• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nanoplasmonic zirconium nitride photocatalyst for direct overall water splitting

    2022-06-18 10:52:46YuLiuXioweiZhngLishLuJunYeJinlinWngXiominLiXuedongBiWenlongWng
    Chinese Chemical Letters 2022年3期

    Yu Liu,Xiowei Zhng,Lish Lu,Jun Ye,Jinlin Wng,Xiomin Li,Xuedong Bi,c,Wenlong Wng,c,?

    a Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    b School of Physical Sciences,University of Chinese Academy of Sciences,Chinese Academy of Sciences,Beijing 100190,China

    c Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords:Zirconium nitride Surface plasmon Noble–metal–free Photocatalytic water splitting Hot electron

    ABSTRACT The ability of plasmonic nanostructures to efficiently harvest light energy and generate energetic hot carriers makes them promising materials for utilization in photocatalytic water spitting.Apart from the traditional Au and Ag based plasmonic photocatalysts,more recently the noble–metal–free alternative plasmonic materials have attracted ever–increasing interest.Here we report the first use of plasmonic zirconium nitride (ZrN) nanoparticles as a promising photocatalyst for water splitting.Highly crystalline ZrN nanoparticles with sizes dominating at 30–50 nm were synthesized that exhibit intense visible and near–infrared absorption due to localized surface plasmon resonance (LSPR).Without utilizing any noble metal cocatalysts such as Pt,the plasmonic ZrN nanoparticles alone showed stable photocatalytic activity for H2 evolution in aqueous solution with methanol as sacrificial electron donor.The addition of a cobalt oxide (CoOx) cocatalyst can facilitate the separation of photogenerated charge carriers and further improve the photocatalytic activity.The optimized CoOx modified ZrN photocatalyst was observed not only to activate the O2 evolution reaction with presence of electron acceptor,but also to drive overall water splitting for the simultaneous H2 and O2 evolution in the absence of any sacrificial agents.

    The utilization of solar energy to drive photocatalytic water splitting for sustainable hydrogen production is one of the most prevailing ways for meeting the future need of environmentally friendly and renewable energy sources [1–8].With the use of noble metal Au and Ag plasmonic nanostructures,the field of plasmonic photocatalysis has witnessed tremendous progress over the past decade.As compared to the conventional semiconductor photocatalysts,the localized surface plasmon resonance (LSPR) in metal nanostructures provide a more viable way in high–efficiency harvesting of light energy,and especially the less energetic visible photons,for driving photocatalytic water splitting reactions[3,9].The plasmonic enhancement of photocatalytic water splitting involves complex mechanisms.In a typical metal–semiconductor heterojunction configuration such as the best studied Au–TiO2system,the enhancement mechanisms may include enhanced light absorption,forced separation of electron–hole pairs,plasmon–induced resonance energy transfer,and in particular,the transfer of plasmonic hot carriers from metal to semiconductor through a Schottky barrier [10].Meanwhile,as a simpler scenario,there are also studies that do not utilize a Schottky junction to drive the direct plasmonic photocatalysis including water splitting [11,12].

    In recent years,the conductive transition–metal nitrides [13,14],such as TiN and ZrN,have undergone a resurgence of interest as promising alternatives to the conventional Au and Ag based noble metal plasmonic materials.TiN and ZrN have dielectric permittivities with a zero crossover wavelength in the visible region,very similar to Au,thereby exhibit plasmonic properties comparable to those of Au in the visible and near–infrared (NIR) spectrum [15,16].Coupled with their high temperature durability,chemical stability and low cost,TiN and ZrN can replace and even outperform the traditional noble metals in many plasmonic devices and applications [16–18].More recently,the experimental realizations of a variety of TiN–based plasmonic and nanophotonic devices have been reported,and there are also studies of utilizing the plasmonic TiN nanostructures for photocatalytic and photoelectrochemical watersplitting [19,20].However,as compared to TiN,to date the utilization of the excellent plasmonic properties of ZrN for practice applications has been far less explored.Herein,we present the first demonstration of the capability of ZrN nanostructures as a promising plasmonic photocatalyst for water splitting.

    Fig.1.Morphology and crystal structure of zirconium nitride plasmonic nanoparticles.(a) SEM image of the as–synthesized ZrN nanoparticles with size distribution focusing at 30–50 nm.(b) XRD pattern of the ZrN powder.(c) TEM images of as–prepared ZrN nanoparticles.The insets are HRTEM image and the corresponding FFT pattern.(d) Atomic crystal structure of cubic ZrN viewed along the [110]direction.

