• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Constructing a novel Ag nanowire@CeVO4 heterostructure photocatalyst for promoting charge separation and sunlight driven photodegradation of organic pollutants

    2022-06-18 10:52:48YnSongRnWngXiuyunLiBiqiShoHongpengYouChozhengHe
    Chinese Chemical Letters 2022年3期

    Yn Song,Rn Wng,Xiuyun Li,Biqi Sho,Hongpeng You,Chozheng He,?

    a Institute of Environmental and Energy Catalysis,School of Materials Science and Chemical Engineering,Xi’an Technological University,Xi’an 710021,China

    b State Key Laboratory of Rare Earth Resource Utilization,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,China

    c University of Science and Technology of China,Hefei 230026,China

    Keywords:Cerium vanadate Photocatalyst Heterojunction Degradation mechanism First-principles

    ABSTRACT Exploiting efficient and recyclable photocatalysts is a vital matter for environmental purification.Herein,cerium vanadate (CeVO4) sub-microspheres and silver nanowire (AgNW)@CeVO4 with core-shell architecture as photocatalysts are rationally constructed by hydrothermal approach.The AgNW@CeVO4 photocatalyst obtained by depositing CeVO4 on the surface of Ag NWs possess one dimensional continuous structure,which expand the optical absorption range and reduce the band gap of CeVO4 photocatalyst.Moreover,the resultant AgNW@CeVO4 photocatalyst demonstrates superior photocatalytic performance in the degradation of rhodamine B,methylene blue,and 4-nitrophenol pollutants upon solar light irradiation,compared with pure CeVO4.The excellent photocatalytic activity can be ascribed to the introduction of Ag NWs,which afford rapid charge transport channels and reservoir for the electrons in the AgNW@CeVO4 heterostructure to promote separation of electron–hole pairs.The first-principles investigations reveal increase of adsorption energy of oxygen molecules on the CeVO4 surface with the presence of Ag.Meanwhile,Ag NWs can further improve the photocatalytic efficiency of the AgNW@CeVO4 based on the plasmonic effect.More importantly,the good structural stability and recyclability of AgNW@CeVO4 are observed due to the strong synergistic effect,which ensures long-term usability of photocatalyst and great promise in water purification.This work can offer valuable reference into designs and construction of Ce-based heterojunction photocatalysts for environmental remediation.

    Demand for catalyst progressive increase year by year,in order to mitigate global energy shortage crisis and environmental deterioration problems.As a significant category,photocatalyst exhibit fascinating superiority and potency in the field of energy and environment,which can be used to accomplish water splitting to produce hydrogen and oxygen,carbon dioxide reducing,and organic pollutants degrading [1–5].In allusion to photodegradation of organic dyes,abundant semiconductor based photocatalysis have been exploited and investigated [6–8].However,the narrow light absorption band will impede the holistic photocatalytic efficiency,which stimulates researchers to exploit novel photocatalyst and innovate picturesque configuration.Among the numerous classes of emerging photocatalysts,rare earth compounds with 4f configurations have revealed remarkable luminescent properties and improved photocatalytic activity due to the strong interaction with organic compounds [9–12].Remarkably,cerium vanadate(CeVO4) has been developed as a newfangled photocatalyst based on cerium with plentiful energy level and the VO43?activated centers with valid light absorption in the crystalline structure [13–17].

    In previous studies,the photocatalysts with nanoscale emerge superior catalytic efficiency by virtue of exposure of abundant active sites and sufficient contact area with the organic pollutants [18–20].Nevertheless,collection of the nanoparticles for recycling is intrinsic imperfection,which severely restrict practical applications of the photocatalysts for water decontamination.Therefore,the exploitation of individual photocatalysts with nanocrystal assembled and hollow configuration is extremely significative [21,22].Despite exposure of abundant active sites,the mono-component semiconductor materials with hollow configuration have intrinsic restrict in practical application on account of the rapid recombination of photogenerated electrons and holes.In an effort to overcome these issues,the semiconductor is incorporated with noble metals,which is a meaningful and efficient strategy [23–25].The noble metals as electron sinks will effectively improve the integral photocatalytic performance through transferring the photogenerated electrons and efficiently reducing the recombination of the photogenerated electron–hole pairs [26–28].

    Fig.1.Conceptual scheme of synthesis route for (I) CeVO4 hollow spheres and (II)AgNW@CeVO4.

    It is interesting to note that noble metals with one dimensional nanostructure reveal effortless electrons transference,which will play an important role in the heterostructure photocatalysts for improving photocatalytic activity [29–31].Under optical radiation,the noble metals provide rapid electronic channels and reservoirs for accelerating the transfer of photo-generated electrons.As an excellent electron mediator,Ag with nanostructure is successfully used for impeding rapid recombination of electron and the hole and elevating photocatalytic disinfection activity of individual photocatalyst [32–34].Therefore,exploiting original photocatalyst and designing particular morphology of heterostructures have always been of great interest and critical importance on behalf of investigation and optimization their catalytic activity [35–38].

