• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molybdenum phosphide (MoP) with dual active sites for the degradation of diclofenac in Fenton-like system

    2022-06-18 10:52:54XiuyingLiShungqiuHungHuihoXuYuepengDengZhuWngZhoQingLiu
    Chinese Chemical Letters 2022年3期

    Xiuying Li,Shungqiu Hung,Huiho Xu,Yuepeng Deng,Zhu Wng,c,?,Zho-Qing Liu

    a Key Laboratory for Water Quality and Conservation of the Pearl River Delta,Ministry of Education,Guangzhou Key Laboratory for Clean Energy and Materials,Institute of Environmental Research at Greater Bay,Guangzhou University,Guangzhou 510006,China

    b School of Chemistry and Chemical Engineering,Institute of Clean Energy and Materials,Guangzhou Key Laboratory for Clean Energy and Materials,Key Laboratory for Water Quality and Conservation of the Pearl River Delta,Ministry of Education,Guangzhou University,Guangzhou 510006,China

    c State Key Laboratory of Pollution Control and Resource Reuse,School of the Environment,Nanjing University,Nanjing 210023,China

    Keywords:MoP Dual active sites Fenton-like Diclofenac degradation

    ABSTRACT The leaching and non-recoverability of mental ions have always limited the practical application of Fenton-like processes.For the first time,we synthesized molybdenum phosphide (MoP) with dual active sites for the degradation of diclofenac (DCF) in the Fenton-like process.The DCF degradation rate constant (k) of MoP+H2O2 process was calculated to be 0.13 min-1 within 40 min,indicating a highly efficient catalytic ability of MoP.In addition,this catalyst exhibits a stable structure and good activity,which could apply in a broad pH range,different ions solution and real wastewater condition.Accordingly,this efficient catalytic capability may be attributed to the presence of the metal sites Moδ+and the electron-rich sites Pδ?in MoP,which could induce the generation of hydroxyl radical (?OH) and superoxide radical (?O2?) through electron transfer,resulting in the effective removal of DCF.This study provides an idea for the optimization of Fenton-like technologies and environmental remediation.

    Diclofenac (DCF) is a kind of anti-inflammatory drugs that is widely used to treat inflammatory,painful diseases,and other pains [1].It has been reported that the annual consumption of DCF reached more than 60 tons in many countries [2].However,the excretions of DCF are poorly eliminated in the wastewater treatment plants,resulting in the residual of DCF in surface water and groundwater.For example,high concentration of DCF is detected in Llobregat River [3].In addition,DCF with low concentration would cause cytological alterations in rainbow trout [4],suggesting that DCF may have a risk to the aquatic ecosystems.Thus,DCF exposed to the natural environment needs to be removed urgently.

    Fenton-like processes with strong oxidation capacity can produce hydroxyl radicals (?OH),which are considered as promising technologies to treat refractory pollutants [5–10].Although traditional Fenton process has lots of advantages such as high efficiency and simple operation,the production of iron sludge and the diffi-culty in the recycle of Fe2+both limit its practical application [11].Hence,it is necessary to find an efficient and recyclable catalyst to replace Fe2+.

    Transformation metal compounds are a group of common catalysts used to replace metal ions in Fenton-like reaction,among which P-based compounds with low-cost and earth-abundant have been widely used to be hydrogen agent,photocatalyst or electrocatalyst [12–14].In addition,the formation of metal-P bonds in Pbased compounds can result in a “weak ligand” effect on P atom and adjust the surface charge state of metal atoms,which may perform the potential to be applied in Fenton-like reactions [15–17].In recent years,P-based compounds have been gradually used to treat organic pollutants in Fenton-like processes.For example,Luoet al.prepared nanostructured CoP as an efficient peroxymonosulfate (PMS) activation catalyst for the degradation of orange II,which could achieve a ratio of 97.2% for orange II degradation in 4 min [18].As an important member of P-based compounds,MoP presents high electronic conductivity and superior chemical stability,which gets more and more attention in recent years [15].With the charged nature of molybdenum (Moδ+) and phosphorus (Pδ?),MoP may own unique dual active sites like Ni2P [19–21],which may be also conducive to the optimization of the Fenton-like systems.Generally,Mo is considered as the active center among the Mo-based catalysts like MoS2and Mo2C [22–26].However,the activation capacity of MoP for H2O2has not been reported and the mechanism of MoP+H2O2process is unknown.

    Fig.1.(a) TEM image and (b) XRD pattern of MoP.(c) Mo 3d and (d) P 2p XPS spectra of MoP.

    In this study,MoP was used as a catalyst for DCF degradation in Fenton-like process for the first time.The purpose of this study is to (i) determine the DCF degradation efficiency in MoP+H2O2process;(ii) investigate the effects of experimental parameters such as MoP,H2O2and DCF concentration;(iii) evaluate the practical application potential of MoP+H2O2process;(iv) clarify the mechanism of MoP+H2O2process;and (v) propose the degradation pathways and products of DCF.

