 伦精品一区二区三区| 国产熟女午夜一区二区三区 | 久久久久久久国产电影| 亚洲国产精品一区二区三区在线| 99九九线精品视频在线观看视频| 老熟女久久久| 男女免费视频国产| 久久午夜综合久久蜜桃| 自线自在国产av| 国产av精品麻豆| 国产一区亚洲一区在线观看| 三级国产精品片| 亚洲,欧美,日韩| 欧美日韩精品成人综合77777| 18禁在线无遮挡免费观看视频| 国产色爽女视频免费观看| 天天操日日干夜夜撸| 国产亚洲最大av| 色视频www国产| 看免费成人av毛片| 日韩制服骚丝袜av| 色婷婷久久久亚洲欧美| 另类亚洲欧美激情| 国产一区二区在线观看av| 国产亚洲精品久久久com| av专区在线播放| 汤姆久久久久久久影院中文字幕| 99久久综合免费| 国产亚洲av片在线观看秒播厂| 国产精品一区二区性色av| 91久久精品国产一区二区三区| 热re99久久精品国产66热6| www.av在线官网国产| 99久久中文字幕三级久久日本| 国产淫片久久久久久久久| 国产精品人妻久久久久久| 美女主播在线视频| 国产片特级美女逼逼视频| 久久久欧美国产精品| 91aial.com中文字幕在线观看| 91久久精品国产一区二区成人| 久久久a久久爽久久v久久| 久久免费观看电影| av卡一久久| 黄色欧美视频在线观看| 亚洲欧美精品专区久久| 热99国产精品久久久久久7| 另类亚洲欧美激情| 99久久中文字幕三级久久日本| 国产美女午夜福利| 国产高清不卡午夜福利| 国产精品一区二区在线不卡| av在线app专区| 精品人妻偷拍中文字幕| 久久精品久久精品一区二区三区| 麻豆乱淫一区二区| 国产熟女欧美一区二区| 在线观看美女被高潮喷水网站| 蜜桃久久精品国产亚洲av| 亚洲av日韩在线播放| 99九九线精品视频在线观看视频| 丝袜喷水一区| 亚洲欧美精品专区久久| 插阴视频在线观看视频| 欧美老熟妇乱子伦牲交| 国产一区二区在线观看av| 丝袜脚勾引网站| 在线精品无人区一区二区三| 日本vs欧美在线观看视频 | 日韩中字成人| 简卡轻食公司| 国产成人freesex在线| 久久久久久久久大av| 精品人妻熟女av久视频| 成人亚洲欧美一区二区av| 多毛熟女@视频| 特大巨黑吊av在线直播| 亚洲激情五月婷婷啪啪| 日韩免费高清中文字幕av| 欧美变态另类bdsm刘玥| 99久久中文字幕三级久久日本| 久久精品夜色国产| 波野结衣二区三区在线| 亚洲国产精品一区三区| 男人添女人高潮全过程视频| 婷婷色综合大香蕉| 欧美xxxx性猛交bbbb| 成年人免费黄色播放视频 | 亚洲图色成人| av在线观看视频网站免费| 热re99久久国产66热| h视频一区二区三区| av福利片在线| 免费在线观看成人毛片| 欧美日韩一区二区视频在线观看视频在线| 国产精品女同一区二区软件| 亚洲第一av免费看| 日韩中字成人| 日韩一区二区三区影片| 永久网站在线| 卡戴珊不雅视频在线播放| 精品视频人人做人人爽| 日韩制服骚丝袜av| 久热久热在线精品观看| 男女边摸边吃奶| 久久 成人 亚洲| 国产淫语在线视频| 我的女老师完整版在线观看| 丝袜在线中文字幕| 国产永久视频网站| 国产精品久久久久成人av| 人妻一区二区av| 18禁裸乳无遮挡动漫免费视频| 国产精品一二三区在线看| 亚洲成人av在线免费| 日韩强制内射视频| 亚洲av成人精品一区久久| 中文欧美无线码| 免费观看的影片在线观看| 欧美一级a爱片免费观看看| 日本色播在线视频| 少妇人妻精品综合一区二区| 亚洲av日韩在线播放| 日日爽夜夜爽网站| 赤兔流量卡办理| 久久久久久伊人网av| 麻豆乱淫一区二区| 91久久精品电影网| 国产在视频线精品| 三级经典国产精品| 