    In this work,we demonstrate a facile and scalable strategy to prepare CeVO4photocatalyst with hollow submicrospheres.In addition,the combination of Ag nanowires (AgNWs) and CeVO4is rationally designed to construct core shell architecture,which is expected to show advantages over the single component of catalyst.Benefiting from the electron transfer and boosted optical absorption in the presence of the AgNWs,the resultant AgNW@ CeVO4reveals prominent photocatalytic activity towards contaminants of rhodamine B (RhB),methylene blue (MB) and 4-nitrophenol(4-NP).Under full spectrum light irradiation.Significantly,the good structural stability and recyclability of AgNW@CeVO4are observed,which ensure long-term usability of photocatalyst and great promise in water purification.

    The fabrication strategies of the CeVO4hollow spheres and AgNW@CeVO4nanowires are schematically depicted in Fig.1.This strategy as for the synthesis of CeVO4hollow spheres involves in the construction of highly uniform spherical CeOHCO3precursor and transformation of CeVO4hollow spheres through ions exchange process based on Kirkendall diffusion mechanism.Firstly,introduction of PVP as surfactant provides new interfaces action,which plays a crucial role in controlling of size and shape and favors the formation of highly uniform spherical CeOHCO3precursor during the hydrothermal process.For such strategies without PVP the crystalline octahedron emerged in the initial reaction stage (Fig.S1 in Supporting information),as a result,the hollow structure and coating layer are strictly limited in generalization.Subsequently,the hollow construction of CeVO4can be accomplished due to the difference of diffusion effect for cationic and anionic species during chemical transformation.Based on the above conceptual innovation,the uniform CeOHCO3precursors are deposited on the surface of a robust AgNWs substrate to form AgNW@CeOHCO3,and then AgNW@CeVO4were successfully synthesized by way of ion exchange process.

    The X-ray diffraction (XRD) patterns of CeOHCO3precursors and CeVO4hollow spheres obtained in the presence of PVP are revealed in Fig.S2a (Supporting information).It can be seen that no obvious diffraction peaks are observed in the XRD pattern of CeOHCO3,signifying the sample exhibits an amorphous character.In the XRD pattern of CeVO4hollow spheres,the typical diffraction peaks can be readily indexed with the tetragonal structured CeVO4(JCPDS card No.84-1457),which manifests that the single phase CeVO4is synthesized.Subsequently,the morphology and microstructure of the products in different stages were indagated by Field-emission scanning electron microscope (FE-SEM)and transmission electron microscope (TEM) analyses.Fig.S2b(Supporting information) exhibits that the CeOHCO3precursors possess a monodisperse characteristic and highly homogeneous spherical morphology with a diameter of approximate 200 nm and a relatively smooth surface.After undergoing ion exchange process,the spherical morphology of samples (with an average diameter of 200 nm) is maintained.Nevertheless,high-magnification FE-SEM image (the inset in Fig.S2c in Supporting information) reveals that the as-prepared CeVO4presents a hollow feature and a rough surface texture,which is composed of small nanoparticles with an average diameter of 25 nm.To further confirm the hollow structure of CeVO4,TEM analyses are performed,as shown in Fig.S2d(Supporting information).It can be seen clearly that the samples present hollow and porous architecture,which will be conducive to improve the degradation property of samples for organic contaminants by virtue of sufficient contact between catalysts and contaminants.Additionally,from the high-resolution TEM image of CeVO4hollow spheres (Fig.S2e in Supporting information),clear lattice fringes are observed and the average lattice space of 0.369 nm is obtained,corresponding to the (202) planes of tetragonal structured CeVO4.The distinct dot array (Fig.S2f in Supporting information) in the fast Fourier transfer (FFT) diffraction pattern collected from the high?resolution TEM image presents the single crystallinity for CeVO4.These results confirm

    In the cases of AgNW@CeVO4,the XRD pattern (Fig.2a) exhibits that the main diffraction peaks can be assigned to the tetragonal structured CeVO4(JCPDS card No.84-1457) and the extra peaks located at 38.2°,44.4° and 64.6° match well with correspond to (111),(200) and (220) of Ag (JCPDS card No.87-0720),respectively,confirming the coexistence of Ag and CeVO4.FE-SEM and TEM analyses are applied to verify the morphology and microstructures of AgNWs and AgNW@CeVO4samples.Fig.2b reveals the microstructure of the AgNWs,which presents homogeneous one-dimensional nanowires structure with an average diameter of around 90 nm and smooth surface [39].By contrast,the AgNW@CeVO4samples maintain the one-dimensional structure and exhibit a binary hierarchical architecture,including the Ag-NWs core layer and in situ grown CeVO4shell layer with a rough surface,as shown in Fig.2c.Additionally,the low-magnification TEM image (Fig.2d) of single AgNW@CeVO4confirms the ore-shell structure with an obvious shell thickness of approximately 40 nm and the corresponding high-magnification TEM image displays legible crystalline phase with a d-spacing of 0.369 nm,which is assigned to the (202) interplane spacing of CeVO4.The EDS elemental mapping analysis is employed to examine the element distribution information of samples,as revealed in Figs.2e–h.It is clear that Ag element is uniformly distributed in the core region,while homogenous Ce and V elements are distributed in the shell region,further confirming the formation of AgNW@CeVO4with core-shell structure.

    Fig.2.(a) XRD patterns of AgNW@CeOHCO3 and AgNW@CeVO4,SEM images of (b)AgNWs and (c) AgNW@CeVO4 samples,(d) TEM images of the AgNW@CeVO4,(e–h)STEM image and the corresponding EDS elemental mapping of the AgNW@CeVO4 pure phase and high crystallinity of the resulting CeVO4 hollow spheres.