    The specific materials and methods are supported in the Text S1 (Supporting information).To determine the successful synthesis of MoP,characterizations such as transmission electron microscope (TEM),X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were conducted and the results are shown in Fig.1.The TEM image suggests that MoP is a group of irregular nanoparticles.Through observing the crystal lattice of the synthesized material,three lattice fringes with the interval of around 0.20,0.27 and 0.33 nm were found,corresponding to the (101),(100) and(001) lattice plane of MoP crystalline [21,27].In addition,the crystallinity of the sample was characterized by XRD.As shown in Fig.1b,XRD pattern displays diffraction peaks at 2θof 28.0o,32.2o,43.2o,57.4o,57.9o,64.9o,67.0o,67.8oand 74.4o,which well correspond to the (001),(100),(101),(110),(002),(111),(200),(102) and(201) of the orthorhombic MoP standard card (JCPDS No.24-0771),respectively.Furthermore,XPS was carried out to study the valence situation of the as-prepared MoP (Figs.1c and d).Two peaks at 228.3 eV and 232.5 eV performed in Mo 3d XPS spectrum are the typical peaks of MoP assigning to Moδ+[27],while another peak at 235.5 eV corresponds to Mo6+3d3/2,resulted by the slight oxidation on the surface of MoP [21].Additionally,P 2p XPS spectrum clearly exhibits a predominant peak at 134.1 eV corresponding to P-O bond,which could be attributed to the oxidation of surface P[21].Moreover,the peaks located at 129.5 eV and 130.4 eV corresponding to P 2p3/2and P 2p1/2are the Pδ?species in MoP,which are consistent with previous research [21,27,28].

    Fig.2.(a) Degradation ratio and reaction rate constant of DCF in MoP+H2O2 system.(b) Cycle experiments in MoP+H2O2 system for the DCF degradation.(c) Degradation ratios of DCF using various scavengers and (d) ESR in the MoP+H2O2 system.Experimental conditions: [H2O2]=2.0 mmol/L,[MoP]=0.10 g/L,[DCF]=20 mg/L,pH 6.0,T=25 °C,scavenger:H2O2=500:1 and 1000:1 molar ratio.

    Before testing the catalytic capacity of MoP in Fenton-like process for DCF degradation,the adsorption capability of MoP for DCF was studied.As shown in Fig.S1 (Supporting information),the adsorption ratio of DCF in 120 min reached about 30%,indicating a limited adsorption capability of MoP.In addition,the absorption ratio kept stable after 30 min,suggests that the adsorption equilibrium was determined to be 30 min.Furthermore,it can be clearly observed that H2O2alone could not remove DCF,suggesting the insufficient oxidant capability of H2O2(Fig.2a).However,MoP catalyzed H2O2process got a surprising degradation of DCF,in which almost 100% of DCF was degraded in 40 min (Fig.2a).These results manifest that MoP could react with H2O2to remove organic pollutant effectively.The reaction kinetics of MoP,H2O2and MoP+H2O2processes were calculated using pseudo-first-order kinetic model -ln(C/C0)=ktfor further comparing the degradation performance of DCF in different processes.The observed rate constant(k) value of MoP+H2O2process was calculated to be 0.13 min?1(Fig.2a).Moreover,as shown in Fig.S2 (Supporting information),the reaction rate constant of DCF in different Fenton-like systems are lower than that in MoP+H2O2process,indicating an excellent performance of the MoP.In addition,the synergy factor (SF)of MoP+H2O2process was further calculated by Eq.S1 (Supporting information) and the calculation result is 15 (>1),indicating a significant synergistic effect between MoP and H2O2.Therefore,the prepared MoP displayed efficient activation efficiency on H2O2for DCF degradation,which would widen the application areas of P-based compounds.

    Additionally,the key operational factors would also have an important impact on the degradation of pollutants,thereby the impact of MoP dosage,H2O2dosage,DCF concentration and pH were explored.As shown in Fig.S3 (Supporting information),with the increase of MoP or H2O2,the degradation ratio of DCF gradually increased,which may be attributed to the increase in surface reaction sites of MoP and reactive oxidative species (ROSs).Moreover,the higher concentration of DCF would cause the lower degradation efficiency of DCF,because the generated ROSs might be not insufficient to degrade excess DCF in the MoP+H2O2process (Fig.S3c).In addition,the MoP+H2O2system would work over a broad pH range (4.0-8.0),among which the removal ratio of DCF could be achieved almost 100% when pH=6.0.According to the above optimization experiments,the MoP dosage,H2O2dosage,DCF concentration and pH were subsequently set as 0.10 g/L,2.0 mmol/L,20 mg/L and 6.0,respectively.