    As is known,the generation of hot carriers in Au nanostructures through nonradiative plasmon decay is driven by either intraband excitations within the conduction sp band or by interband excitations resulting from transitions between the filled d–band and sp band (Fig.S1) [21,22].In the cases of TiN and ZrN,however,the situation is a little more complicated.Due to the strong hybridization of Ti/Zr d orbitals with N p orbitals,the plasmonic optical properties involve the intraband excitations due to conduction electrons in the partially filled d band of Ti/Zr and the interband transition between N p to Ti/Zr d orbitals (Fig.S1 in Supporting information) [23,24].By comparison,the interband p→d transition energy of ZrN is larger than that of TiN.This means that ZrN will exhibit blue–shifted and stronger plasmonic response [14,25],thereby favoring the production of higher energy hot charge carriers.Keeping this mind,ZrN is expected to be a more favorable choice for better photocatalytic performance,and in particular,for achieving the overall water splitting,by which H2and O2are produced simultaneously over the photocatalyst.In our present study,this unique benefit of ZrN was proven.The plasmonic ZrN nanoparticles,with optimal modification of a cobalt oxide (CoOx) cocatalyst,exhibit photocatalytic activity for overall water splitting for the simultaneous H2and O2evolution.

    Experimentally,ZrN nanoparticles in the form of free–standing powders are synthesized by controlled nitridation of ZrO2nanoparticles precursor with ammonia gas at elevated temperature (see Supporting information for experimental details).Shown in Fig.1a is a representative scanning electron microscope (SEM) image of the as–grown ZrN nanoparticles.Highly–uniform nanoparticles with irregularly rounded shape and size distribution focusing at 30–50 nm can be clearly visualized (particle size statistics are shown in Fig.S2 in Supporting information).Powder x–ray diffraction (XRD) (Fig.1b) demonstrated that the nanoparticles have the cubic rocksalt–type structure corresponding to a stoichiometric ZrN.It is important to note that,due to the extremely high nitridation reaction temperature (1100 °C),the problem of thermal sintering ZrN nanoparticles during growth can not be fully avoided.Nevertheless,the as–grown ZrN nanoparticles can be well–dispersed in aqueous solution and some other solvents with the aid of mild ultrasonication.Further transmission electron microscope (TEM) characterizations also revealed the structure uniformity of the crystalline ZrN nanoparticles,as shown in Fig.1c.The lattice–resolved high–resolution TEM (HRTEM) image in Fig.1c along with the corresponding fast–Fourier transform (FFT) pattern verified the single–crystallinity and phase purity of the cubic ZrN phase (Fig.1d).

    Fig.2.(a) HAADF image of the as–prepared ZrN nanoparticles with a zirconium oxide shell.(b) HAADF image of a representative ZrN nanoparticle (white) and corresponding EDX mappings showing the distribution of nitrogen (blue),oxygen (red)and zirconium (green).(c) Experimental measured optical absorption spectrum of as–prepared ZrN nanoparticles in aqueous solution.The inset is the photograph of the corresponding aqueous dispersion.(d) FDTD Simulated absorption spectra of spherical 30–nm–diameter ZrN nanoparticle with a bare surface (red) and coated with a 3 nm ZrO2 shell (blue).

    In previous studies of the growth of TiN and ZrN in the forms of thin films,coatings and nanoparticles,it has been well-established that a self–passivating native oxide layer with thickness of a few nanometers will be naturally formed at their when exposed to ambient atmosphere [26].The presence of this conformal protective surface shell is beneficial to the long-term durability of TiN and ZrN nanostructures at room temperature,while preserving their intrinsic plasmonic properties.Shown in Fig.2a is a high resolution high–angle angular dark field scanning transmission electron microscopy (HAADF–STEM) image of an individual ZrN nanoparticle in our present study,where a conformal surface shell with thickness ofca.3 nm can be clearly observed.Further element mapping by energy dispersive X–ray (EDX) spectroscopy (Fig.2b) reveals a distinct oxygen segregation at the nanoparticle surface,confirming that the surface layer is composed of zirconium oxide,presumably in the form of insulating ZrO2or substoichiometric ZrO2?x[27,28].According to the general consensus from previous literature [29],for plasmonic applications the existence of such an ultra-thin insulating surface layer can allow for the transfer of photogenerated charge carriers through electron tunneling.Fig.S3 (Supporting information) shows the X-ray photoelectron spectroscopy (XPS) measurement results of ZrN nanoparticles.The broad band of photoelectron emissions across Fermi level can be well discerned from the XPS valance band spectrum,verifying typical metal-like electronic structure of ZrN nanoparticles,albeit the presence of a significant amount of Zr-O bonding states at the nanoparticle surfaces.