    The bandgaps of semiconductor photocatalysts possess crucial effect for their catalytic performance and result in the absorption range of light during the photocatalytic process.The UV–vis-NIR absorption spectra are employed to survey investigate the optical absorption range and determine the bandgaps of the CeVO4and AgNW@CeVO4samples.The absorption curves of as-prepared samples are presented in Fig.S3a (Supporting information).It is noted that the optical absorption range is broadened after introducing AgNWs to CeVO4photocatalyst,which will lead to shrink the bandgap of AgNW@CeVO4sample and aggrandize the utilization efficiency of visible light.The bandgaps of the CeVO4and AgNW@CeVO4samples are calculated based on the following equation (Kubelka?Munk formula) [40,41]:

    whereαdenotes absorption coefficient,νcorresponds to light frequency,his Planck constant,and Eg represents the bandgap of sample.Fig.S3b,c (Supporting information) show the curves of(αhν)2versus hν,deriving from the corresponding absorption spectra.The bandgaps of the CeVO4and AgNW@CeVO4are determined to be 2.76 and 2.12 eV,respectively.The diminution of bandgaps for AgNW@CeVO4indicates that the incorporation of CeVO4with AgNWs is beneficial to aggrandize the utilization efficiency of visible light and improve the photocatalytic activity.

    In order to evaluate the separation efficiency of photogenerated charge carriers in the as-prepared photocatalysts,the photocurrent variations are monitored according toI–tcurve tests with several on-off cycles of full spectrum light irradiation.Fig.S4a (Supporting information) reveals the photocurrent density of CeVO4and AgNW@CeVO4photocatalysts under intermittent light illumination.Obviously,both of the photocatalysts exhibit fast and reproducible light response,and AgNW@CeVO4photocatalyst possesses clearly stronger photocurrent intensity than pure CeVO4,which indirectly reflects that the introduction of AgNWs promotes the generation of charge carriers and separation efficiency of the photogenerated electron–hole pairs [42,43].Such a highly sensitive photocurrent response and separation efficiency of carriers will make AgNW@CeVO4photocatalyst to achieve more excellent photocatalytic activity.As can be seen from the PL spectra (Fig.S4b in Supporting information),high PL intensity of CeVO4suggests fast recombination of photogenerated electron-hole pairs [44].Interestingly,the PL spectrum of AgNW@CeVO4reveals weaker emission intensity.The results further confirm that the introduction of Ag-NWs is conducive to separation and transfer of electron-hole pairs.

    The catalytic activity of the as-prepared CeVO4and AgNW@CeVO4photocatalysts was evaluatedviaphotodegradation of RhB under simulated sunlight irradiation.Fig.3a reveals the degradation efficiency of photocatalysts for RhB at different irradiation time.The direct photolysis behavior of RhB as a blank experiment is compared.Before photodegradation,the photocatalysts are dispersed in RhB solution for accomplishing an adsorption-desorption equilibrium under a dark condition for 60 min.It can be seen that the CeVO4and AgNW@CeVO4photocatalysts exhibit a slight adsorption effect,which suggests the photolysis of RhB is chiefly attributed to catalytic function of photocatalysts.For the CeVO4,the degradation of RhB gradually increases with the prolongation of irradiation time,and 64% of RhB is degraded within 120 min under simulated sunlight illumination.Accompany with the introduction of AgNWs,the obtained AgNW@CeVO4sample reveals a considerably higher photocatalytic activity.As can be noticed,the photodegradation rate of RhB reaches up to 94% within 120 min of full spectrum light irradiation.Furthermore,based on the Langmuir Hinshelwood (L-H)kinetic model,the photocatalysis degradation results conform topseudo-first-order photocatalysis kinetics,and the corresponding reaction rate constants (k) of the different photocatalysts are calculated from the following equation [45,46]:

    whereC0corresponds to the initial concentration of RhB solution,Cis the concentration of RhB solution attmin,and thetrepresents the irradiation time.Significantly,as presented in Fig.3b,AgNW@CeVO4photocatalyst possesses higherkvalue(0.02216 min?1) than CeVO4hollow sphere,which demonstrates AgNWs contribute to optimizing photocatalytic activity of CeVO4for RhB.The phenomenon can be explained that the AgNWs with excellent electronic transmission capability are beneficial to transfer the photogenerated electrons,inducing reducing the combination of electron–hole pairs.

    The stability and recyclability of AgNW@CeVO4photocatalyst are also crucial parameters for cyclic utilization in practical applications.In order to evaluate the recycling performance of AgNW@CeVO4,the cycling tests of photodegrading RhB are performed under full spectrum light irradiation,as shown in Fig.S6(Supporting information).The photodegradation efficiency of photocatalysts for RhB nearly constant during five sequential cycles,manifesting AgNW@CeVO4presents great recycling stability during the photocatalytic reactions.In addition,we also evaluated the photodegradation property under solar irradiation by using MB and 4-NP as contaminants.Obviously,AgNW@CeVO4exhibited the high catalytic activity for degradation of MB and 4-NP due to the fact that the AgNW@CeVO4can provide active sites for adsorption and catalytic reduction of contaminants.Fig.S7 (Supporting information) presents the XRD pattern and SEM images of AgNW@CeVO4photocatalysts after photodegradation cycling tests,which reveal that the photocatalyst maintains the original crystal structure and morphology features.The results further determine a good stability of AgNW@CeVO4photocatalyst.