    To evaluate the practical application potential of MoP,several experiments were conducted.Firstly,the common ions in wastewater were added in the reaction solution to examine the effect of ions.It is obviously to find that 5 mmol/L of ions in the reaction solution could slightly decrease the degradation efficiency of DCF,which reached 80%,85%,88% and 90% with the addition of Cl?,HCO3?,NO3?and SO42?,respectively.This indicates that the addition of ions would slightly inhibit the ability of MoP activation of H2O2(Fig.S4a in Supporting information).Furthermore,the degradation ratio of DCF in different actual wastewater was slightly lower than that in ultrapure water matrix.Thus,even though the addition of ions and actual wastewater would affect the treatment efficiency of DCF,they were all greater than 70% (Fig.S4b in Supporting information),revealing a high potential for DCF removal in real water in the MoP+H2O2process.In addition,MoP exhibits a good activity after the reaction,which could maintain 86% of DCF degradation ratio in 5 cycles (Fig.2b).These all suggest the high application potential for the pollutant degradation in real wastewater by MoP+H2O2system.

    In order to apply MoP+H2O2process in actual wastewater treatment,it is necessary to understand its mechanism.Thus ROSs capture and electron spin resonance (ESR) experiments were carried out to determine the radical species during the MoP+H2O2process.Tert-butanol (TBA) and p-benzoquinone (p-BQ) were used as?OH and superoxide radical (?O2?) scavengers with the reaction rate constants of (3.8–7.6) × 108L mol?1s?1[29]and 2.9 × 109L mol–1s–1[30],respectively.As displayed in Fig.2c,the degradation ratio of DCF was strongly inhibited with the addition of TBA,which decreased to 50% in 40 min,indicating the significant role of?OH in the reaction.Furthermore,p-BQ also showed a suppression of DCF degradation,with the degradation ratio of 79%.With the ratio of TBA/p-BQ and H2O2increasing to 1000,the degradation ratio of DCF further decreased to 24%/60%.Thus the ROSs quenching test signifies the coexistence of?OH and?O2?,while?OH is the main ROSs that plays an important role.ESR experiment further certificates the result of ROSs test.Four peaks with the intensity ratio of 1:2:2:1 and 1:1:1:1 represent the signal of?OH and?O2?,respectively [29].As shown in Fig.2d,there are no signal of?OH or?O2?in the only H2O2system,indicating the lack of these two ROSs,while the signal of?OH and?O2?can be both detected in the MoP+H2O2system,reconfirming the co-contribution of?OH and?O2?to DCF degradation in the MoP+H2O2system.

    Previous study has proved that the mechanism of P-based compounds-mediated PMS activation includes the dual role of Pδ?and metal ions (Mδ+).Thus the XPS spectra of Mo 3d and P 2p of MoP after reaction were examined to investigate the valence changes of MoP during the reaction (Fig.S5 in Supporting information).It has been observed that there is no significant change of the XPS spectra of Mo 3d and P 2p of MoP after reaction compared to that before reaction,indicating a stable structure of MoP.However,the content of Moδ+3d3/2decreased from 58.37% to 56.23%,while the content of Mo6+3d3/2enhanced from 36.91% to 37.66%.This redox behavior of different Mo species manifests that Moδ+could react with the oxidant H2O2to generate high valence Mo6+,resulting in the increase of the Mo6+content.Inductively coupled plasma (ICP) spectrometer was used to detect the dissolution of Mo ions and the result shows that about 5.17 mg/L Mo ions can be detected in the effluent,which indicated that Mo ions on the surface of MoP was dissolved in the reaction during redox reaction,reconfirming the generation of high valence Mo6+during the reaction.In addition,Pδ?with rich electron is also an active site,which could react with O2or H2O2to generate?OH and?O2?,followed by the release of oxidation-derived phosphate [19,31].The concentration of phosphate ions were detected before and after the reaction and the results show that phosphate ions were increased from 0.85 mg/L to 21.20 mg/L.Compared to the XPS spectrum of P 2p of MoP before reaction,the content of the peak of P?O bond after reaction decreased from 93.20% to 87.86%,which is consistent with the previous study resulting from the reaction of electrons and H2O2[19,31].Thus,K2Cr2O7has been used as an electrons scavenger to further verify the role of electrons.As shown in Fig.2c,with the addition of K2Cr2O7,the degradation ratio of DCF was severely suppressed,which was only 42%,indicating an important role of electrons.

    Fig.3.Proposed mechanism of DCF degradation in the MoP+H2O2 system.

    According to the above investigation,it could be assumed that MoP with dual active sites Moδ+and Pδ?could effectively activate H2O2.The specific reaction mechanism of MoP+H2O2system is shown as Fig.3.The positive site Moδ+could act as a metal activation sites to react with H2O2,followed by the generation of ROSs(?OH and?O2?) and high valence Mo.Meanwhile,high valence Mo can also react with H2O2to turn back to Moδ+,achieving the redox cycle of Moδ+/Moδ+1.In addition,the negative site Pδ?is another highly reactive site,of which the surrounding electrons would react with H2O2or O2,thereby producing the ROSs (?OH and?O2?)and phosphate.The generated ROSs will attack the pollutant and result in the degradation of DCF in the MoP+H2O2process.