99九九线精品视频在线观看视频| 秋霞伦理黄片| 一本色道久久久久久精品综合| 国产一级毛片在线| 婷婷色麻豆天堂久久| 王馨瑶露胸无遮挡在线观看| 伊人久久精品亚洲午夜| 亚洲av电影在线观看一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 亚洲真实伦在线观看| 99久久精品国产国产毛片| 亚洲久久久国产精品| xxx大片免费视频| 欧美 日韩 精品 国产| 美女大奶头黄色视频| 大片免费播放器 马上看| 国产精品不卡视频一区二区| 精品久久久久久久久av| 日本91视频免费播放| 国产 一区精品| av女优亚洲男人天堂| .国产精品久久| 中国国产av一级| 在线观看一区二区三区激情| 草草在线视频免费看| 日本黄色片子视频| 亚洲精品视频女| 午夜福利影视在线免费观看| 少妇高潮的动态图| 天美传媒精品一区二区| 91精品一卡2卡3卡4卡| 亚洲av福利一区| 久久久久久久国产电影| av免费观看日本| 少妇人妻精品综合一区二区| av网站免费在线观看视频| 精品国产国语对白av| 欧美人与善性xxx| 亚洲欧洲日产国产| 国产成人精品一,二区| 精品国产乱码久久久久久小说| 亚洲精品第二区| 大话2 男鬼变身卡| 欧美 亚洲 国产 日韩一| 大香蕉久久网| av国产精品久久久久影院| 午夜免费男女啪啪视频观看| 久久久国产一区二区| 久久精品国产a三级三级三级| 只有这里有精品99| 99热全是精品| 欧美精品一区二区大全| 王馨瑶露胸无遮挡在线观看| 成人亚洲精品一区在线观看| 国产成人免费无遮挡视频| 尾随美女入室| 有码 亚洲区| av在线老鸭窝| 一本色道久久久久久精品综合| 国产91av在线免费观看| 婷婷色综合大香蕉| 亚洲国产欧美日韩在线播放 | 免费黄网站久久成人精品| 黄片无遮挡物在线观看| 三级国产精品片| av网站免费在线观看视频| 高清欧美精品videossex| 人人妻人人澡人人爽人人夜夜| 偷拍熟女少妇极品色| 日韩欧美一区视频在线观看 | 亚洲人成网站在线观看播放| 欧美另类一区| 日韩欧美一区视频在线观看 | 亚洲无线观看免费| a级毛片免费高清观看在线播放| 久久久久久久亚洲中文字幕| 日本wwww免费看| 91精品国产九色| 只有这里有精品99| 丰满饥渴人妻一区二区三| 国产女主播在线喷水免费视频网站| 精品久久久精品久久久| 黑丝袜美女国产一区| 日日爽夜夜爽网站| 少妇高潮的动态图| 91精品伊人久久大香线蕉| 不卡视频在线观看欧美| 日本av手机在线免费观看| 日韩成人伦理影院| 一级毛片久久久久久久久女| 色5月婷婷丁香| 黑人猛操日本美女一级片| 亚洲三级黄色毛片| 久久人人爽人人爽人人片va| 中文字幕久久专区| 国产男女内射视频| av国产久精品久网站免费入址| av有码第一页| 精品少妇内射三级| 久久久久久久久久人人人人人人| av国产久精品久网站免费入址| 五月开心婷婷网| 午夜免费鲁丝| 国产在线视频一区二区| 日本爱情动作片www.在线观看| 午夜福利,免费看| a级毛片免费高清观看在线播放| 精品一品国产午夜福利视频| 欧美少妇被猛烈插入视频| tube8黄色片| 成人国产av品久久久| 国产日韩欧美亚洲二区| 美女国产视频在线观看| 高清在线视频一区二区三区| 丰满人妻一区二区三区视频av| av线在线观看网站| 国产成人免费观看mmmm| 丁香六月天网| 亚洲国产欧美在线一区| 欧美97在线视频| 丰满人妻一区二区三区视频av| 中文在线观看免费www的网站| 亚洲综合色惰| 国产高清三级在线| 777米奇影视久久| 亚洲av成人精品一区久久| 97超视频在线观看视频| 黄色欧美视频在线观看| 国产亚洲午夜精品一区二区久久| 