    Optical features of the ZrN nanoparticles were analyzed by UV–vis–NIR absorption spectroscopy.Fig.2c shows the optical absorption spectrum of the aqueous dispersion of the as–synthesized ZrN nanoparticles,and the inset is a photograph of the corresponding aqueous dispersion.The absorption spectrum shows a broad peak centered at ~690 nm originating from the plasmon resonance of ZrN.Spectral measurements on several other specimens revealed typical variations in peak wavelength less than 5 nm.Finite–difference time–domain (FDTD) simulations of the absorption spectra were carried out to compare with the experimental results.Fig.2d displays the simulated spectra of a spherical 30–nm–diameter ZrN nanoparticle with a bare surface and coated with a 3 nm ZrO2shell.As consistent with previous studies [30],it is quite noticeable that the presence of the oxide layer on the surface of ZrN nanoparticles leads to a distinct red–shift of the LSPR peak due to the higher refractive index of ZrO2with respect to the solvent.As compared to the simulated spectra,the experimentally observed spectrum exhibits apparently broadening and red–shifting of the absorption band,which is mainly resulted from the relatively large size distribution of ZrN nanoparticles,and more importantly,from the aggregation induced interparticle coupling of the surface plasmon oscillations.Note that,as evidenced from the TEM image in Fig.1c,even in the aqueous dispersion,not all ZrN nanoparticles are monodisperse and isolated,and a broad red–shifted absorption band is known to be characteristic of aggregates of plasmonic nanostructures [31–33].

    In a procedure similar to previously established method [34,35],we examined photocatalytic H2evolution over the plasmonic ZrN nanoparticles in aqueous solution with the presence of menthol(10 vol%) as a sacrificial electron donor.Without the help of any noble metal catalysts such as Pt,the bare ZrN nanoparticles achieved steady H2production under UV–visible light illumination.A typical time courses of H2evolution is shown in Fig.3a(black dots).Continuous H2evolution with no apparent degradation of the ZrN nanoparticles was clearly observed from the beginning of the reaction,with a rate of 0.48 mmol g?1h?1.No N2evolution was observed for the present catalyst even after the extended period of irradiation.The total evolution of H2after 24 h was 345.6 μmol,exceeding the molar amount of the starting ZrN catalyst.The stable photocatalytic activity observed in bare ZrN nanoparticles implies that there is an efficient separation of photogenerated electron-hole pairs,as also further confirmed by photoelectrochemical characterization.As seen in the time course of photocurrent generation on ZrN nanoparticle photocathode under potentiostatic condition (Fig.S4 in Supporting information),a fast response to the switching of the light ON–OFF signal can be clearly observed.Interestingly,with the addition of 1.0 wt% Pt as cocatalyst,only very limited enhancement of activity was observed,as shown in Fig.3a (blue dots),clearly suggesting a negligible effect of Pt on H2evolution over ZrN.Production of H2was also observed when other electron donors such as Na2S and triethanolamine (TEOA) were used instead of methanol.When Na2S was used as the sacrificial agent,much improved H2yields were observed,whereas in the case of TEOA,slightly decreased activity was observed in comparison with that of methanol (Fig.S5 in Supporting information).

    Fig.3.(a) Typical time courses of H2 evolution from water containing 10 vol%methanol as electron donor by ZrN (black dots,almost coincide with the blue dots),ZrN–Pt (blue dots) and ZrN–CoOx (red dots).(b) Typical time courses of O2 evolution from water containing 0.1 mol/L Na2S2O8 as electron scavenger by ZrN (black dots) and CoOx–modified ZrN (red dots).The reaction was continued for 24 h,with evacuation every 6 h (dashed line).

    Of the two half–reactions involved in the splitting of water,water oxidation to produce molecular oxygen is mechanistically more challenging as it requires four positive holes and the formation of a new O–O bond.To overcome this rate limiting step,oxygen evolution cocatalysts (OEC) are commonly employed.Here in our present study,cobalt oxide (CoOx),which has been extensively used as OEC-cocatalyst for hole collectors in electrochemical and photocatalytic water splitting [36],was deposited on ZrN nanoparticles as OEC-cocatalyst to facilitate the separation of photogenerated charge carriers and further improve the photocatalytic activity.The deposition was achieved by an impregnation method from ethanol solution of Co(NO3)2,followed by NH3treatment at 700 °C and calcination at 200 °C in air [37].XPS measurements suggest that the CoOxcocatalyst is a mixture of Co2+and Co3+oxidation state (Fig.S6 in Supporting information).Whereas the bare ZrN catalyst was almost not active for water oxidation,producing only a trace of O2after 5 h of UV-visible illumination in an aqueous solution with Na2S2O8as electron scavenger,the oxygen evolution rate was dramatically increased when the CoOx–OEC was loaded.The optimal amount of CoOx–OEC in our present study is around 2.0 wt%,under which condition the O2–production rate can reach 32.44 mmol h?1g?1(Fig.3b).A further increase in the amount of CoOxaddition up to 3.0 wt% led to a slight decrease in activity,which may be caused by the agglomeration of CoOxinto larger nanoparticles resulting in less surface area.In addition,as compared to bare ZrN nanoparticles,a significant enhancement of H2evolution activity was also observed for CoOx–modified ZrN catalyst,with the H2evolution rate being ~10 times higher in the aqueous methanol solution under the same UV-visible illumination(Fig.3a).

