• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nanoplasmonic zirconium nitride photocatalyst for direct overall water splitting

    2022-06-18 10:52:46YuLiuXioweiZhngLishLuJunYeJinlinWngXiominLiXuedongBiWenlongWng
    Chinese Chemical Letters 2022年3期

    Yu Liu,Xiowei Zhng,Lish Lu,Jun Ye,Jinlin Wng,Xiomin Li,Xuedong Bi,c,Wenlong Wng,c,?

    a Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    b School of Physical Sciences,University of Chinese Academy of Sciences,Chinese Academy of Sciences,Beijing 100190,China

    c Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords:Zirconium nitride Surface plasmon Noble–metal–free Photocatalytic water splitting Hot electron

    ABSTRACT The ability of plasmonic nanostructures to efficiently harvest light energy and generate energetic hot carriers makes them promising materials for utilization in photocatalytic water spitting.Apart from the traditional Au and Ag based plasmonic photocatalysts,more recently the noble–metal–free alternative plasmonic materials have attracted ever–increasing interest.Here we report the first use of plasmonic zirconium nitride (ZrN) nanoparticles as a promising photocatalyst for water splitting.Highly crystalline ZrN nanoparticles with sizes dominating at 30–50 nm were synthesized that exhibit intense visible and near–infrared absorption due to localized surface plasmon resonance (LSPR).Without utilizing any noble metal cocatalysts such as Pt,the plasmonic ZrN nanoparticles alone showed stable photocatalytic activity for H2 evolution in aqueous solution with methanol as sacrificial electron donor.The addition of a cobalt oxide (CoOx) cocatalyst can facilitate the separation of photogenerated charge carriers and further improve the photocatalytic activity.The optimized CoOx modified ZrN photocatalyst was observed not only to activate the O2 evolution reaction with presence of electron acceptor,but also to drive overall water splitting for the simultaneous H2 and O2 evolution in the absence of any sacrificial agents.

    The utilization of solar energy to drive photocatalytic water splitting for sustainable hydrogen production is one of the most prevailing ways for meeting the future need of environmentally friendly and renewable energy sources [1–8].With the use of noble metal Au and Ag plasmonic nanostructures,the field of plasmonic photocatalysis has witnessed tremendous progress over the past decade.As compared to the conventional semiconductor photocatalysts,the localized surface plasmon resonance (LSPR) in metal nanostructures provide a more viable way in high–efficiency harvesting of light energy,and especially the less energetic visible photons,for driving photocatalytic water splitting reactions[3,9].The plasmonic enhancement of photocatalytic water splitting involves complex mechanisms.In a typical metal–semiconductor heterojunction configuration such as the best studied Au–TiO2system,the enhancement mechanisms may include enhanced light absorption,forced separation of electron–hole pairs,plasmon–induced resonance energy transfer,and in particular,the transfer of plasmonic hot carriers from metal to semiconductor through a Schottky barrier [10].Meanwhile,as a simpler scenario,there are also studies that do not utilize a Schottky junction to drive the direct plasmonic photocatalysis including water splitting [11,12].

    In recent years,the conductive transition–metal nitrides [13,14],such as TiN and ZrN,have undergone a resurgence of interest as promising alternatives to the conventional Au and Ag based noble metal plasmonic materials.TiN and ZrN have dielectric permittivities with a zero crossover wavelength in the visible region,very similar to Au,thereby exhibit plasmonic properties comparable to those of Au in the visible and near–infrared (NIR) spectrum [15,16].Coupled with their high temperature durability,chemical stability and low cost,TiN and ZrN can replace and even outperform the traditional noble metals in many plasmonic devices and applications [16–18].More recently,the experimental realizations of a variety of TiN–based plasmonic and nanophotonic devices have been reported,and there are also studies of utilizing the plasmonic TiN nanostructures for photocatalytic and photoelectrochemical watersplitting [19,20].However,as compared to TiN,to date the utilization of the excellent plasmonic properties of ZrN for practice applications has been far less explored.Herein,we present the first demonstration of the capability of ZrN nanostructures as a promising plasmonic photocatalyst for water splitting.

    Fig.1.Morphology and crystal structure of zirconium nitride plasmonic nanoparticles.(a) SEM image of the as–synthesized ZrN nanoparticles with size distribution focusing at 30–50 nm.(b) XRD pattern of the ZrN powder.(c) TEM images of as–prepared ZrN nanoparticles.The insets are HRTEM image and the corresponding FFT pattern.(d) Atomic crystal structure of cubic ZrN viewed along the [110]direction.