    Fig.3.(a) Photocatalytic degradation of RhB under full spectrum light irradiation as a function of the irradiation time without catalyst,and over the as-prepared CeVO4 and AgNW@CeVO4 samples.(b) Corresponding plots of ln(C0/C) against irradiation time for the photocatalytic degradation of RhB under full spectrum light over different catalysts.(c) Photodegradation of MB and 4-NP under full spectrum light irradiation over the as-prepared AgNW@CeVO4 catalysts.(d) Schematic diagram of possible photocatalytic mechanism for AgNW@CeVO4 heterogeneous system.

    Fig.4.Optimized O2 adsorption structure on (a) CeVO4 and (b) Ag-CeVO4.

    To investigate surface catalysis of AgNW@CeVO4photocatalyst,the adsorption of the O2molecules on the surfaces of CeVO4(110)are studied on the basis of density functional theory (DFT).Fig.S8 (Supporting information) shows optimized structure of pristine CeVO4and Ag-CeVO4.Based on the optimized structures of CeVO4and Ag-CeVO4,the effect of introducing Ag on O2adsorption and separation of electron and hole is further explored.Adsorption modes and adsorption energy of O2on the CeVO4and Ag-CeVO4surfaces are presented in Fig.4.The adsorption energy for of O2on the CeVO4and Ag-CeVO4are ?0.53 and ?0.66 eV,respectively.It is obvious that an adsorption energy gain of ?0.13 eV can be obtained when the presence of Ag.The increase of adsorption energy insinuates that the presence of Ag is beneficial to the reduction of oxygen molecules on the surface of AgNW@CeVO4.It can be speculated that the photocatalytic activity of CeVO4is promoted by introducing Ag.

    The Muliken charge analysis was achieved based on the charge changes of Ag atom before and after adsorption on CeVO4.The results show that the positive charge of Ag atom (0.485 e) is mainly contributed by the surrounding O atoms and the O atoms around the V atoms located directly under the Ag atom.Through the charge differential density diagram after O2adsorption as shown in Fig.S9 (Supporting information),we can see that the charge depletion region and the charge accumulation region mainly distribute in the O2molecular and V atom region,respectively.However,Muliken charge analysis shows that the positive charge of the V atom did not change significantly,and the negative charge of the surrounding O atoms is reduced.Therefore,we believe that electrons are mainly transferred from O atoms around V to O2molecules through V atoms after the adsorption of O2molecules [47,48].

    Subsequently,a possible photocatalytic mechanism of AgNW@CeVO4for the degradation of pollutants is expounded,as illustrated in Fig.3d.Initially,the RhB and MB dye molecules are excited and corresponding electrons migrate to photocatalysts,resulting in forming the reactive excited-state RhB+and MB+under simulated sunlight radiation [49].For 4-NP adsorbed on the surface of AgNW@CeVO4,the nitro group can be transformed into nitrophenolate ions and further reduced to amino group due to the electrons displacement and active hydrogen species derived from borohydride [50,51].Simultaneously,the electrons are excited from valence band (VB) the conduction band (CB) of Ag@CeVO4photocatalysts with the increase of absorbing photon energies,and then transfer to the Ag and V atoms on the interface between CeVO4and AgNWs for contributing to the degradation [52,53].The photoexcited electrons can reduce the dissolved oxygen molecules to produce the superoxide radicals O2??,and the holes react with H2O molecules to form hydroxyl radicals (?OH) [54–56].The associated superoxide radicals (O2??),hydroxyl radicals (?OH),and holes (h+) can efficiently degrade contaminants into nontoxic compounds.

    In summary,we develop a convenient strategy to fabricate CeVO4based photocatalyst with hollow submicrospheres,and combine AgNWs and CeVO4to rationally construct AgNW@CeVO4photocatalyst with core shell architecture.The introduction of Ag NWs not only endow the photocatalyst with one dimensional continuous structure,but also expand the optical absorption range of CeVO4photocatalyst.Moreover,AgNWs afford rapid charge transport channels and reservoir for the electrons in the AgNW@CeVO4heterostructure,which promote the separation efficiency of photogenerated electrons and holes.The theory analysis further validates that introducing Ag can strengthen O2adsorption on CeVO4surface,which facilitates the separation of electron and hole and the advance of photocatalytic activity of CeVO4.Benefiting from the electron transfer and boosted optical absorption in the presence of the AgNWs,the resultant AgNW@CeVO4reveals prominent photocatalytic activity towards the decomposition of organic pollutants under simulated sunlight irradiation.Thereinto,AgNWs can further improve the photocatalytic efficiency of the AgNW@CeVO4based on the plasmonic effect under solar light irradiation.Significantly,the good structural stability and recyclability of AgNW@CeVO4are observed due to the strong synergistic effect,which ensure longterm usability of photocatalyst and great promise in water purification.From these findings,this is a valuable reference in designing Ce based compounds with improved photochemical abilities.From these findings,this study is a valuable reference into developing efficient Ce-based recyclable photocatalysts with excellent photochemical abilities for application in environmental purification.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This study is financially supported by the National Natural Science Foundation of China (Nos.21701166,51472236,21603109),the National Basic Research Program of China (973 Program,No.2014CB643803),the Fund for Creative Research Groups (No.21521092),and Key Program of the Frontier Science of the Chinese Academy of Sciences (No.YZDY-SSW-JSC018),the Henan Joint Fund of the National Natural Science Foundation of China (No.U1404216).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.07.060.