    Fig.4.(a) Typical time courses of H2 and O2 evolution from water with 2.0 wt%by CoOx–modified ZrN catalyst in a pH 7 phosphate buffer.(b) Schematic of overall water splitting over the CoOx–modified plasmonic ZrN photocatalyst.

    Given the enhanced photocatalytic performance of CoOx–modified ZrN photocatalyst,its photocatalytic performance for the overall water splitting was further examined.In a pH 7 phosphate buffer,the steady H2and O2evolution was observed on CoOx–modified ZrN without any sacrificial agents under UV-visible illumination.At lower CoOxaddition amount such as 0.5 wt%,the stoichiometric ratio of H2and O2was not equal to 2:1 and O2evolution rate is slower than the theoretical value (Fig.S7 in Supporting information).Nevertheless,an increase of the loading of CoOxcocatalyst to 2.0 wt% can give rise to more stoichiometric H2and O2production approximately equal to 2:1 (Fig.4a).For a direct comparison,the bare ZrN and Pt–modified ZrN were also tested but both of them showed no detectable H2or O2evolution in pure water.Fig.4b shows a schematic of the plasmonically driven water-splitting process occurring over the CoOx–modified ZrN photocatalyst.The optically excited surface plasmons in ZrN nanoparticles decay into hot electron-hole pairs.The CoOxcocatalyst acts as hole collector to prompt the separation of hot electron-hole pairs and also serves as active sites to activate the water oxidation reaction for O2evolution.At the same time,the spatially separated hot electrons are directly injected into water molecules to drive the H2evolution reaction.The net result of whole process is the direct plasmon-driven splitting of water.

    We present the first demonstration of the use of plasmonic ZrN nanoparticles for direct hot electron–driven photocatalytic water splitting.The nanoplasmonic ZrN photocatalyst does not utilize any noble metal cocatalysts and can deliver stable photocatalytic activity for H2evolution in aqueous solution containing methanol as sacrificial electron donor.The modification of ZrN nanoparticles with CoOxcocatalyst can lead to significant enhancement of the H2evolution rate,and start up efficient O2evolution.More importantly,the direct overall water splitting for simultaneous H2and O2evolution can also be achieved by utilizing CoOxmodified ZrN photocatalysts in a pH 7 phosphate buffer without the requirement of any sacrificial agents.

    Declaration of competing interest

    The authors claim no conflicts of interest.

    Acknowledgments

    This work was supported by the Natural Science Foundation of China (Nos.21872172,21773303,51472267 and 51421002) and Chinese Academy of Sciences (Nos.XDB30000000,XDB07030100,Y8K5261B11 and ZDYZ2015-1).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.07.054.