    As is known,the generation of hot carriers in Au nanostructures through nonradiative plasmon decay is driven by either intraband excitations within the conduction sp band or by interband excitations resulting from transitions between the filled d–band and sp band (Fig.S1) [21,22].In the cases of TiN and ZrN,however,the situation is a little more complicated.Due to the strong hybridization of Ti/Zr d orbitals with N p orbitals,the plasmonic optical properties involve the intraband excitations due to conduction electrons in the partially filled d band of Ti/Zr and the interband transition between N p to Ti/Zr d orbitals (Fig.S1 in Supporting information) [23,24].By comparison,the interband p→d transition energy of ZrN is larger than that of TiN.This means that ZrN will exhibit blue–shifted and stronger plasmonic response [14,25],thereby favoring the production of higher energy hot charge carriers.Keeping this mind,ZrN is expected to be a more favorable choice for better photocatalytic performance,and in particular,for achieving the overall water splitting,by which H2and O2are produced simultaneously over the photocatalyst.In our present study,this unique benefit of ZrN was proven.The plasmonic ZrN nanoparticles,with optimal modification of a cobalt oxide (CoOx) cocatalyst,exhibit photocatalytic activity for overall water splitting for the simultaneous H2and O2evolution.

    Experimentally,ZrN nanoparticles in the form of free–standing powders are synthesized by controlled nitridation of ZrO2nanoparticles precursor with ammonia gas at elevated temperature (see Supporting information for experimental details).Shown in Fig.1a is a representative scanning electron microscope (SEM) image of the as–grown ZrN nanoparticles.Highly–uniform nanoparticles with irregularly rounded shape and size distribution focusing at 30–50 nm can be clearly visualized (particle size statistics are shown in Fig.S2 in Supporting information).Powder x–ray diffraction (XRD) (Fig.1b) demonstrated that the nanoparticles have the cubic rocksalt–type structure corresponding to a stoichiometric ZrN.It is important to note that,due to the extremely high nitridation reaction temperature (1100 °C),the problem of thermal sintering ZrN nanoparticles during growth can not be fully avoided.Nevertheless,the as–grown ZrN nanoparticles can be well–dispersed in aqueous solution and some other solvents with the aid of mild ultrasonication.Further transmission electron microscope (TEM) characterizations also revealed the structure uniformity of the crystalline ZrN nanoparticles,as shown in Fig.1c.The lattice–resolved high–resolution TEM (HRTEM) image in Fig.1c along with the corresponding fast–Fourier transform (FFT) pattern verified the single–crystallinity and phase purity of the cubic ZrN phase (Fig.1d).

    Fig.2.(a) HAADF image of the as–prepared ZrN nanoparticles with a zirconium oxide shell.(b) HAADF image of a representative ZrN nanoparticle (white) and corresponding EDX mappings showing the distribution of nitrogen (blue),oxygen (red)and zirconium (green).(c) Experimental measured optical absorption spectrum of as–prepared ZrN nanoparticles in aqueous solution.The inset is the photograph of the corresponding aqueous dispersion.(d) FDTD Simulated absorption spectra of spherical 30–nm–diameter ZrN nanoparticle with a bare surface (red) and coated with a 3 nm ZrO2 shell (blue).

    In previous studies of the growth of TiN and ZrN in the forms of thin films,coatings and nanoparticles,it has been well-established that a self–passivating native oxide layer with thickness of a few nanometers will be naturally formed at their when exposed to ambient atmosphere [26].The presence of this conformal protective surface shell is beneficial to the long-term durability of TiN and ZrN nanostructures at room temperature,while preserving their intrinsic plasmonic properties.Shown in Fig.2a is a high resolution high–angle angular dark field scanning transmission electron microscopy (HAADF–STEM) image of an individual ZrN nanoparticle in our present study,where a conformal surface shell with thickness ofca.3 nm can be clearly observed.Further element mapping by energy dispersive X–ray (EDX) spectroscopy (Fig.2b) reveals a distinct oxygen segregation at the nanoparticle surface,confirming that the surface layer is composed of zirconium oxide,presumably in the form of insulating ZrO2or substoichiometric ZrO2?x[27,28].According to the general consensus from previous literature [29],for plasmonic applications the existence of such an ultra-thin insulating surface layer can allow for the transfer of photogenerated charge carriers through electron tunneling.Fig.S3 (Supporting information) shows the X-ray photoelectron spectroscopy (XPS) measurement results of ZrN nanoparticles.The broad band of photoelectron emissions across Fermi level can be well discerned from the XPS valance band spectrum,verifying typical metal-like electronic structure of ZrN nanoparticles,albeit the presence of a significant amount of Zr-O bonding states at the nanoparticle surfaces.