    中文欧美无线码| 精品一区二区三区人妻视频| 乱码一卡2卡4卡精品| а√天堂www在线а√下载| 神马国产精品三级电影在线观看| 成人午夜精彩视频在线观看| 国产精品嫩草影院av在线观看| 日韩国内少妇激情av| 久久综合国产亚洲精品| 欧美日本亚洲视频在线播放| 日韩在线高清观看一区二区三区| 最近手机中文字幕大全| 亚洲国产精品sss在线观看| 国产av麻豆久久久久久久| 午夜福利视频1000在线观看| 色吧在线观看| 白带黄色成豆腐渣| 少妇人妻精品综合一区二区 | 国产一区二区在线观看日韩| 中文字幕av在线有码专区| 热99re8久久精品国产| 久久精品国产亚洲av香蕉五月| 亚洲欧美中文字幕日韩二区| 九九爱精品视频在线观看| 亚洲精品久久国产高清桃花| 搡老妇女老女人老熟妇| 天天躁夜夜躁狠狠久久av| 国产精品1区2区在线观看.| 国产乱人偷精品视频| 一本一本综合久久| 黄色视频,在线免费观看| 国产成人91sexporn| 此物有八面人人有两片| 国产精品国产高清国产av| 又黄又爽又刺激的免费视频.| 亚洲av免费高清在线观看| 亚洲精品国产成人久久av| 精品久久久久久久久亚洲| 国产极品精品免费视频能看的| 18+在线观看网站| 亚洲美女搞黄在线观看| 国产人妻一区二区三区在| 日日摸夜夜添夜夜爱| 丰满人妻一区二区三区视频av| 欧美变态另类bdsm刘玥| 99久国产av精品| 日本av手机在线免费观看| 中文字幕av成人在线电影| 亚洲欧美精品综合久久99| 一本一本综合久久| 欧美在线一区亚洲| 99久久精品热视频| 日日啪夜夜撸| 亚洲国产高清在线一区二区三| 日韩在线高清观看一区二区三区| 国产乱人偷精品视频| 春色校园在线视频观看| 中文字幕熟女人妻在线| 色吧在线观看| 少妇人妻一区二区三区视频| 亚洲成人av在线免费| 在线国产一区二区在线| 国产又黄又爽又无遮挡在线| 免费看av在线观看网站| 禁无遮挡网站| 综合色av麻豆| 爱豆传媒免费全集在线观看| 波多野结衣高清无吗| 人妻夜夜爽99麻豆av| 婷婷亚洲欧美| 看黄色毛片网站| 国产色爽女视频免费观看| 特大巨黑吊av在线直播| 国产亚洲精品久久久com| 97在线视频观看| 久久精品国产清高在天天线| 日本色播在线视频| 精品一区二区三区人妻视频| 内射极品少妇av片p| 级片在线观看| 干丝袜人妻中文字幕| 99riav亚洲国产免费| 久久久精品94久久精品| 久久精品国产亚洲av香蕉五月| 亚洲激情五月婷婷啪啪| 国产精品1区2区在线观看.| 日韩一区二区视频免费看| 国内久久婷婷六月综合欲色啪| 久久久久性生活片| 91久久精品国产一区二区成人| 我的女老师完整版在线观看| 国产午夜精品久久久久久一区二区三区| 高清午夜精品一区二区三区 | 国产精品一及| 日产精品乱码卡一卡2卡三| 亚洲成人av在线免费| 亚洲在久久综合| av在线老鸭窝| 午夜福利成人在线免费观看| 成人午夜精彩视频在线观看| 国产亚洲av片在线观看秒播厂 | 日韩 亚洲 欧美在线| 成人漫画全彩无遮挡| 久久久成人免费电影| 国产女主播在线喷水免费视频网站 | 久久久a久久爽久久v久久| 高清毛片免费观看视频网站| 99在线人妻在线中文字幕| avwww免费| 亚洲中文字幕一区二区三区有码在线看| 欧美一级a爱片免费观看看| 啦啦啦观看免费观看视频高清| 亚洲欧美日韩高清专用| 欧美性猛交╳xxx乱大交人| 久久久久久久久大av| 久久久午夜欧美精品| 国产一级毛片七仙女欲春2| 免费看日本二区| 岛国在线免费视频观看| 精品午夜福利在线看| 午夜福利在线在线| 人人妻人人澡人人爽人人夜夜 | 亚洲无线观看免费| 精品人妻一区二区三区麻豆| 国产精品美女特级片免费视频播放器| 国产精品日韩av在线免费观看| 色噜噜av男人的天堂激情| 日日啪夜夜撸| 亚洲欧美精品自产自拍| 少妇高潮的动态图| 国产色婷婷99| 男女那种视频在线观看| 欧美另类亚洲清纯唯美| 最近2019中文字幕mv第一页| 亚洲精品国产av成人精品| 久久6这里有精品| 亚洲国产欧美在线一区| 亚洲欧洲国产日韩| 精品人妻偷拍中文字幕| 高清午夜精品一区二区三区 | 婷婷六月久久综合丁香| 91av网一区二区| 只有这里有精品99| 神马国产精品三级电影在线观看| 成年女人看的毛片在线观看| 日韩一区二区视频免费看| 成熟少妇高潮喷水视频| 乱系列少妇在线播放| 一区二区三区免费毛片| 在线观看美女被高潮喷水网站| 看非洲黑人一级黄片| 