    黑人欧美特级aaaaaa片| 国产在线一区二区三区精| 国产深夜福利视频在线观看| 国产xxxxx性猛交| 天天添夜夜摸| а√天堂www在线а√下载 | 国产淫语在线视频| 黄色视频不卡| 亚洲精华国产精华精| 久久精品国产99精品国产亚洲性色 | 国产高清激情床上av| 日韩三级视频一区二区三区| 欧美色视频一区免费| 制服人妻中文乱码| 国产99白浆流出| 村上凉子中文字幕在线| 欧美激情高清一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲午夜理论影院| 好男人电影高清在线观看| 99国产精品免费福利视频| 国产黄色免费在线视频| 国产在线精品亚洲第一网站| 亚洲精品在线美女| 亚洲熟妇熟女久久| 亚洲熟女精品中文字幕| 黄色毛片三级朝国网站| 丝瓜视频免费看黄片| 国产午夜精品久久久久久| 午夜精品在线福利| 久久人妻av系列| 亚洲专区国产一区二区| 久久中文看片网| 久久精品成人免费网站| 我的亚洲天堂| 18禁观看日本| 亚洲人成77777在线视频| 国产精品美女特级片免费视频播放器 | 一区二区三区激情视频| 99热只有精品国产| av福利片在线| 欧美日韩国产mv在线观看视频| av线在线观看网站| 性色av乱码一区二区三区2| 99热网站在线观看| 在线十欧美十亚洲十日本专区| 国产亚洲精品第一综合不卡| 满18在线观看网站| 成熟少妇高潮喷水视频| 亚洲欧美日韩另类电影网站| 日韩欧美一区视频在线观看| 18在线观看网站| av天堂久久9| 在线观看66精品国产| 一区二区日韩欧美中文字幕| 嫁个100分男人电影在线观看| 国产色视频综合| 欧美成人免费av一区二区三区 | 免费少妇av软件| 在线永久观看黄色视频| 国产精品久久视频播放| 黄色怎么调成土黄色| 国产无遮挡羞羞视频在线观看| 美女高潮喷水抽搐中文字幕| bbb黄色大片| 国产1区2区3区精品| 成人av一区二区三区在线看| 久久中文字幕一级| 熟女少妇亚洲综合色aaa.| a级毛片黄视频| 国产精品香港三级国产av潘金莲| 桃红色精品国产亚洲av| 国产精品电影一区二区三区 | 老司机午夜福利在线观看视频| 成人永久免费在线观看视频| 一区福利在线观看| 如日韩欧美国产精品一区二区三区| av天堂久久9| 精品国产超薄肉色丝袜足j| 亚洲av成人av| 色婷婷av一区二区三区视频| 9热在线视频观看99| 久久精品熟女亚洲av麻豆精品| av网站免费在线观看视频| 视频在线观看一区二区三区| 亚洲欧洲精品一区二区精品久久久| 国产视频一区二区在线看| 黄片小视频在线播放| 成年人黄色毛片网站| 人妻丰满熟妇av一区二区三区 | 18在线观看网站| 9色porny在线观看| 纯流量卡能插随身wifi吗| 亚洲av日韩精品久久久久久密| 日韩一卡2卡3卡4卡2021年| 亚洲专区字幕在线| 国产精品久久久人人做人人爽| 亚洲一区二区三区欧美精品| 中文字幕av电影在线播放| 大型黄色视频在线免费观看| 成在线人永久免费视频| 成年女人毛片免费观看观看9 | 亚洲性夜色夜夜综合| 国产97色在线日韩免费| 一级黄色大片毛片| 久久久久久久午夜电影 | 亚洲一区二区三区不卡视频| 黄色女人牲交| 操出白浆在线播放| 欧美精品啪啪一区二区三区| 中文字幕人妻丝袜一区二区| 欧美日韩一级在线毛片| 欧美精品啪啪一区二区三区| 男女床上黄色一级片免费看| 欧美黄色淫秽网站| 在线观看免费视频日本深夜| 久久久国产精品麻豆| 夜夜夜夜夜久久久久| 在线十欧美十亚洲十日本专区| av视频免费观看在线观看| 男人的好看免费观看在线视频 | 12—13女人毛片做爰片一| 五月开心婷婷网| 国产成人免费观看mmmm| www日本在线高清视频| 一区二区日韩欧美中文字幕| 日本一区二区免费在线视频| 下体分泌物呈黄色| 19禁男女啪啪无遮挡网站| 国产成人一区二区三区免费视频网站| 97人妻天天添夜夜摸| 亚洲第一青青草原| 首页视频小说图片口味搜索| 精品国产超薄肉色丝袜足j| 五月开心婷婷网| 亚洲成国产人片在线观看| 亚洲午夜精品一区,二区,三区| 亚洲视频免费观看视频| 日本vs欧美在线观看视频| 女性被躁到高潮视频| 午夜福利一区二区在线看| 两性夫妻黄色片| 免费观看精品视频网站| 黑人巨大精品欧美一区二区蜜桃| 久久精品91无色码中文字幕| 看黄色毛片网站| 亚洲国产精品sss在线观看 | 日本vs欧美在线观看视频| 又黄又爽又免费观看的视频| 免费在线观看完整版高清| 