少妇的逼水好多| 久久久精品94久久精品| 在线播放无遮挡| 噜噜噜噜噜久久久久久91| 亚洲人成网站在线观看播放| 99九九线精品视频在线观看视频| 伊人久久精品亚洲午夜| 国产成人a∨麻豆精品| 久久久国产精品麻豆| 91精品国产国语对白视频| 精品酒店卫生间| 啦啦啦视频在线资源免费观看| 欧美激情极品国产一区二区三区 | 激情五月婷婷亚洲| 午夜福利,免费看| 青青草视频在线视频观看| 久久亚洲国产成人精品v| 成人影院久久| 高清视频免费观看一区二区| 国产黄片视频在线免费观看| 女人久久www免费人成看片| 久久6这里有精品| 少妇高潮的动态图| 最后的刺客免费高清国语| 欧美日韩一区二区视频在线观看视频在线| 色婷婷久久久亚洲欧美| 亚洲精品亚洲一区二区| 免费看av在线观看网站| 99热国产这里只有精品6| 亚洲美女搞黄在线观看| 亚洲一级一片aⅴ在线观看| 亚洲av成人精品一区久久| 午夜激情久久久久久久| 欧美变态另类bdsm刘玥| 在线观看美女被高潮喷水网站| 一个人看视频在线观看www免费| 最近中文字幕高清免费大全6| 久久久久国产网址| 欧美日韩国产mv在线观看视频| 欧美日韩综合久久久久久| 最近手机中文字幕大全| 成人毛片60女人毛片免费| 国产精品久久久久成人av| 人妻夜夜爽99麻豆av| 亚洲国产精品成人久久小说| 蜜臀久久99精品久久宅男| 天堂俺去俺来也www色官网| 国产精品福利在线免费观看| 国产91av在线免费观看| 97超视频在线观看视频| 人妻 亚洲 视频| 久久影院123| 久久久久久久久久成人| 日日摸夜夜添夜夜爱| av天堂中文字幕网| 日本欧美国产在线视频| 亚洲av国产av综合av卡| 欧美日韩亚洲高清精品| www.色视频.com| 又黄又爽又刺激的免费视频.| 啦啦啦在线观看免费高清www| av专区在线播放| 我要看日韩黄色一级片| 免费大片黄手机在线观看| 91精品国产国语对白视频| 欧美区成人在线视频| 亚洲av免费高清在线观看| 成人毛片a级毛片在线播放| 免费黄色在线免费观看| 69精品国产乱码久久久| 又爽又黄a免费视频| 亚洲av福利一区| 少妇被粗大的猛进出69影院 | 国产 一区精品| 免费黄网站久久成人精品| av免费在线看不卡| 国产欧美日韩精品一区二区| 一级二级三级毛片免费看| 久久久久国产网址| 夜夜骑夜夜射夜夜干| 人妻夜夜爽99麻豆av| 99热全是精品| 久久久久精品久久久久真实原创| 欧美精品高潮呻吟av久久| 夫妻午夜视频| 日本黄色日本黄色录像| 国产在视频线精品| 日韩av在线免费看完整版不卡| 亚洲av综合色区一区| 日韩精品有码人妻一区| tube8黄色片| 欧美国产精品一级二级三级 | 一本大道久久a久久精品| 国产免费一级a男人的天堂| 99热全是精品| 亚洲av成人精品一二三区| 欧美精品高潮呻吟av久久| 丰满乱子伦码专区| 国产精品99久久久久久久久| 大片免费播放器 马上看| 大话2 男鬼变身卡| 日本黄色片子视频| 亚洲国产精品专区欧美| 国产欧美日韩精品一区二区| 日本爱情动作片www.在线观看| 黑丝袜美女国产一区| 内射极品少妇av片p| av又黄又爽大尺度在线免费看| 另类亚洲欧美激情| 高清不卡的av网站| 亚洲国产精品一区二区三区在线| 国产亚洲一区二区精品| 精品国产一区二区久久| 日韩电影二区| 色视频在线一区二区三区| 国产成人freesex在线| 国产高清有码在线观看视频| 人妻一区二区av| 桃花免费在线播放| 黄片无遮挡物在线观看| 国产乱来视频区| 婷婷色麻豆天堂久久| 久久久久国产精品人妻一区二区| a级毛片在线看网站| 麻豆乱淫一区二区| 婷婷色麻豆天堂久久| 