    Optical features of the ZrN nanoparticles were analyzed by UV–vis–NIR absorption spectroscopy.Fig.2c shows the optical absorption spectrum of the aqueous dispersion of the as–synthesized ZrN nanoparticles,and the inset is a photograph of the corresponding aqueous dispersion.The absorption spectrum shows a broad peak centered at ~690 nm originating from the plasmon resonance of ZrN.Spectral measurements on several other specimens revealed typical variations in peak wavelength less than 5 nm.Finite–difference time–domain (FDTD) simulations of the absorption spectra were carried out to compare with the experimental results.Fig.2d displays the simulated spectra of a spherical 30–nm–diameter ZrN nanoparticle with a bare surface and coated with a 3 nm ZrO2shell.As consistent with previous studies [30],it is quite noticeable that the presence of the oxide layer on the surface of ZrN nanoparticles leads to a distinct red–shift of the LSPR peak due to the higher refractive index of ZrO2with respect to the solvent.As compared to the simulated spectra,the experimentally observed spectrum exhibits apparently broadening and red–shifting of the absorption band,which is mainly resulted from the relatively large size distribution of ZrN nanoparticles,and more importantly,from the aggregation induced interparticle coupling of the surface plasmon oscillations.Note that,as evidenced from the TEM image in Fig.1c,even in the aqueous dispersion,not all ZrN nanoparticles are monodisperse and isolated,and a broad red–shifted absorption band is known to be characteristic of aggregates of plasmonic nanostructures [31–33].

    In a procedure similar to previously established method [34,35],we examined photocatalytic H2evolution over the plasmonic ZrN nanoparticles in aqueous solution with the presence of menthol(10 vol%) as a sacrificial electron donor.Without the help of any noble metal catalysts such as Pt,the bare ZrN nanoparticles achieved steady H2production under UV–visible light illumination.A typical time courses of H2evolution is shown in Fig.3a(black dots).Continuous H2evolution with no apparent degradation of the ZrN nanoparticles was clearly observed from the beginning of the reaction,with a rate of 0.48 mmol g?1h?1.No N2evolution was observed for the present catalyst even after the extended period of irradiation.The total evolution of H2after 24 h was 345.6 μmol,exceeding the molar amount of the starting ZrN catalyst.The stable photocatalytic activity observed in bare ZrN nanoparticles implies that there is an efficient separation of photogenerated electron-hole pairs,as also further confirmed by photoelectrochemical characterization.As seen in the time course of photocurrent generation on ZrN nanoparticle photocathode under potentiostatic condition (Fig.S4 in Supporting information),a fast response to the switching of the light ON–OFF signal can be clearly observed.Interestingly,with the addition of 1.0 wt% Pt as cocatalyst,only very limited enhancement of activity was observed,as shown in Fig.3a (blue dots),clearly suggesting a negligible effect of Pt on H2evolution over ZrN.Production of H2was also observed when other electron donors such as Na2S and triethanolamine (TEOA) were used instead of methanol.When Na2S was used as the sacrificial agent,much improved H2yields were observed,whereas in the case of TEOA,slightly decreased activity was observed in comparison with that of methanol (Fig.S5 in Supporting information).

    Fig.3.(a) Typical time courses of H2 evolution from water containing 10 vol%methanol as electron donor by ZrN (black dots,almost coincide with the blue dots),ZrN–Pt (blue dots) and ZrN–CoOx (red dots).(b) Typical time courses of O2 evolution from water containing 0.1 mol/L Na2S2O8 as electron scavenger by ZrN (black dots) and CoOx–modified ZrN (red dots).The reaction was continued for 24 h,with evacuation every 6 h (dashed line).

    Of the two half–reactions involved in the splitting of water,water oxidation to produce molecular oxygen is mechanistically more challenging as it requires four positive holes and the formation of a new O–O bond.To overcome this rate limiting step,oxygen evolution cocatalysts (OEC) are commonly employed.Here in our present study,cobalt oxide (CoOx),which has been extensively used as OEC-cocatalyst for hole collectors in electrochemical and photocatalytic water splitting [36],was deposited on ZrN nanoparticles as OEC-cocatalyst to facilitate the separation of photogenerated charge carriers and further improve the photocatalytic activity.The deposition was achieved by an impregnation method from ethanol solution of Co(NO3)2,followed by NH3treatment at 700 °C and calcination at 200 °C in air [37].XPS measurements suggest that the CoOxcocatalyst is a mixture of Co2+and Co3+oxidation state (Fig.S6 in Supporting information).Whereas the bare ZrN catalyst was almost not active for water oxidation,producing only a trace of O2after 5 h of UV-visible illumination in an aqueous solution with Na2S2O8as electron scavenger,the oxygen evolution rate was dramatically increased when the CoOx–OEC was loaded.The optimal amount of CoOx–OEC in our present study is around 2.0 wt%,under which condition the O2–production rate can reach 32.44 mmol h?1g?1(Fig.3b).A further increase in the amount of CoOxaddition up to 3.0 wt% led to a slight decrease in activity,which may be caused by the agglomeration of CoOxinto larger nanoparticles resulting in less surface area.In addition,as compared to bare ZrN nanoparticles,a significant enhancement of H2evolution activity was also observed for CoOx–modified ZrN catalyst,with the H2evolution rate being ~10 times higher in the aqueous methanol solution under the same UV-visible illumination(Fig.3a).