国产欧美日韩综合在线一区二区| 女性被躁到高潮视频| 热99久久久久精品小说推荐| 性少妇av在线| a级毛片黄视频| 亚洲av美国av| 国产麻豆69| 免费在线观看视频国产中文字幕亚洲| www.999成人在线观看| 精品国产一区二区久久| 九色亚洲精品在线播放| 午夜福利在线免费观看网站| 伦理电影免费视频| 亚洲专区中文字幕在线| 99国产精品一区二区蜜桃av | 欧美日韩中文字幕国产精品一区二区三区 | 搡老岳熟女国产| 国产精品久久视频播放| 精品久久久精品久久久| 美女高潮喷水抽搐中文字幕| 成人三级做爰电影| 大型黄色视频在线免费观看| 最新的欧美精品一区二区| 啦啦啦视频在线资源免费观看| 国产在线观看jvid| 中文字幕人妻熟女乱码| 国产精品免费视频内射| 欧美日韩亚洲综合一区二区三区_| 国产精品 欧美亚洲| 悠悠久久av| 性色av乱码一区二区三区2| 最新美女视频免费是黄的| 国产亚洲精品久久久久久毛片 | 在线免费观看的www视频| 热99久久久久精品小说推荐| 国产伦人伦偷精品视频| 欧美色视频一区免费| 久久热在线av| 亚洲午夜精品一区,二区,三区| 男女午夜视频在线观看| 女人久久www免费人成看片| 中文欧美无线码| 欧美成人免费av一区二区三区 | av中文乱码字幕在线| 捣出白浆h1v1| 欧美日韩成人在线一区二区| 精品久久蜜臀av无| av电影中文网址| 久久人人97超碰香蕉20202| 亚洲熟妇熟女久久| 制服诱惑二区| 国产成人av激情在线播放| 一区二区三区激情视频| 99re6热这里在线精品视频| 在线观看免费日韩欧美大片| 国内久久婷婷六月综合欲色啪| 亚洲午夜精品一区,二区,三区| 老汉色av国产亚洲站长工具| 亚洲国产中文字幕在线视频| 精品亚洲成a人片在线观看| 麻豆av在线久日| 中文字幕高清在线视频| 亚洲,欧美精品.| 女人精品久久久久毛片| 午夜视频精品福利| 在线观看午夜福利视频| 在线十欧美十亚洲十日本专区| 十八禁网站免费在线| 久久久久国产一级毛片高清牌| 丰满饥渴人妻一区二区三| 丰满迷人的少妇在线观看| 精品亚洲成a人片在线观看| 欧美日韩成人在线一区二区| 9热在线视频观看99| 国产亚洲欧美在线一区二区| 国产在线精品亚洲第一网站| 两个人免费观看高清视频| 日本一区二区免费在线视频| 在线观看www视频免费| 免费观看人在逋| 黄色a级毛片大全视频| 无遮挡黄片免费观看| 久久性视频一级片| 在线观看66精品国产| 精品国产一区二区三区久久久樱花| 久久人妻av系列| 国产在线观看jvid| 99久久精品国产亚洲精品| 国产精品乱码一区二三区的特点 | 另类亚洲欧美激情| 精品欧美一区二区三区在线| 十八禁高潮呻吟视频| 大香蕉久久成人网| 一级黄色大片毛片| 交换朋友夫妻互换小说| 好看av亚洲va欧美ⅴa在| 免费在线观看完整版高清| 大码成人一级视频| av天堂在线播放| 国产精华一区二区三区| 午夜激情av网站| 国产av精品麻豆| 精品一区二区三区av网在线观看| 国产日韩欧美亚洲二区| 欧美日韩福利视频一区二区| 亚洲精品中文字幕在线视频| 18在线观看网站| av不卡在线播放| 在线天堂中文资源库| 国产精品永久免费网站| 久久国产精品男人的天堂亚洲| 欧美日韩福利视频一区二区| 不卡一级毛片| 嫁个100分男人电影在线观看| 热99国产精品久久久久久7| 19禁男女啪啪无遮挡网站| 男女高潮啪啪啪动态图| av在线播放免费不卡| 一进一出抽搐动态| 黄色 视频免费看| 精品福利永久在线观看| 色婷婷久久久亚洲欧美| 国内毛片毛片毛片毛片毛片| 精品国产国语对白av| 男女床上黄色一级片免费看| 91大片在线观看| 亚洲欧美色中文字幕在线| 中文字幕人妻熟女乱码| 黄色 视频免费看| 国产黄色免费在线视频| 亚洲欧美精品综合一区二区三区| 久久精品国产亚洲av高清一级| 一级毛片高清免费大全| 国产精品九九99| 正在播放国产对白刺激| 国产蜜桃级精品一区二区三区 | a级片在线免费高清观看视频| 成年女人毛片免费观看观看9 | tocl精华| 黄网站色视频无遮挡免费观看| 99国产精品一区二区蜜桃av | 18在线观看网站| 岛国在线观看网站| 在线看a的网站| 王馨瑶露胸无遮挡在线观看| 国产成人精品在线电影| 中文字幕高清在线视频| 久久久国产精品麻豆| 高潮久久久久久久久久久不卡| 国产免费av片在线观看野外av| 精品欧美一区二区三区在线| 在线观看一区二区三区激情| 18禁裸乳无遮挡动漫免费视频| 