    In order to discuss the degradation pathways of DCF,the degradation products of DCF in MoP+H2O2system were detected by time-of-flight tandem mass spectrometer (TOF-MS).According to the detection results and previous investigation [32–36],three degradation pathways including fourteen degradation products are proposed as Scheme 1.In pathway I,hydroxylation might occur on DCF firstly by?OH attack,followed by undergoing the loss of–Cl,resulting in the generation of products A and B.Products C and D were produced by the dehydroxylation of products A and B,respectively,and further converted to products E and F through decarboxylation.Finally,products G and H were gained with the cleavage of the N–C bond.The initial step of pathway II is the cleavage of the C–N bond of DCF,which would induce the generation of products I and J.Products K and L were yielded from products I and Jviathe loss of–NHOH and–CH2COOH,respectively.Furthermore,the–OH release of product K and the–COOH addition of product L could at last bring out the products G and H,respectively.Additionally,in the pathway III,the DCF lost a–OH group to form product M,which is consistent with former research[32].Then product N was engendered from product Mviaattack of the C–N bond,which could further undergo the loss of–NH2and–OH to product G.The formation small molecule intermediate products G and H would be further mineralized into H2O and CO2.

    Scheme 1.Pathways proposed for DCF degradation by the MoP+H2O2 system.

    In summary,it is the first time to synthesize MoP as H2O2activator for the degradation of DCF pollutant.DCF degradation ratio of almost 100% was achieved within 40 min in the MoP+H2O2process,indicating an excellent activation efficiency of MoP.In addition,MoP+H2O2process could be effectively applied in a wide pH range,different ions solution and different water substrates that could effectively remove organic pollutant,which suggested a practical application potential of MoP.Quenching experiment and ESR test confirmed that?OH and?O2?are present in the MoP+H2O2system,while?OH played a more important role.Through comparing the XPS spectra before and after the reaction,Moδ+and Pδ?were the dual active sites of MoP.The positive site Moδ+could induce the generation of ROSs and the cycle of Moδ+/Moδ+1,while the electron-rich site Pδ?could also promote the formation of ROSs through electron transfer.Finally,the degradation products and pathways of DCF were proposed to further clarify the mechanism of the MoP+H2O2system.In a word,this study provides a promising material MoP with dual active sites,which can provide robust support for the application of wastewater treatment based on its effectively catalytic activity.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China (No.52070047),Guangzhou City Science and Technology Project (Nos.201904010217,202002010007),Guangdong Natural Science Foundation (No.2021A1515011898),Featured Innovation Project of Guangdong Education Department (No.2019KTSCX135),State Key Laboratory of Pollution Control and Resource Reuse Foundation (No.PCRRF19010) and the Scientific Project of Guangzhou University (No.YG2020020).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.07.058.