    Fig.4.(a) Typical time courses of H2 and O2 evolution from water with 2.0 wt%by CoOx–modified ZrN catalyst in a pH 7 phosphate buffer.(b) Schematic of overall water splitting over the CoOx–modified plasmonic ZrN photocatalyst.

    Given the enhanced photocatalytic performance of CoOx–modified ZrN photocatalyst,its photocatalytic performance for the overall water splitting was further examined.In a pH 7 phosphate buffer,the steady H2and O2evolution was observed on CoOx–modified ZrN without any sacrificial agents under UV-visible illumination.At lower CoOxaddition amount such as 0.5 wt%,the stoichiometric ratio of H2and O2was not equal to 2:1 and O2evolution rate is slower than the theoretical value (Fig.S7 in Supporting information).Nevertheless,an increase of the loading of CoOxcocatalyst to 2.0 wt% can give rise to more stoichiometric H2and O2production approximately equal to 2:1 (Fig.4a).For a direct comparison,the bare ZrN and Pt–modified ZrN were also tested but both of them showed no detectable H2or O2evolution in pure water.Fig.4b shows a schematic of the plasmonically driven water-splitting process occurring over the CoOx–modified ZrN photocatalyst.The optically excited surface plasmons in ZrN nanoparticles decay into hot electron-hole pairs.The CoOxcocatalyst acts as hole collector to prompt the separation of hot electron-hole pairs and also serves as active sites to activate the water oxidation reaction for O2evolution.At the same time,the spatially separated hot electrons are directly injected into water molecules to drive the H2evolution reaction.The net result of whole process is the direct plasmon-driven splitting of water.

    We present the first demonstration of the use of plasmonic ZrN nanoparticles for direct hot electron–driven photocatalytic water splitting.The nanoplasmonic ZrN photocatalyst does not utilize any noble metal cocatalysts and can deliver stable photocatalytic activity for H2evolution in aqueous solution containing methanol as sacrificial electron donor.The modification of ZrN nanoparticles with CoOxcocatalyst can lead to significant enhancement of the H2evolution rate,and start up efficient O2evolution.More importantly,the direct overall water splitting for simultaneous H2and O2evolution can also be achieved by utilizing CoOxmodified ZrN photocatalysts in a pH 7 phosphate buffer without the requirement of any sacrificial agents.

    Declaration of competing interest

    The authors claim no conflicts of interest.

    Acknowledgments

    This work was supported by the Natural Science Foundation of China (Nos.21872172,21773303,51472267 and 51421002) and Chinese Academy of Sciences (Nos.XDB30000000,XDB07030100,Y8K5261B11 and ZDYZ2015-1).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.07.054.