91字幕亚洲| 欧美成狂野欧美在线观看| 国产精品98久久久久久宅男小说| 交换朋友夫妻互换小说| 美女国产高潮福利片在线看| 亚洲一码二码三码区别大吗| 欧美性长视频在线观看| 亚洲国产精品一区二区三区在线| 欧美精品啪啪一区二区三区| 最近最新中文字幕大全免费视频| 757午夜福利合集在线观看| 黄色视频,在线免费观看| 99精品在免费线老司机午夜| 国产欧美亚洲国产| 日日摸夜夜添夜夜添小说| 欧美激情 高清一区二区三区| 亚洲国产中文字幕在线视频| 国产主播在线观看一区二区| 亚洲精品国产一区二区精华液| 亚洲国产精品sss在线观看 | 淫妇啪啪啪对白视频| 在线永久观看黄色视频| 成人影院久久| 亚洲,欧美精品.| 成人18禁在线播放| 午夜免费观看网址| 丰满迷人的少妇在线观看| 国产免费av片在线观看野外av| 亚洲avbb在线观看| 日韩欧美一区视频在线观看| 国产精品永久免费网站| 久久天堂一区二区三区四区| 久久人妻av系列| 久久精品国产清高在天天线| 久久国产精品人妻蜜桃| 亚洲男人天堂网一区| 国产高清videossex| 精品人妻在线不人妻| 91麻豆av在线| 亚洲片人在线观看| √禁漫天堂资源中文www| 精品一区二区三卡| 欧洲精品卡2卡3卡4卡5卡区| 两个人免费观看高清视频| 国产男女内射视频| 久久久精品免费免费高清| 美女扒开内裤让男人捅视频| av欧美777| 777米奇影视久久| 亚洲国产毛片av蜜桃av| av网站在线播放免费| 欧美在线黄色| 国产精品欧美亚洲77777| 在线观看免费视频网站a站| 久久久久国产一级毛片高清牌| 日韩成人在线观看一区二区三区| 亚洲第一欧美日韩一区二区三区| 国产不卡一卡二| 精品午夜福利视频在线观看一区| 精品视频人人做人人爽| 国产片内射在线| 国产免费av片在线观看野外av| 色尼玛亚洲综合影院| 一区二区日韩欧美中文字幕| 制服人妻中文乱码| 国产欧美日韩精品亚洲av| 我的亚洲天堂| 国产精品.久久久| 免费一级毛片在线播放高清视频 | 欧美激情 高清一区二区三区| 成人影院久久| 亚洲熟妇中文字幕五十中出 | 午夜精品国产一区二区电影| 无人区码免费观看不卡| 午夜免费成人在线视频| 少妇的丰满在线观看| 国产在线观看jvid| √禁漫天堂资源中文www| 80岁老熟妇乱子伦牲交| 国产aⅴ精品一区二区三区波| 国产一卡二卡三卡精品| 我的亚洲天堂| 日韩熟女老妇一区二区性免费视频| 男男h啪啪无遮挡| 视频区欧美日本亚洲| 美女福利国产在线| 免费观看人在逋| 免费日韩欧美在线观看| 亚洲av欧美aⅴ国产| 黄色成人免费大全| 一区二区三区精品91| 建设人人有责人人尽责人人享有的| 亚洲人成电影观看| 免费在线观看影片大全网站| 精品无人区乱码1区二区| 人人妻,人人澡人人爽秒播| 性少妇av在线| 日韩 欧美 亚洲 中文字幕| 人妻久久中文字幕网| 一a级毛片在线观看| 国产精品 欧美亚洲| 午夜免费观看网址| 亚洲色图综合在线观看| 国产av精品麻豆| 超碰成人久久| 色精品久久人妻99蜜桃| 亚洲精品中文字幕在线视频| 日本wwww免费看| 久久久国产欧美日韩av| 熟女少妇亚洲综合色aaa.| av视频免费观看在线观看| 最近最新中文字幕大全电影3 | 亚洲欧洲精品一区二区精品久久久| 国产精品免费一区二区三区在线 | 久热这里只有精品99| 搡老乐熟女国产| 午夜福利,免费看| 精品少妇久久久久久888优播| 黄色视频不卡| 亚洲精品av麻豆狂野| 国产精品一区二区在线观看99| 国产成+人综合+亚洲专区| 51午夜福利影视在线观看| 国产乱人伦免费视频| 一边摸一边抽搐一进一小说 | 国产97色在线日韩免费| 成年动漫av网址| 成人黄色视频免费在线看| 身体一侧抽搐| 日韩一卡2卡3卡4卡2021年| tube8黄色片| 法律面前人人平等表现在哪些方面| 亚洲精品一二三| 精品国产乱子伦一区二区三区| 久久精品国产清高在天天线| 熟女少妇亚洲综合色aaa.