• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nanoplasmonic zirconium nitride photocatalyst for direct overall water splitting

    2022-06-18 10:52:46YuLiuXioweiZhngLishLuJunYeJinlinWngXiominLiXuedongBiWenlongWng
    Chinese Chemical Letters 2022年3期

    Yu Liu,Xiowei Zhng,Lish Lu,Jun Ye,Jinlin Wng,Xiomin Li,Xuedong Bi,c,Wenlong Wng,c,?

    a Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    b School of Physical Sciences,University of Chinese Academy of Sciences,Chinese Academy of Sciences,Beijing 100190,China

    c Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords:Zirconium nitride Surface plasmon Noble–metal–free Photocatalytic water splitting Hot electron

    ABSTRACT The ability of plasmonic nanostructures to efficiently harvest light energy and generate energetic hot carriers makes them promising materials for utilization in photocatalytic water spitting.Apart from the traditional Au and Ag based plasmonic photocatalysts,more recently the noble–metal–free alternative plasmonic materials have attracted ever–increasing interest.Here we report the first use of plasmonic zirconium nitride (ZrN) nanoparticles as a promising photocatalyst for water splitting.Highly crystalline ZrN nanoparticles with sizes dominating at 30–50 nm were synthesized that exhibit intense visible and near–infrared absorption due to localized surface plasmon resonance (LSPR).Without utilizing any noble metal cocatalysts such as Pt,the plasmonic ZrN nanoparticles alone showed stable photocatalytic activity for H2 evolution in aqueous solution with methanol as sacrificial electron donor.The addition of a cobalt oxide (CoOx) cocatalyst can facilitate the separation of photogenerated charge carriers and further improve the photocatalytic activity.The optimized CoOx modified ZrN photocatalyst was observed not only to activate the O2 evolution reaction with presence of electron acceptor,but also to drive overall water splitting for the simultaneous H2 and O2 evolution in the absence of any sacrificial agents.

    The utilization of solar energy to drive photocatalytic water splitting for sustainable hydrogen production is one of the most prevailing ways for meeting the future need of environmentally friendly and renewable energy sources [1–8].With the use of noble metal Au and Ag plasmonic nanostructures,the field of plasmonic photocatalysis has witnessed tremendous progress over the past decade.As compared to the conventional semiconductor photocatalysts,the localized surface plasmon resonance (LSPR) in metal nanostructures provide a more viable way in high–efficiency harvesting of light energy,and especially the less energetic visible photons,for driving photocatalytic water splitting reactions[3,9].The plasmonic enhancement of photocatalytic water splitting involves complex mechanisms.In a typical metal–semiconductor heterojunction configuration such as the best studied Au–TiO2system,the enhancement mechanisms may include enhanced light absorption,forced separation of electron–hole pairs,plasmon–induced resonance energy transfer,and in particular,the transfer of plasmonic hot carriers from metal to semiconductor through a Schottky barrier [10].Meanwhile,as a simpler scenario,there are also studies that do not utilize a Schottky junction to drive the direct plasmonic photocatalysis including water splitting [11,12].

    In recent years,the conductive transition–metal nitrides [13,14],such as TiN and ZrN,have undergone a resurgence of interest as promising alternatives to the conventional Au and Ag based noble metal plasmonic materials.TiN and ZrN have dielectric permittivities with a zero crossover wavelength in the visible region,very similar to Au,thereby exhibit plasmonic properties comparable to those of Au in the visible and near–infrared (NIR) spectrum [15,16].Coupled with their high temperature durability,chemical stability and low cost,TiN and ZrN can replace and even outperform the traditional noble metals in many plasmonic devices and applications [16–18].More recently,the experimental realizations of a variety of TiN–based plasmonic and nanophotonic devices have been reported,and there are also studies of utilizing the plasmonic TiN nanostructures for photocatalytic and photoelectrochemical watersplitting [19,20].However,as compared to TiN,to date the utilization of the excellent plasmonic properties of ZrN for practice applications has been far less explored.Herein,we present the first demonstration of the capability of ZrN nanostructures as a promising plasmonic photocatalyst for water splitting.