    亚洲国产精品999| 国产高清有码在线观看视频| 我的老师免费观看完整版| 国产黄色视频一区二区在线观看| 欧美精品国产亚洲| 欧美激情国产日韩精品一区| 午夜福利视频1000在线观看| 成人毛片a级毛片在线播放| 啦啦啦中文免费视频观看日本| 国产黄片美女视频| 狂野欧美白嫩少妇大欣赏| 男女下面进入的视频免费午夜| 国产综合懂色| 欧美成人a在线观看| 99久久精品热视频| 亚洲人成网站高清观看| 视频区图区小说| 老司机影院毛片| 中文字幕亚洲精品专区| 欧美成人一区二区免费高清观看| 99热国产这里只有精品6| 亚洲av国产av综合av卡| 欧美老熟妇乱子伦牲交| a级毛色黄片| 国产精品人妻久久久影院| 亚洲av中文av极速乱| 岛国毛片在线播放| 久久精品国产亚洲av天美| 国内精品宾馆在线| 精品久久久久久久末码| 一级片'在线观看视频| 插逼视频在线观看| 日韩电影二区| 人妻少妇偷人精品九色| 九色成人免费人妻av| 亚洲av国产av综合av卡| 精品国产一区二区三区久久久樱花 | 亚洲欧美一区二区三区国产| 亚州av有码| 日本与韩国留学比较| 高清视频免费观看一区二区| 国产欧美日韩一区二区三区在线 | 精华霜和精华液先用哪个| 尾随美女入室| 晚上一个人看的免费电影| 欧美xxxx黑人xx丫x性爽| 日本wwww免费看| 我的老师免费观看完整版| 伦理电影大哥的女人| 精品久久久噜噜| 一级av片app| 日韩 亚洲 欧美在线| 一个人观看的视频www高清免费观看| 啦啦啦在线观看免费高清www| 免费观看a级毛片全部| 国产免费福利视频在线观看| 日本熟妇午夜| 午夜免费观看性视频| 亚洲不卡免费看| 国产黄色视频一区二区在线观看| 日日摸夜夜添夜夜爱| 黄片无遮挡物在线观看| 久久久久久久久久久丰满| 高清av免费在线| 亚洲,欧美,日韩| 免费观看的影片在线观看| av在线观看视频网站免费| 国产久久久一区二区三区| 国产成人福利小说| 免费大片黄手机在线观看| 日本av手机在线免费观看| 日韩制服骚丝袜av| 午夜福利高清视频| 亚洲精品一二三| 精品一区二区三卡| 久久久久九九精品影院| 一级毛片我不卡| 91精品伊人久久大香线蕉| 最近2019中文字幕mv第一页| 久久久久精品性色| 国产日韩欧美亚洲二区| 亚洲欧美成人精品一区二区| 肉色欧美久久久久久久蜜桃 | 国产精品久久久久久精品电影小说 | 亚洲精品一二三| av线在线观看网站| 久久久久性生活片| 在线免费十八禁| 久久99热这里只频精品6学生| 国产成人精品婷婷| 少妇人妻 视频| 26uuu在线亚洲综合色| 亚洲精品亚洲一区二区| 夜夜看夜夜爽夜夜摸| 18+在线观看网站| 精品亚洲乱码少妇综合久久| 好男人在线观看高清免费视频| 久久韩国三级中文字幕| 亚洲va在线va天堂va国产| 高清欧美精品videossex| 在线观看国产h片| 一级片'在线观看视频| 亚洲国产精品专区欧美| 只有这里有精品99| 亚洲激情五月婷婷啪啪| 成年版毛片免费区| 亚洲精华国产精华液的使用体验| 午夜精品一区二区三区免费看| 91久久精品国产一区二区成人| 久久久久久九九精品二区国产| 高清毛片免费看| 又粗又硬又长又爽又黄的视频| 国产成人一区二区在线| 亚洲国产精品成人综合色| 亚洲国产高清在线一区二区三| 少妇熟女欧美另类| 少妇人妻久久综合中文| 成人美女网站在线观看视频| 久久久精品欧美日韩精品| 国产黄片美女视频| 最近的中文字幕免费完整| 亚洲精品日韩av片在线观看| 波多野结衣巨乳人妻| 国产亚洲精品久久久com| 男人舔奶头视频| 国产午夜精品一二区理论片| 新久久久久国产一级毛片| 国产v大片淫在线免费观看| 精品人妻熟女av久视频| 卡戴珊不雅视频在线播放| 少妇人妻久久综合中文| 在线观看一区二区三区| 亚洲真实伦在线观看| 成人毛片60女人毛片免费| 看免费成人av毛片| 人妻一区二区av| 亚洲国产精品999| 伊人久久精品亚洲午夜| 日韩成人伦理影院| 另类亚洲欧美激情| 秋霞伦理黄片| 国产淫语在线视频| 国产在线男女| 日韩在线高清观看一区二区三区| 国产在线男女| 国产精品人妻久久久久久| 亚洲国产精品999| 十八禁网站网址无遮挡 | 91久久精品国产一区二区三区| 欧美国产精品一级二级三级 | 高清在线视频一区二区三区| av黄色大香蕉| 国产精品麻豆人妻色哟哟久久| av国产久精品久网站免费入址| 亚洲欧洲国产日韩| 永久免费av网站大全| 国产一区二区三区综合在线观看 | 国产精品国产av在线观看| 久久99热6这里只有精品| 国产 精品1| 大香蕉97超碰在线| 一级毛片久久久久久久久女| 亚洲伊人久久精品综合| 国产免费福利视频在线观看| 伊人久久精品亚洲午夜| 欧美高清成人免费视频www| 别揉我奶头 嗯啊视频| 97精品久久久久久久久久精品| 免费观看无遮挡的男女| 色哟哟·www| 99热网站在线观看| av免费观看日本| freevideosex欧美| 亚洲欧美精品自产自拍| 五月开心婷婷网| 亚洲欧美精品自产自拍| 欧美日韩一区二区视频在线观看视频在线 | 亚洲久久久久久中文字幕| 韩国av在线不卡| 亚洲精品第二区| 超碰97精品在线观看| 男女无遮挡免费网站观看| 精品视频人人做人人爽| 精品99又大又爽又粗少妇毛片| 欧美极品一区二区三区四区| 熟妇人妻不卡中文字幕| 18禁动态无遮挡网站| 欧美高清性xxxxhd video| av在线app专区| 直男gayav资源| 在线观看人妻少妇| 可以在线观看毛片的网站| 国产欧美日韩精品一区二区| 80岁老熟妇乱子伦牲交| 91狼人影院| 三级经典国产精品| 一级毛片黄色毛片免费观看视频| 国产午夜福利久久久久久| 国产极品天堂在线| 国内揄拍国产精品人妻在线| 国产一区亚洲一区在线观看| 少妇的逼好多水| 日韩强制内射视频| 性插视频无遮挡在线免费观看| 欧美xxxx黑人xx丫x性爽| 热99国产精品久久久久久7| 精品人妻熟女av久视频| 国产精品一区www在线观看| 水蜜桃什么品种好| 成年免费大片在线观看| 青春草国产在线视频| 99热这里只有是精品在线观看| 少妇熟女欧美另类| 久久久久性生活片| 热re99久久精品国产66热6| 蜜桃久久精品国产亚洲av| 中文字幕人妻熟人妻熟丝袜美| 赤兔流量卡办理| 国产一区二区三区综合在线观看 | xxx大片免费视频| 国产一区亚洲一区在线观看| av一本久久久久| 听说在线观看完整版免费高清| 在线观看免费高清a一片| 成人无遮挡网站| 午夜老司机福利剧场| 丝袜脚勾引网站| 少妇 在线观看| 热re99久久精品国产66热6| 国产日韩欧美亚洲二区| 尾随美女入室| 国产精品99久久久久久久久| 91精品一卡2卡3卡4卡| 亚洲无线观看免费| 国产v大片淫在线免费观看| 欧美成人a在线观看| 18禁裸乳无遮挡动漫免费视频 | 九九久久精品国产亚洲av麻豆| 国产熟女欧美一区二区| 成人美女网站在线观看视频| 亚洲欧美日韩另类电影网站 | 国产美女午夜福利| 高清毛片免费看| 午夜福利视频精品| 日韩大片免费观看网站| 日韩av不卡免费在线播放| 人人妻人人澡人人爽人人夜夜| 亚洲av日韩在线播放| 国产午夜精品久久久久久一区二区三区| 99久久精品热视频| 国产av不卡久久| 观看美女的网站| 久久久久网色| 国产精品久久久久久精品古装| 久久精品国产a三级三级三级| 免费黄频网站在线观看国产| 成年女人在线观看亚洲视频 | 美女国产视频在线观看| 日本猛色少妇xxxxx猛交久久| 一级a做视频免费观看| 欧美激情在线99| 国产 精品1| 国产在线一区二区三区精| 国产在线男女| 99re6热这里在线精品视频| 欧美日韩综合久久久久久| 国产免费一级a男人的天堂| 免费高清在线观看视频在线观看| 美女主播在线视频| 一级片'在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 老司机影院成人| 蜜桃亚洲精品一区二区三区| 精品视频人人做人人爽| 久久久久久久久久成人| 日本黄大片高清| 欧美bdsm另类| av一本久久久久| 国产淫片久久久久久久久| 国产成人精品一,二区| 人妻制服诱惑在线中文字幕| 大话2 男鬼变身卡| 美女主播在线视频| 男女边吃奶边做爰视频| 欧美成人a在线观看| 国产中年淑女户外野战色| 欧美 日韩 精品 国产| 最近2019中文字幕mv第一页| 九九在线视频观看精品| 午夜福利高清视频| 色哟哟·www| 最近最新中文字幕大全电影3| 国产一区二区在线观看日韩| 国产有黄有色有爽视频| 欧美变态另类bdsm刘玥| 精品人妻一区二区三区麻豆| 色视频www国产| 亚洲精品日本国产第一区| 18禁在线无遮挡免费观看视频| 搡老乐熟女国产| 国产一区二区亚洲精品在线观看| 美女国产视频在线观看| 国产 一区精品| 亚洲精品自拍成人| 精品国产露脸久久av麻豆| 人妻制服诱惑在线中文字幕| 尾随美女入室| 成人欧美大片| 尤物成人国产欧美一区二区三区| 