久久人人精品亚洲av| 一进一出抽搐gif免费好疼| 亚洲经典国产精华液单| 欧美人与善性xxx| 国产日韩欧美在线精品| 校园春色视频在线观看| 麻豆国产av国片精品| 在线观看午夜福利视频| 亚洲高清免费不卡视频| 欧美激情在线99| 亚洲无线在线观看| 亚洲欧美成人综合另类久久久 | 一区二区三区高清视频在线| 亚洲成人av在线免费| 国产精品国产高清国产av| 久久久久免费精品人妻一区二区| 99热精品在线国产| 最近最新中文字幕大全电影3| 真实男女啪啪啪动态图| 啦啦啦观看免费观看视频高清| 午夜精品一区二区三区免费看| 精品久久久久久久久久免费视频| 欧美一级a爱片免费观看看| 真实男女啪啪啪动态图| 十八禁国产超污无遮挡网站| 国产av一区在线观看免费| 99久国产av精品| 99热6这里只有精品| 国产69精品久久久久777片| 老司机福利观看| 蜜桃久久精品国产亚洲av| 国产综合懂色| 免费观看精品视频网站| 久久精品国产亚洲av天美| 午夜福利在线观看吧| 国产精品久久久久久av不卡| 69人妻影院| 超碰av人人做人人爽久久| 激情 狠狠 欧美| 日日摸夜夜添夜夜爱| 国产成人影院久久av| 欧美成人一区二区免费高清观看| 六月丁香七月| 久久午夜亚洲精品久久| 1024手机看黄色片| 亚洲国产精品成人久久小说 | h日本视频在线播放| 日本成人三级电影网站| 亚洲人成网站在线播放欧美日韩| 久久久久久久久久久免费av| 九草在线视频观看| 免费看a级黄色片| 国产精品免费一区二区三区在线| 亚洲av.av天堂| 高清日韩中文字幕在线| 日韩欧美三级三区| 亚洲av男天堂| www.色视频.com| 国产精品一区二区三区四区久久| 中文精品一卡2卡3卡4更新| 亚洲欧洲日产国产| 中国国产av一级| 黄色视频,在线免费观看| 日韩av在线大香蕉| 日韩亚洲欧美综合| 51国产日韩欧美| 国产精品伦人一区二区| 久久精品国产鲁丝片午夜精品| 99久久精品一区二区三区| 国产伦理片在线播放av一区 | av福利片在线观看| 身体一侧抽搐| 国产一区二区三区av在线 | 日韩一区二区三区影片| 国产精品伦人一区二区| 国产一级毛片在线| 99久久成人亚洲精品观看| 可以在线观看毛片的网站| 两性午夜刺激爽爽歪歪视频在线观看| 中国美白少妇内射xxxbb| 国产69精品久久久久777片| 国产精品爽爽va在线观看网站| 99久久成人亚洲精品观看| 国产午夜精品久久久久久一区二区三区| 亚洲成人久久爱视频| 美女内射精品一级片tv| av卡一久久| 久久久久网色| 国产单亲对白刺激| 国产成人精品一,二区 | 日韩精品有码人妻一区| 黑人高潮一二区| 色综合站精品国产| 69人妻影院| 国内精品宾馆在线| 国产精品一二三区在线看| 亚洲人成网站在线播| 免费人成在线观看视频色| 欧美高清成人免费视频www| 婷婷亚洲欧美| 午夜福利高清视频| 亚洲自拍偷在线| 国产精品一区二区三区四区久久| 久久久久久大精品| 精品久久久久久久末码| 久久久久性生活片| 国产色爽女视频免费观看| 色5月婷婷丁香| av.在线天堂| 国产乱人视频| 成人国产麻豆网| 亚州av有码| 综合色av麻豆| 午夜福利在线观看吧| 别揉我奶头 嗯啊视频| 国产精品久久久久久久电影| 国产成人福利小说| 国产单亲对白刺激| .国产精品久久| 国产精品免费一区二区三区在线| 男女边吃奶边做爰视频| 国产亚洲精品久久久com| 国产精品伦人一区二区| 精品人妻一区二区三区麻豆| 久久亚洲国产成人精品v| 边亲边吃奶的免费视频| 久久99热这里只有精品18| 听说在线观看完整版免费高清| 一本一本综合久久| 久久久欧美国产精品| 热99在线观看视频| 99久久精品国产国产毛片| 中文在线观看免费www的网站| 亚洲国产日韩欧美精品在线观看| 全区人妻精品视频| 精品国产三级普通话版| 99九九线精品视频在线观看视频| 男人的好看免费观看在线视频| 国产精品久久久久久久久免| 国产午夜精品一二区理论片| 亚洲精品自拍成人| 日韩欧美精品v在线| 麻豆国产97在线/欧美| 一本久久中文字幕| 人妻久久中文字幕网| 中国美白少妇内射xxxbb| 波野结衣二区三区在线| 亚洲精品日韩av片在线观看| 久久久久久大精品| 午夜精品在线福利| 国产精品麻豆人妻色哟哟久久 | 亚洲18禁久久av| 亚洲av熟女| 国产69精品久久久久777片| 又爽又黄a免费视频| 成人高潮视频无遮挡免费网站| 日韩精品青青久久久久久| 亚洲av.av天堂| 