    精品国产乱码久久久久久小说| 秋霞在线观看毛片| 亚洲久久久国产精品| 黄色视频在线播放观看不卡| 国产精品人妻久久久影院| 深夜精品福利| 国产老妇伦熟女老妇高清| 美女主播在线视频| 亚洲第一av免费看| 天美传媒精品一区二区| 国产一区二区三区综合在线观看| 日本免费在线观看一区| 在线观看国产h片| 精品人妻一区二区三区麻豆| 国产精品无大码| 亚洲精品日本国产第一区| 欧美最新免费一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 久久精品久久精品一区二区三区| 女性生殖器流出的白浆| 777久久人妻少妇嫩草av网站| 成人毛片a级毛片在线播放| 亚洲精品国产av蜜桃| 成人漫画全彩无遮挡| 日韩人妻精品一区2区三区| 激情视频va一区二区三区| 久久精品国产亚洲av高清一级| 国产精品久久久久久精品电影小说| 免费高清在线观看视频在线观看| 久久人人97超碰香蕉20202| 一二三四中文在线观看免费高清| 国产精品国产三级专区第一集| 美女中出高潮动态图| 91精品伊人久久大香线蕉| 成人手机av| 成人午夜精彩视频在线观看| 一区在线观看完整版| 久久精品国产a三级三级三级| 国产白丝娇喘喷水9色精品| 免费大片黄手机在线观看| 亚洲一级一片aⅴ在线观看| 国产成人精品福利久久| 三上悠亚av全集在线观看| 久久久久久久久免费视频了| 这个男人来自地球电影免费观看 | 黄频高清免费视频| 飞空精品影院首页| 人人妻人人添人人爽欧美一区卜| 亚洲第一区二区三区不卡| 亚洲图色成人| 久久久久人妻精品一区果冻| 欧美激情高清一区二区三区 | 国产精品一国产av| 午夜免费观看性视频| 一本大道久久a久久精品| 精品国产乱码久久久久久小说| 久久av网站| 麻豆精品久久久久久蜜桃| 欧美少妇被猛烈插入视频| 91午夜精品亚洲一区二区三区| 国产成人精品在线电影| h视频一区二区三区| 黄网站色视频无遮挡免费观看| 韩国高清视频一区二区三区| 一二三四中文在线观看免费高清| 亚洲精品国产一区二区精华液| 国产精品无大码| 国产精品av久久久久免费| 亚洲精品一区蜜桃| 久久久久人妻精品一区果冻| 一区二区三区精品91| 亚洲人成网站在线观看播放| 国产黄色视频一区二区在线观看| 日本av免费视频播放| 日韩,欧美,国产一区二区三区| 久久久久久久国产电影| 国产1区2区3区精品| 视频区图区小说| 精品国产露脸久久av麻豆| 国产又爽黄色视频| 男男h啪啪无遮挡| 免费在线观看黄色视频的| 美女高潮到喷水免费观看| 激情视频va一区二区三区| 亚洲欧美精品自产自拍| 美女视频免费永久观看网站| 精品少妇久久久久久888优播| 18在线观看网站| 日韩电影二区| 99九九在线精品视频| 久久久久视频综合| 欧美激情极品国产一区二区三区| av在线老鸭窝| 黄色怎么调成土黄色| 婷婷色综合大香蕉| 捣出白浆h1v1| 免费黄色在线免费观看| 青春草亚洲视频在线观看| 18在线观看网站| 看免费成人av毛片| 97人妻天天添夜夜摸| 精品第一国产精品| 在线观看免费日韩欧美大片| 国产精品.久久久| 老熟女久久久| av不卡在线播放| 国产亚洲午夜精品一区二区久久| 亚洲激情五月婷婷啪啪| 黄片小视频在线播放| 亚洲精品国产av蜜桃| 亚洲精品日本国产第一区| 国产精品一区二区在线不卡| 亚洲国产av新网站| 亚洲精品日韩在线中文字幕| 精品少妇一区二区三区视频日本电影 | 国产不卡av网站在线观看| 777久久人妻少妇嫩草av网站| 国产人伦9x9x在线观看 | 国产麻豆69| 亚洲人成77777在线视频| 天天影视国产精品| 亚洲精品第二区| 国产日韩一区二区三区精品不卡| 国产精品 国内视频| 欧美老熟妇乱子伦牲交| 极品少妇高潮喷水抽搐| 亚洲国产色片| 亚洲精品乱久久久久久| 视频在线观看一区二区三区| 人人妻人人爽人人添夜夜欢视频| 18禁动态无遮挡网站| 国产免费一区二区三区四区乱码| 日韩大片免费观看网站| 在线观看免费视频网站a站| 男人爽女人下面视频在线观看| 亚洲av电影在线观看一区二区三区| 亚洲av.av天堂| 男女下面插进去视频免费观看| 欧美97在线视频| 丝袜在线中文字幕| 日日爽夜夜爽网站| 街头女战士在线观看网站| 欧美日本中文国产一区发布| 18禁观看日本| 欧美人与善性xxx| www.