欧美丝袜亚洲另类| 中文字幕免费在线视频6| 尾随美女入室| 人妻夜夜爽99麻豆av| 国产真实伦视频高清在线观看| 成人国产麻豆网| av在线天堂中文字幕| 久久久久九九精品影院| 99热全是精品| 老女人水多毛片| 看免费成人av毛片| 纵有疾风起免费观看全集完整版| eeuss影院久久| 欧美另类一区| 美女cb高潮喷水在线观看| 国产精品久久久久久精品电影小说 | 男女下面进入的视频免费午夜| 久久久国产一区二区| 国语对白做爰xxxⅹ性视频网站| 蜜桃亚洲精品一区二区三区| 小蜜桃在线观看免费完整版高清| 美女脱内裤让男人舔精品视频| 日韩伦理黄色片| 99九九线精品视频在线观看视频| 一区二区三区乱码不卡18| 蜜桃久久精品国产亚洲av| 日韩,欧美,国产一区二区三区| 2022亚洲国产成人精品| 亚洲欧洲日产国产| 国产亚洲av嫩草精品影院| 熟妇人妻不卡中文字幕| 欧美激情国产日韩精品一区| 午夜日本视频在线| 国产成人精品婷婷| 亚洲婷婷狠狠爱综合网| 极品教师在线视频| 99久久精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 男人舔奶头视频| 久久久久久国产a免费观看| 国产亚洲av嫩草精品影院| 内地一区二区视频在线| 欧美激情国产日韩精品一区| freevideosex欧美| 97在线视频观看| 亚洲欧美中文字幕日韩二区| av在线老鸭窝| 寂寞人妻少妇视频99o| 自拍欧美九色日韩亚洲蝌蚪91 | 天天一区二区日本电影三级| 91aial.com中文字幕在线观看| 99九九线精品视频在线观看视频| 国产69精品久久久久777片| 日本熟妇午夜| 国产真实伦视频高清在线观看| 天美传媒精品一区二区| 国产v大片淫在线免费观看| 欧美激情久久久久久爽电影| 又大又黄又爽视频免费| 久久97久久精品| 亚洲美女搞黄在线观看| 三级经典国产精品| 色吧在线观看| 2021少妇久久久久久久久久久| 免费少妇av软件| 国产永久视频网站| 我要看日韩黄色一级片| 99热这里只有是精品在线观看| 精品少妇黑人巨大在线播放| 久久精品久久久久久噜噜老黄| 精品久久久久久久末码| 免费黄频网站在线观看国产| 成人毛片60女人毛片免费| 夫妻午夜视频| 欧美丝袜亚洲另类| 人妻制服诱惑在线中文字幕| 久久99热这里只有精品18| 日韩欧美精品免费久久| 日本一本二区三区精品| 麻豆久久精品国产亚洲av| 久久久精品欧美日韩精品| 亚洲人成网站在线播| 成年女人看的毛片在线观看| 国产男女内射视频| 在线免费十八禁| 看黄色毛片网站| 欧美日韩在线观看h| 免费观看无遮挡的男女| 老师上课跳d突然被开到最大视频| 在线天堂最新版资源| 18禁裸乳无遮挡动漫免费视频 | 国产精品.久久久| 亚洲国产精品专区欧美| 少妇猛男粗大的猛烈进出视频 | 亚洲欧美日韩无卡精品| 女人十人毛片免费观看3o分钟| 免费看日本二区| 国产白丝娇喘喷水9色精品| 国产精品av视频在线免费观看| 男男h啪啪无遮挡| 国产色爽女视频免费观看| 久久热精品热| 久久久精品欧美日韩精品| 美女高潮的动态| 成人亚洲精品一区在线观看 | 久久久久国产网址| 看非洲黑人一级黄片| 性插视频无遮挡在线免费观看| 99热这里只有精品一区| 内射极品少妇av片p| 精品国产乱码久久久久久小说| 观看美女的网站| 99久久人妻综合| 麻豆久久精品国产亚洲av| 欧美另类一区| 成人二区视频| 色综合色国产| 国产成人免费观看mmmm| 亚洲av免费高清在线观看| 成人午夜精彩视频在线观看| 成人黄色视频免费在线看| 一区二区三区乱码不卡18| 国产探花在线观看一区二区| 久久99蜜桃精品久久| 91精品伊人久久大香线蕉| 一级爰片在线观看| 男人舔奶头视频| 日本av手机在线免费观看| 欧美高清性xxxxhd video| 国产黄片美女视频| av又黄又爽大尺度在线免费看| 在线免费观看不下载黄p国产| 不卡视频在线观看欧美| 日日撸夜夜添| 最近2019中文字幕mv第一页| av在线亚洲专区| 久久久久久久久大av| 国产人妻一区二区三区在| 欧美潮喷喷水| 国产精品成人在线| 王馨瑶露胸无遮挡在线观看| 男女无遮挡免费网站观看| 日韩欧美精品v在线| 丰满少妇做爰视频| 小蜜桃在线观看免费完整版高清| 国产真实伦视频高清在线观看| 丰满少妇做爰视频| 日韩在线高清观看一区二区三区| 黄片wwwwww| 男人和女人高潮做爰伦理| 国产日韩欧美在线精品| 日韩av不卡免费在线播放| 