最近中文字幕高清免费大全6| 99久久成人亚洲精品观看| 特级一级黄色大片| 寂寞人妻少妇视频99o| 少妇人妻一区二区三区视频| 天堂√8在线中文| 日韩精品有码人妻一区| 久久久精品94久久精品| 亚洲美女视频黄频| 欧美性猛交╳xxx乱大交人| 国产人妻一区二区三区在| av在线老鸭窝| h日本视频在线播放| 深夜a级毛片| 欧美性猛交╳xxx乱大交人| 亚洲av免费高清在线观看| 特大巨黑吊av在线直播| kizo精华| 大型黄色视频在线免费观看| 亚洲av.av天堂| 久久韩国三级中文字幕| 久久精品国产亚洲网站| 丝袜喷水一区| 三级男女做爰猛烈吃奶摸视频| 少妇被粗大猛烈的视频| 欧美一区二区亚洲| 在线免费十八禁| av黄色大香蕉| 黄色日韩在线| 97人妻精品一区二区三区麻豆| 精品久久国产蜜桃| 国产淫片久久久久久久久| 免费黄网站久久成人精品| 中文资源天堂在线| 欧美+亚洲+日韩+国产| 免费不卡的大黄色大毛片视频在线观看 | 久久久久久大精品| 日本欧美国产在线视频| 国产av一区在线观看免费| 久久久久久久久久成人| 在线天堂最新版资源| 日韩欧美一区二区三区在线观看| 欧美日韩乱码在线| 欧美3d第一页| 国产午夜精品论理片| 91午夜精品亚洲一区二区三区| 精品久久久久久久久av| 欧美色视频一区免费| 99热这里只有是精品50| av.在线天堂| 男女做爰动态图高潮gif福利片| 欧美性猛交╳xxx乱大交人| 亚洲成a人片在线一区二区| 久久久久久久久中文| 99久久久亚洲精品蜜臀av| 亚洲精品色激情综合| 久久国内精品自在自线图片| 日本一本二区三区精品| 永久网站在线| 亚洲欧洲日产国产| 1024手机看黄色片| 可以在线观看毛片的网站| 国产一级毛片七仙女欲春2| 日韩欧美三级三区| 午夜老司机福利剧场| 真实男女啪啪啪动态图| 男的添女的下面高潮视频| 青春草亚洲视频在线观看| 国产精品久久久久久久久免| 国语自产精品视频在线第100页| 草草在线视频免费看| 亚洲国产色片| 婷婷精品国产亚洲av| 亚洲精品色激情综合| 日韩欧美精品免费久久| 99久久成人亚洲精品观看| 日本黄大片高清| 综合色av麻豆| 极品教师在线视频| 日本成人三级电影网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品成人久久久久久| 亚洲精品影视一区二区三区av| 国产精品永久免费网站| 成年女人看的毛片在线观看| 亚洲精品粉嫩美女一区| 乱系列少妇在线播放| 亚洲精华国产精华液的使用体验 | 午夜老司机福利剧场| 国产高清三级在线| 日本黄大片高清| 少妇的逼好多水| 中文字幕精品亚洲无线码一区| 国产成人freesex在线| 男人舔女人下体高潮全视频| 男插女下体视频免费在线播放| 成人午夜精彩视频在线观看| 午夜福利在线在线| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美国产在线观看| 日韩欧美 国产精品| 亚洲最大成人av| 国产91av在线免费观看| 成人亚洲欧美一区二区av| 看非洲黑人一级黄片| 欧美xxxx黑人xx丫x性爽| 日本一本二区三区精品| 高清午夜精品一区二区三区 | 国产单亲对白刺激| 久久鲁丝午夜福利片| 九九久久精品国产亚洲av麻豆| 国模一区二区三区四区视频| 男女那种视频在线观看| 亚洲欧美精品自产自拍| 亚洲欧洲日产国产| 51国产日韩欧美| 欧美激情国产日韩精品一区| 久久这里只有精品中国| 禁无遮挡网站| 麻豆一二三区av精品| 国内少妇人妻偷人精品xxx网站| 超碰av人人做人人爽久久| 精品久久久久久成人av| .国产精品久久| 免费av毛片视频| 亚洲国产色片| 两性午夜刺激爽爽歪歪视频在线观看| 3wmmmm亚洲av在线观看| 亚洲av熟女| 国内久久婷婷六月综合欲色啪| 寂寞人妻少妇视频99o| 久久久久久大精品| 亚洲一区高清亚洲精品| 老熟妇乱子伦视频在线观看| 国产高清激情床上av| 日本欧美国产在线视频| 国产av麻豆久久久久久久| 国产av在哪里看| 国产黄色小视频在线观看| 如何舔出高潮| 欧美丝袜亚洲另类| 免费一级毛片在线播放高清视频| 自拍偷自拍亚洲精品老妇| 中国美女看黄片| 中文字幕av在线有码专区| 久久精品夜夜夜夜夜久久蜜豆| 简卡轻食公司| 国产精品国产高清国产av| 长腿黑丝高跟| 99热这里只有精品一区| 成人毛片a级毛片在线播放| 一区二区三区四区激情视频 | 国产三级在线视频| 好男人视频免费观看在线| 亚洲av中文字字幕乱码综合| 久久国产乱子免费精品| 男插女下体视频免费在线播放| 久久久久久久久中文| 色综合亚洲欧美另类图片| 一级黄片播放器| 国产老妇女一区| 我要看日韩黄色一级片| 欧洲精品卡2卡3卡4卡5卡区| 91午夜精品亚洲一区二区三区| 美女内射精品一级片tv| 看黄色毛片网站| 丰满人妻一区二区三区视频av| 久久精品久久久久久久性| 天堂av国产一区二区熟女人妻| 欧美日韩在线观看h| 亚洲欧美日韩高清专用| 国产精品.