自偷自拍.com| 国产亚洲一区二区精品| 久久人人爽av亚洲精品天堂| 在线观看国产h片| 国产片内射在线| 亚洲内射少妇av| 大码成人一级视频| 亚洲一级一片aⅴ在线观看| 日本wwww免费看| 国产国语露脸激情在线看| 91国产中文字幕| 久久99精品国语久久久| 一级,二级,三级黄色视频| 男女边摸边吃奶| 久久久久久久久久人人人人人人| 看十八女毛片水多多多| 免费大片黄手机在线观看| 大香蕉久久网| 伦精品一区二区三区| 天天影视国产精品| 欧美在线黄色| 天天躁狠狠躁夜夜躁狠狠躁| 韩国精品一区二区三区| 亚洲av综合色区一区| 婷婷成人精品国产| 国产精品久久久久久久久免| 国产精品国产三级国产专区5o| 日韩中文字幕欧美一区二区 | 如何舔出高潮| 久久久久久久国产电影| 久久久久久人人人人人| 人妻系列 视频| 久久久精品区二区三区| 亚洲国产欧美日韩在线播放| 七月丁香在线播放| 欧美日韩一区二区视频在线观看视频在线| 狠狠婷婷综合久久久久久88av| 成年美女黄网站色视频大全免费| 国产成人精品久久二区二区91 | 高清不卡的av网站| 欧美另类一区| 久久人人爽av亚洲精品天堂| 91在线精品国自产拍蜜月| 在线观看美女被高潮喷水网站| 少妇猛男粗大的猛烈进出视频| 亚洲国产最新在线播放| 在线观看免费高清a一片| 国精品久久久久久国模美| 国产精品女同一区二区软件| 多毛熟女@视频| 中文字幕最新亚洲高清| 久久久久人妻精品一区果冻| 亚洲av电影在线观看一区二区三区| 熟女少妇亚洲综合色aaa.| 七月丁香在线播放| 日本vs欧美在线观看视频| 国产极品粉嫩免费观看在线| 国产精品偷伦视频观看了| 汤姆久久久久久久影院中文字幕| 欧美亚洲 丝袜 人妻 在线| 免费人妻精品一区二区三区视频| a级毛片在线看网站| 伊人亚洲综合成人网| 亚洲一区二区三区欧美精品| av网站免费在线观看视频| 狠狠婷婷综合久久久久久88av| 国产精品av久久久久免费| 最近最新中文字幕大全免费视频 | 多毛熟女@视频| 久久久国产一区二区| 欧美精品av麻豆av| 男人爽女人下面视频在线观看| 国产亚洲精品第一综合不卡| 欧美97在线视频| 久热这里只有精品99| 久久这里有精品视频免费| 国产日韩欧美亚洲二区| 亚洲国产欧美在线一区| 日韩成人av中文字幕在线观看| 成年女人在线观看亚洲视频| 91aial.com中文字幕在线观看| 欧美日韩一区二区视频在线观看视频在线| 岛国毛片在线播放| 亚洲av电影在线进入| 高清黄色对白视频在线免费看| 国产 一区精品| 久久这里只有精品19| 久久久国产一区二区| 精品少妇久久久久久888优播| 人妻人人澡人人爽人人| 亚洲五月色婷婷综合| 纯流量卡能插随身wifi吗| av线在线观看网站| 欧美在线黄色| 看免费成人av毛片| 亚洲欧美精品自产自拍| 亚洲精品视频女| 人人妻人人澡人人看| 免费不卡的大黄色大毛片视频在线观看| 国产日韩一区二区三区精品不卡| av卡一久久| 免费日韩欧美在线观看| 欧美成人午夜精品| 新久久久久国产一级毛片| 久久久精品免费免费高清| 老汉色av国产亚洲站长工具| 叶爱在线成人免费视频播放| 欧美日韩成人在线一区二区| 亚洲国产av新网站| 男女国产视频网站| 精品卡一卡二卡四卡免费| 99热全是精品| 亚洲美女搞黄在线观看| 亚洲欧美色中文字幕在线| 两个人免费观看高清视频| 日韩,欧美,国产一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 美女大奶头黄色视频| 欧美日韩视频精品一区| 国产麻豆69| 国产男人的电影天堂91| 观看美女的网站| 久久精品国产综合久久久| 韩国高清视频一区二区三区| 自线自在国产av| 久久狼人影院| 欧美+日韩+精品| 人成视频在线观看免费观看| 亚洲美女黄色视频免费看| 久久这里只有精品19| 97在线视频观看| 国产精品久久久久久av不卡| 久久精品夜色国产| 18禁动态无遮挡网站| 丁香六月天网| 赤兔流量卡办理| 色网站视频免费| 日韩av在线免费看完整版不卡| 成人黄色视频免费在线看| 可以免费在线观看a视频的电影网站 | 黄色 视频免费看| 午夜福利视频在线观看免费| 久久av网站| 99精国产麻豆久久婷婷| 亚洲色图 男人天堂 中文字幕| av片东京热男人的天堂| 日韩成人av中文字幕在线观看| 一本大道久久a久久精品| 精品少妇一区二区三区视频日本电影 | 波野结衣二区三区在线| 午夜日本视频在线| 中国三级夫妇交换| 免费观看无遮挡的男女| 97人妻天天添夜夜摸| 久久精品国产亚洲av天美| 欧美黄色片欧美黄色片| 男的添女的下面高潮视频| 中文欧美无线码| 