一级黄片播放器| freevideosex欧美| 熟女人妻精品中文字幕| 我的老师免费观看完整版| 欧美 亚洲 国产 日韩一| 人体艺术视频欧美日本| 六月丁香七月| 免费大片黄手机在线观看| 欧美日韩视频高清一区二区三区二| 国产又色又爽无遮挡免| 18禁在线播放成人免费| 国产一区二区三区综合在线观看 | 久久精品国产亚洲av涩爱| 午夜免费鲁丝| 十八禁网站网址无遮挡 | 国产伦在线观看视频一区| 噜噜噜噜噜久久久久久91| 在线播放无遮挡| 欧美性感艳星| 99re6热这里在线精品视频| 欧美日韩视频高清一区二区三区二| 日韩成人伦理影院| 人人澡人人妻人| 人体艺术视频欧美日本| 麻豆精品久久久久久蜜桃| 亚洲美女视频黄频| 菩萨蛮人人尽说江南好唐韦庄| 免费黄网站久久成人精品| 又大又黄又爽视频免费| 熟妇人妻不卡中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品国产精品| 女人精品久久久久毛片| 精品亚洲成国产av| 我的女老师完整版在线观看| 一个人免费看片子| 亚洲自偷自拍三级| 免费人成在线观看视频色| 一级片'在线观看视频| 免费人成在线观看视频色| 黑人猛操日本美女一级片| 日韩在线高清观看一区二区三区| 亚洲国产精品一区三区| 亚洲久久久国产精品| 亚洲,一卡二卡三卡| av有码第一页| 精品久久久精品久久久| 国产精品一区二区性色av| 少妇 在线观看| 欧美精品一区二区免费开放| 在线亚洲精品国产二区图片欧美 | √禁漫天堂资源中文www| 亚洲精华国产精华液的使用体验| 美女xxoo啪啪120秒动态图| 黄色配什么色好看| 男人爽女人下面视频在线观看| 少妇人妻一区二区三区视频| 精品久久久噜噜| av国产精品久久久久影院| 午夜福利网站1000一区二区三区| 国产91av在线免费观看| a级毛片免费高清观看在线播放| 夫妻性生交免费视频一级片| a级毛色黄片| 免费不卡的大黄色大毛片视频在线观看| 国产毛片在线视频| 国产精品嫩草影院av在线观看| 一区在线观看完整版| 大又大粗又爽又黄少妇毛片口| 日日爽夜夜爽网站| 男女啪啪激烈高潮av片| 新久久久久国产一级毛片| 偷拍熟女少妇极品色| 欧美xxⅹ黑人| 欧美成人精品欧美一级黄| 一级a做视频免费观看| 亚洲中文av在线| 水蜜桃什么品种好| 色婷婷av一区二区三区视频| 色5月婷婷丁香| 国产精品嫩草影院av在线观看| 久久精品国产自在天天线| 成人午夜精彩视频在线观看| 一区二区三区免费毛片| 亚洲真实伦在线观看| 在线观看一区二区三区激情| 日本av手机在线免费观看| 交换朋友夫妻互换小说| 亚洲精品一区蜜桃| 人人澡人人妻人| 亚洲精品aⅴ在线观看| 丝瓜视频免费看黄片| 成人18禁高潮啪啪吃奶动态图 | 免费人妻精品一区二区三区视频| 在线观看一区二区三区激情| 黄色毛片三级朝国网站 | 国产91av在线免费观看| 成人影院久久| 永久网站在线| 免费黄网站久久成人精品| 我要看日韩黄色一级片| 日本黄大片高清| 中文字幕免费在线视频6| 伦理电影免费视频| 欧美xxⅹ黑人| 内地一区二区视频在线| 久久ye,这里只有精品| 午夜福利在线观看免费完整高清在| 国产无遮挡羞羞视频在线观看| 一级片'在线观看视频| 久久女婷五月综合色啪小说| 久久精品久久久久久久性| 国产国拍精品亚洲av在线观看| 亚洲经典国产精华液单| a级毛色黄片| 大片电影免费在线观看免费| 夫妻性生交免费视频一级片| 超碰97精品在线观看| 精品久久久久久久久av| 美女脱内裤让男人舔精品视频| 久热久热在线精品观看| 男女国产视频网站| 久久人妻熟女aⅴ| 国产爽快片一区二区三区| 99九九线精品视频在线观看视频| 亚洲精品aⅴ在线观看|