久久久| 亚洲欧洲日产国产| 老师上课跳d突然被开到最大视频| av在线观看视频网站免费| 久久午夜亚洲精品久久| 国产精品国产高清国产av| 淫秽高清视频在线观看| 又黄又爽又刺激的免费视频.| 五月伊人婷婷丁香| 少妇人妻精品综合一区二区 | av免费观看日本| 国产精品一区www在线观看| 亚洲成人av在线免费| 精品免费久久久久久久清纯| 精品国内亚洲2022精品成人| 日韩欧美一区二区三区在线观看| 国产69精品久久久久777片| 麻豆久久精品国产亚洲av| 欧美成人a在线观看| av在线亚洲专区| 少妇的逼好多水| 国产精品永久免费网站| 欧美日韩在线观看h| 成人av在线播放网站| 99视频精品全部免费 在线| 国产高清有码在线观看视频| 国产精品人妻久久久久久| 亚洲国产欧洲综合997久久,| 国内久久婷婷六月综合欲色啪| 日韩欧美精品v在线| 最近2019中文字幕mv第一页| 精品熟女少妇av免费看| 色播亚洲综合网| 赤兔流量卡办理| 中文精品一卡2卡3卡4更新| 国产精品永久免费网站| 亚洲国产精品sss在线观看| 成人性生交大片免费视频hd| 99视频精品全部免费 在线| 国产高清有码在线观看视频| 国产成人午夜福利电影在线观看| 精品午夜福利在线看| 亚洲国产精品国产精品| 哪个播放器可以免费观看大片| 秋霞在线观看毛片| av在线蜜桃| 国内精品宾馆在线| 美女脱内裤让男人舔精品视频 | 嘟嘟电影网在线观看| 国产精品久久久久久亚洲av鲁大| 日韩亚洲欧美综合| 中文亚洲av片在线观看爽| 99久久无色码亚洲精品果冻| 国产成人freesex在线| 美女xxoo啪啪120秒动态图| 成人一区二区视频在线观看| 久久亚洲精品不卡| 免费在线观看成人毛片| 在线观看66精品国产| 男女边吃奶边做爰视频| 最近2019中文字幕mv第一页| 中文在线观看免费www的网站| 变态另类成人亚洲欧美熟女| 99久久精品热视频| 一级毛片我不卡| 波多野结衣巨乳人妻| 久久这里只有精品中国| 中文字幕制服av| 亚洲真实伦在线观看| 51国产日韩欧美| 午夜福利高清视频| 亚洲国产精品成人久久小说 | 中国美女看黄片| 夫妻性生交免费视频一级片| 毛片一级片免费看久久久久| 久久草成人影院| 亚洲成人精品中文字幕电影| 99热这里只有是精品在线观看| 亚洲精品乱码久久久久久按摩| 国产美女午夜福利| 边亲边吃奶的免费视频| 在现免费观看毛片| 99视频精品全部免费 在线| 日韩欧美精品免费久久| 国产亚洲精品久久久久久毛片| 99久久精品国产国产毛片| 91久久精品电影网| 最近的中文字幕免费完整| 亚洲乱码一区二区免费版| 中出人妻视频一区二区| 久久人人精品亚洲av| 啦啦啦啦在线视频资源| 91aial.com中文字幕在线观看| 国产69精品久久久久777片| 国产精品福利在线免费观看| 夜夜夜夜夜久久久久| 亚洲欧美精品专区久久| 免费看av在线观看网站| 成人三级黄色视频| 婷婷色av中文字幕| 成人三级黄色视频| 91精品国产九色| 久久精品久久久久久噜噜老黄 | 午夜激情欧美在线| 国产三级中文精品| 国产亚洲欧美98| 精品人妻视频免费看| 中文字幕免费在线视频6| 国产精品一及| 免费观看精品视频网站| 国产一区二区亚洲精品在线观看| 欧美变态另类bdsm刘玥| 日韩强制内射视频| 18+在线观看网站| 最近视频中文字幕2019在线8| 91狼人影院| 日韩成人av中文字幕在线观看| 国内精品一区二区在线观看| 亚洲精品影视一区二区三区av| 精品不卡国产一区二区三区| 99久久精品国产国产毛片| 边亲边吃奶的免费视频| 三级毛片av免费| 亚洲成人精品中文字幕电影| 国产精品蜜桃在线观看 | 免费观看人在逋| 九草在线视频观看| 一区二区三区免费毛片| 亚洲电影在线观看av| 成人av在线播放网站| 蜜臀久久99精品久久宅男| 又爽又黄无遮挡网站| 男女下面进入的视频免费午夜| 别揉我奶头 嗯啊视频| 日韩欧美三级三区|