少妇人妻 视频| 日本av免费视频播放| 一边亲一边摸免费视频| 王馨瑶露胸无遮挡在线观看| a级毛片黄视频| 一二三四在线观看免费中文在| 美女视频免费永久观看网站| 久久久久久久国产电影| 亚洲精华国产精华液的使用体验| 久久人妻熟女aⅴ| 免费在线观看黄色视频的| 国产亚洲最大av| 女性被躁到高潮视频| 日日啪夜夜爽| 亚洲精品美女久久av网站| 亚洲激情五月婷婷啪啪| 最近最新中文字幕免费大全7| 热99国产精品久久久久久7| 在线观看人妻少妇| 国产一区二区激情短视频 | 亚洲男人天堂网一区| 狠狠婷婷综合久久久久久88av| 日韩不卡一区二区三区视频在线| 国产人伦9x9x在线观看 | 日韩,欧美,国产一区二区三区| 伊人亚洲综合成人网| 中文字幕色久视频| 丰满少妇做爰视频| 欧美成人精品欧美一级黄| 精品人妻在线不人妻| 天堂中文最新版在线下载| 久久这里只有精品19| 啦啦啦中文免费视频观看日本| 最近的中文字幕免费完整| av在线老鸭窝| 国产av精品麻豆| 国产精品秋霞免费鲁丝片| 色视频在线一区二区三区| 少妇 在线观看| 成年女人在线观看亚洲视频| 黑丝袜美女国产一区| 在线观看免费日韩欧美大片| 国产男人的电影天堂91| 黄色毛片三级朝国网站| 美女视频免费永久观看网站| 秋霞伦理黄片| 午夜福利网站1000一区二区三区| 亚洲美女视频黄频| 免费观看性生交大片5| 性色av一级| 国产精品不卡视频一区二区| 1024视频免费在线观看| 2018国产大陆天天弄谢| 男人爽女人下面视频在线观看| 涩涩av久久男人的天堂| 国产探花极品一区二区| 亚洲精品久久久久久婷婷小说| 日韩中文字幕视频在线看片| 欧美日韩国产mv在线观看视频| 午夜精品国产一区二区电影| 不卡视频在线观看欧美| 黄片无遮挡物在线观看| 亚洲精品国产色婷婷电影| 国产精品免费视频内射| 精品一区二区三卡| 精品国产露脸久久av麻豆| 国产精品成人在线| 欧美国产精品一级二级三级| 最近手机中文字幕大全| 亚洲欧美精品综合一区二区三区 | 91精品伊人久久大香线蕉| 热re99久久国产66热| 91精品伊人久久大香线蕉| 春色校园在线视频观看| 99久久精品国产国产毛片| 超碰成人久久| 我要看黄色一级片免费的| 夜夜骑夜夜射夜夜干| 国产精品嫩草影院av在线观看| 欧美日韩精品网址| 国产日韩欧美视频二区| 欧美 日韩 精品 国产| 伊人久久国产一区二区| 国产野战对白在线观看| 国产免费又黄又爽又色| kizo精华| 国产精品.久久久| 久久99一区二区三区| 亚洲av国产av综合av卡| 观看av在线不卡| 18禁裸乳无遮挡动漫免费视频| 多毛熟女@视频| 欧美 亚洲 国产 日韩一| 十八禁高潮呻吟视频| 中文字幕另类日韩欧美亚洲嫩草| 成人国语在线视频| 老司机影院成人| 午夜免费观看性视频| 母亲3免费完整高清在线观看 | 一区二区三区乱码不卡18| tube8黄色片| 亚洲第一区二区三区不卡| 少妇的丰满在线观看| 久久国内精品自在自线图片| 天天影视国产精品| 天天躁夜夜躁狠狠久久av| 久久久精品94久久精品| 亚洲欧美日韩另类电影网站| 国产精品不卡视频一区二区| 两性夫妻黄色片| 一区二区三区四区激情视频| 久久久久久久国产电影| 亚洲av电影在线进入| 99热网站在线观看| 99久久精品国产国产毛片| 久久婷婷青草| 免费高清在线观看视频在线观看| 综合色丁香网| 熟妇人妻不卡中文字幕| 色网站视频免费| 在线观看三级黄色| 最近的中文字幕免费完整| 国产精品二区激情视频| 人人妻人人澡人人看| 又黄又粗又硬又大视频| 日本欧美视频一区| 亚洲av国产av综合av卡| 91精品伊人久久大香线蕉| 日日啪夜夜爽| 满18在线观看网站| 国产激情久久老熟女| 亚洲三区欧美一区| 日本黄色日本黄色录像| 久久精品国产自在天天线| 9191精品国产免费久久| 国产野战对白在线观看| 人体艺术视频欧美日本| 精品一区在线观看国产| 麻豆乱淫一区二区| 免费大片黄手机在线观看| 日韩中字成人| 久久午夜福利片| 丁香六月天网| 国产男女超爽视频在线观看| 亚洲欧美成人综合另类久久久| 久久久国产欧美日韩av| 男女午夜视频在线观看| 免费高清在线观看日韩| 精品久久蜜臀av无| 久久久久精品性色| 精品一区二区三卡| 精品国产露脸久久av麻豆| 亚洲色图 男人天堂 中文字幕| 26uuu在线亚洲综合色| www.