亚洲综合色惰| 欧美一区二区亚洲| 国产中年淑女户外野战色| 亚洲丝袜综合中文字幕| 午夜福利在线观看免费完整高清在| 久久精品夜色国产| 青春草国产在线视频| 国产熟女欧美一区二区| 99九九线精品视频在线观看视频| 国产亚洲av片在线观看秒播厂| 国产精品偷伦视频观看了| 99久久精品国产国产毛片| 伊人久久精品亚洲午夜| 亚洲av福利一区| 九九爱精品视频在线观看| 亚洲av日韩在线播放| 日日摸夜夜添夜夜爱| 中文字幕久久专区| 99久久精品热视频| 国产精品久久久久久精品古装| 成人毛片60女人毛片免费| 丝袜美腿在线中文| 精品久久久久久久人妻蜜臀av| 九九久久精品国产亚洲av麻豆| 三级国产精品片| 国产精品久久久久久久电影| 午夜亚洲福利在线播放| 国产 一区 欧美 日韩| 哪个播放器可以免费观看大片| 亚洲人与动物交配视频| 九九在线视频观看精品| 日韩成人av中文字幕在线观看| 国产伦精品一区二区三区四那| 美女国产视频在线观看| 国产亚洲一区二区精品| 91久久精品电影网| 最后的刺客免费高清国语| 久久精品国产亚洲av涩爱| 啦啦啦在线观看免费高清www| 国产久久久一区二区三区| 亚洲欧美日韩无卡精品| 国产精品99久久99久久久不卡 | 亚洲精品影视一区二区三区av| 亚洲人成网站在线观看播放| 国产精品一及| 国产一级毛片在线| 久久久亚洲精品成人影院| 国模一区二区三区四区视频| 成年版毛片免费区| 青青草视频在线视频观看| 亚洲,欧美,日韩| 日韩成人av中文字幕在线观看| 九草在线视频观看| 毛片一级片免费看久久久久| 久久女婷五月综合色啪小说 | 日韩欧美 国产精品| 亚洲天堂av无毛| 女人久久www免费人成看片| 在线看a的网站| 激情 狠狠 欧美| 国产高清国产精品国产三级 | 国产伦精品一区二区三区视频9| 国产精品久久久久久精品电影小说 | 免费观看av网站的网址| 欧美性猛交╳xxx乱大交人| 国产 一区 欧美 日韩| 亚洲成人精品中文字幕电影| 免费观看的影片在线观看| 久久鲁丝午夜福利片| 亚州av有码| 免费看av在线观看网站| 免费观看av网站的网址| 亚洲av电影在线观看一区二区三区 | 亚洲三级黄色毛片| 视频区图区小说| 久久精品国产鲁丝片午夜精品| 99久久精品热视频| 亚洲人成网站高清观看| 亚州av有码| 精品人妻一区二区三区麻豆| 国产 一区精品| 水蜜桃什么品种好| 看十八女毛片水多多多| 一级毛片久久久久久久久女| 在线观看一区二区三区激情| 五月伊人婷婷丁香| 插阴视频在线观看视频| 在线精品无人区一区二区三 | 最新中文字幕久久久久| 久久精品久久久久久久性| 欧美精品人与动牲交sv欧美| 欧美日韩国产mv在线观看视频 | 欧美高清成人免费视频www| 又粗又硬又长又爽又黄的视频| 欧美一级a爱片免费观看看| 亚洲国产精品专区欧美| 久热久热在线精品观看| 国产黄频视频在线观看| 国产精品国产三级国产专区5o| 国产高潮美女av| 亚洲av免费高清在线观看| 插逼视频在线观看| 91精品伊人久久大香线蕉| 久久久久国产网址| 在线观看国产h片| 午夜免费男女啪啪视频观看| 国产一区亚洲一区在线观看| videos熟女内射| 亚洲av成人精品一二三区| 香蕉精品网在线| 国产真实伦视频高清在线观看| 午夜爱爱视频在线播放| 91午夜精品亚洲一区二区三区| 国产美女午夜福利| 国产免费一级a男人的天堂| 亚洲精品国产av成人精品| h日本视频在线播放| 亚洲,一卡二卡三卡| 日韩,欧美,国产一区二区三区| 欧美日韩视频高清一区二区三区二| 亚洲无线观看免费| 欧美国产精品一级二级三级 | 爱豆传媒免费全集在线观看| 国产欧美日韩一区二区三区在线 | 男女无遮挡免费网站观看| 最新中文字幕久久久久| 在现免费观看毛片| 欧美日韩综合久久久久久| 丰满少妇做爰视频| 在线天堂最新版资源| 丰满少妇做爰视频| 国产白丝娇喘喷水9色精品| 国产成人免费无遮挡视频| 国产黄片美女视频| 亚洲国产精品成人综合色| 伊人久久精品亚洲午夜| 视频中文字幕在线观看| 国产成人午夜福利电影在线观看| 国国产精品蜜臀av免费| 国产欧美日韩精品一区二区| 一级片'在线观看视频| 美女被艹到高潮喷水动态| 在线观看三级黄色| 在线观看人妻少妇| 美女国产视频在线观看| 新久久久久国产一级毛片| 国产精品一及| 国产 一区 欧美 日韩| 五月玫瑰六月丁香| 日韩电影二区| 欧美另类一区| 欧美日本视频| 国产综合精华液| 亚洲最大成人中文|