| 999久久久精品免费观看国产| 亚洲一区中文字幕在线| 另类亚洲欧美激情| 国产精品秋霞免费鲁丝片| 国产不卡一卡二| 制服诱惑二区| 亚洲欧美精品综合一区二区三区| 精品国产乱码久久久久久男人| 啦啦啦在线免费观看视频4| 91麻豆精品激情在线观看国产 | 欧美日韩福利视频一区二区| 亚洲熟女毛片儿| 久久久久久久久久久久大奶| 欧美人与性动交α欧美软件| 90打野战视频偷拍视频| 亚洲欧美日韩高清在线视频| 国产不卡av网站在线观看| 久久久国产一区二区| 亚洲精品在线观看二区| 国产亚洲欧美98| 久久狼人影院| 人人澡人人妻人| 久久久国产精品麻豆| av不卡在线播放| 免费看十八禁软件| 91字幕亚洲| 亚洲第一欧美日韩一区二区三区| 1024香蕉在线观看| 色综合婷婷激情| 久久精品国产亚洲av高清一级| 亚洲欧美日韩另类电影网站| 黄色片一级片一级黄色片| 国产精品久久久av美女十八| 国产日韩一区二区三区精品不卡| 国产免费现黄频在线看| 亚洲一区中文字幕在线| 成人黄色视频免费在线看| 亚洲少妇的诱惑av| av一本久久久久| 国产午夜精品久久久久久| 国产精品久久久久成人av| 又大又爽又粗| 亚洲av成人不卡在线观看播放网| 国产激情久久老熟女| 亚洲久久久国产精品| 色播在线永久视频| 老鸭窝网址在线观看| 超碰97精品在线观看| av片东京热男人的天堂| 国产欧美日韩一区二区三| 黄色毛片三级朝国网站| 国产成人精品无人区| 中文亚洲av片在线观看爽 | 国产淫语在线视频| 看免费av毛片| 亚洲精品中文字幕一二三四区| 麻豆成人av在线观看| 女警被强在线播放| 精品视频人人做人人爽| 亚洲 欧美一区二区三区| 性色av乱码一区二区三区2| 欧美成人午夜精品| 日本wwww免费看| 欧美黑人精品巨大| 亚洲色图综合在线观看| 亚洲av熟女| 精品一区二区三区视频在线观看免费 | 久久天躁狠狠躁夜夜2o2o| 国产欧美日韩一区二区三区在线| 色综合欧美亚洲国产小说| 亚洲,欧美精品.| 亚洲欧美一区二区三区久久| 久久久久国内视频| 国产在线一区二区三区精| 国产精品欧美亚洲77777| 19禁男女啪啪无遮挡网站| www日本在线高清视频| 久久午夜亚洲精品久久| 丁香欧美五月| 午夜免费鲁丝| 亚洲国产精品一区二区三区在线| 国产成人欧美| 人妻久久中文字幕网| 捣出白浆h1v1| 一边摸一边抽搐一进一出视频| 久久午夜亚洲精品久久| 亚洲第一av免费看| 国产99久久九九免费精品| 亚洲七黄色美女视频| 国产一区二区三区视频了| 少妇的丰满在线观看| 欧美黑人欧美精品刺激| 欧美性长视频在线观看| 久9热在线精品视频| 一级a爱片免费观看的视频| 91老司机精品| 亚洲国产精品一区二区三区在线| 欧美 日韩 精品 国产| 人妻久久中文字幕网| 成年人免费黄色播放视频| 又黄又爽又免费观看的视频| av福利片在线| 日韩欧美一区视频在线观看| 丝袜美足系列| a在线观看视频网站| videos熟女内射| 9色porny在线观看| 51午夜福利影视在线观看| 丝袜在线中文字幕| 亚洲精品国产一区二区精华液| 国产精品九九99| 水蜜桃什么品种好| 国产成人av教育| 久久久精品免费免费高清| 国产成人精品久久二区二区免费| 视频在线观看一区二区三区| 国产野战对白在线观看| 欧美久久黑人一区二区| 亚洲七黄色美女视频| 12—13女人毛片做爰片一| 校园春色视频在线观看| 国产一区二区激情短视频| 国产精品98久久久久久宅男小说| 亚洲人成伊人成综合网2020| 黄片小视频在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人一区二区三区免费视频网站| 热99久久久久精品小说推荐| 美国免费a级毛片| 制服诱惑二区| 成年动漫av网址| 丝袜美足系列| 亚洲五月婷婷丁香| 国产又爽黄色视频| 一级毛片精品| 高清黄色对白视频在线免费看| 欧美 日韩 精品 国产| √禁漫天堂资源中文www| 国产精品自产拍在线观看55亚洲 | 很黄的视频免费| 亚洲第一青青草原| 免费日韩欧美在线观看| 99久久国产精品久久久| 一区福利在线观看| 在线观看舔阴道视频| 香蕉国产在线看| 一a级毛片在线观看| 在线国产一区二区在线| 超色免费av| 亚洲欧美色中文字幕在线| 黄色毛片三级朝国网站| 18在线观看网站| 免费少妇av软件| 成人精品一区二区免费| 一区二区三区精品91| 日韩 欧美 亚洲 中文字幕| 丝袜美足系列| 成年人黄色毛片网站| 一区福利在线观看| 搡老熟女国产l中国老女人| 波多野结衣一区麻豆| 久久精品国产亚洲av香蕉五月 | 超色免费av| 日韩 欧美 亚洲 中文字幕| 亚洲国产欧美网| 国产av又大| 少妇被粗大的猛进出69影院| 精品久久久精品久久久| 别揉我奶头~嗯~啊~动态视频| 丰满的人妻完整版| 亚洲va日本ⅴa欧美va伊人久久| 人人妻人人澡人人看| 国产午夜精品久久久久久| 中文亚洲av片在线观看爽 | 亚洲av成人av| 一级a爱视频在线免费观看|