精华液| 国产在视频线精品| 最近的中文字幕免费完整| 久久久a久久爽久久v久久| 人妻一区二区av| 午夜福利网站1000一区二区三区| 国产精品秋霞免费鲁丝片| 天堂8中文在线网| 亚洲国产精品成人久久小说| 欧美日韩亚洲高清精品| 免费在线观看完整版高清| 成年美女黄网站色视频大全免费| 制服诱惑二区| 黄片播放在线免费| 久久久久精品性色| 国产野战对白在线观看| 国产精品.久久久| 日韩精品有码人妻一区| 人妻少妇偷人精品九色| 在线天堂中文资源库| 欧美精品国产亚洲| 久久久久久久大尺度免费视频| av.在线天堂| 最近中文字幕高清免费大全6| 国产深夜福利视频在线观看| 美女脱内裤让男人舔精品视频| √禁漫天堂资源中文www| 欧美成人午夜免费资源| 寂寞人妻少妇视频99o| 欧美少妇被猛烈插入视频| 韩国精品一区二区三区| 91午夜精品亚洲一区二区三区| 看免费av毛片| 日韩制服丝袜自拍偷拍| 亚洲第一区二区三区不卡| 美女xxoo啪啪120秒动态图| 欧美成人午夜免费资源| 成人毛片a级毛片在线播放| 91在线精品国自产拍蜜月| 十八禁高潮呻吟视频| 亚洲精品aⅴ在线观看| 欧美国产精品一级二级三级| 亚洲国产精品成人久久小说| 国产xxxxx性猛交| 男女下面插进去视频免费观看| 日韩中字成人| 欧美激情高清一区二区三区 | 在线天堂中文资源库| 男人添女人高潮全过程视频| 欧美成人午夜免费资源| 欧美av亚洲av综合av国产av | 女性被躁到高潮视频| 免费大片黄手机在线观看| 亚洲伊人久久精品综合| 欧美 亚洲 国产 日韩一| 国产精品香港三级国产av潘金莲 | 国产男女超爽视频在线观看| 亚洲av男天堂| 欧美精品亚洲一区二区| 99国产精品免费福利视频| 制服诱惑二区| 高清欧美精品videossex| 久久亚洲国产成人精品v| 少妇被粗大猛烈的视频| 高清欧美精品videossex| 少妇被粗大的猛进出69影院| 少妇人妻 视频| 欧美精品亚洲一区二区| 亚洲在久久综合| 男女边吃奶边做爰视频| 久久精品国产鲁丝片午夜精品| 久久精品亚洲av国产电影网| 五月天丁香电影| 国产一区二区激情短视频 | 搡女人真爽免费视频火全软件| 9热在线视频观看99| 国产白丝娇喘喷水9色精品| 男女高潮啪啪啪动态图| av在线app专区| 日韩伦理黄色片| 建设人人有责人人尽责人人享有的| 国产男女超爽视频在线观看| 在线观看美女被高潮喷水网站| 成人午夜精彩视频在线观看| 少妇人妻久久综合中文| 少妇熟女欧美另类| 成人毛片60女人毛片免费| 一级毛片我不卡| 亚洲国产日韩一区二区| 制服人妻中文乱码| h视频一区二区三区| 久久久久久伊人网av| 中文字幕亚洲精品专区| 91国产中文字幕| 曰老女人黄片| 九草在线视频观看| 久久久久久久久免费视频了| 美女中出高潮动态图| 午夜久久久在线观看| 在线观看一区二区三区激情| 亚洲av.av天堂| av线在线观看网站| 久久精品久久久久久噜噜老黄| 激情视频va一区二区三区| 人成视频在线观看免费观看| 看免费av毛片| 国产成人一区二区在线| 国产视频首页在线观看| 天天影视国产精品| 国产一区二区在线观看av| 18禁动态无遮挡网站| 一区二区三区精品91| 少妇人妻精品综合一区二区| 国产女主播在线喷水免费视频网站| 精品国产国语对白av| 性高湖久久久久久久久免费观看| 国产综合精华液| 熟女av电影| 国产高清国产精品国产三级| 少妇的逼水好多| 色哟哟·www| 久久国产精品男人的天堂亚洲| 九九爱精品视频在线观看| 一区二区三区精品91| 在线免费观看不下载黄p国产| 日本免费在线观看一区| 精品国产国语对白av| 欧美激情极品国产一区二区三区| 亚洲av电影在线观看一区二区三区| 80岁老熟妇乱子伦牲交| 有码 亚洲区| 欧美97在线视频| 2018国产大陆天天弄谢| 日本欧美视频一区| 国产激情久久老熟女| 日韩欧美一区视频在线观看| 欧美精品国产亚洲| 美女午夜性视频免费| 大片电影免费在线观看免费| 高清在线视频一区二区三区| 精品久久久久久电影网| 久久精品国产a三级三级三级| 一区二区av电影网| 国产爽快片一区二区三区| 久久久久精品久久久久真实原创| 亚洲精品国产av蜜桃| 国产极品粉嫩免费观看在线| 国产成人欧美| 哪个播放器可以免费观看大片| 久久精品久久久久久久性| 欧美日韩视频精品一区| 黄色 视频免费看| 久久久久精品久久久久真实原创| 老熟女久久久| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av在线观看美女高潮| 久久久久久伊人网av| 国产亚洲av片在线观看秒播厂|