    Fig.1.Morphology and crystal structure of zirconium nitride plasmonic nanoparticles.(a) SEM image of the as–synthesized ZrN nanoparticles with size distribution focusing at 30–50 nm.(b) XRD pattern of the ZrN powder.(c) TEM images of as–prepared ZrN nanoparticles.The insets are HRTEM image and the corresponding FFT pattern.(d) Atomic crystal structure of cubic ZrN viewed along the [110]direction.

    As is known,the generation of hot carriers in Au nanostructures through nonradiative plasmon decay is driven by either intraband excitations within the conduction sp band or by interband excitations resulting from transitions between the filled d–band and sp band (Fig.S1) [21,22].In the cases of TiN and ZrN,however,the situation is a little more complicated.Due to the strong hybridization of Ti/Zr d orbitals with N p orbitals,the plasmonic optical properties involve the intraband excitations due to conduction electrons in the partially filled d band of Ti/Zr and the interband transition between N p to Ti/Zr d orbitals (Fig.S1 in Supporting information) [23,24].By comparison,the interband p→d transition energy of ZrN is larger than that of TiN.This means that ZrN will exhibit blue–shifted and stronger plasmonic response [14,25],thereby favoring the production of higher energy hot charge carriers.Keeping this mind,ZrN is expected to be a more favorable choice for better photocatalytic performance,and in particular,for achieving the overall water splitting,by which H2and O2are produced simultaneously over the photocatalyst.In our present study,this unique benefit of ZrN was proven.The plasmonic ZrN nanoparticles,with optimal modification of a cobalt oxide (CoOx) cocatalyst,exhibit photocatalytic activity for overall water splitting for the simultaneous H2and O2evolution.

    Experimentally,ZrN nanoparticles in the form of free–standing powders are synthesized by controlled nitridation of ZrO2nanoparticles precursor with ammonia gas at elevated temperature (see Supporting information for experimental details).Shown in Fig.1a is a representative scanning electron microscope (SEM) image of the as–grown ZrN nanoparticles.Highly–uniform nanoparticles with irregularly rounded shape and size distribution focusing at 30–50 nm can be clearly visualized (particle size statistics are shown in Fig.S2 in Supporting information).Powder x–ray diffraction (XRD) (Fig.1b) demonstrated that the nanoparticles have the cubic rocksalt–type structure corresponding to a stoichiometric ZrN.It is important to note that,due to the extremely high nitridation reaction temperature (1100 °C),the problem of thermal sintering ZrN nanoparticles during growth can not be fully avoided.Nevertheless,the as–grown ZrN nanoparticles can be well–dispersed in aqueous solution and some other solvents with the aid of mild ultrasonication.Further transmission electron microscope (TEM) characterizations also revealed the structure uniformity of the crystalline ZrN nanoparticles,as shown in Fig.1c.The lattice–resolved high–resolution TEM (HRTEM) image in Fig.1c along with the corresponding fast–Fourier transform (FFT) pattern verified the single–crystallinity and phase purity of the cubic ZrN phase (Fig.1d).

    Fig.2.(a) HAADF image of the as–prepared ZrN nanoparticles with a zirconium oxide shell.(b) HAADF image of a representative ZrN nanoparticle (white) and corresponding EDX mappings showing the distribution of nitrogen (blue),oxygen (red)and zirconium (green).(c) Experimental measured optical absorption spectrum of as–prepared ZrN nanoparticles in aqueous solution.The inset is the photograph of the corresponding aqueous dispersion.(d) FDTD Simulated absorption spectra of spherical 30–nm–diameter ZrN nanoparticle with a bare surface (red) and coated with a 3 nm ZrO2 shell (blue).

    In previous studies of the growth of TiN and ZrN in the forms of thin films,coatings and nanoparticles,it has been well-established that a self–passivating native oxide layer with thickness of a few nanometers will be naturally formed at their when exposed to ambient atmosphere [26].The presence of this conformal protective surface shell is beneficial to the long-term durability of TiN and ZrN nanostructures at room temperature,while preserving their intrinsic plasmonic properties.Shown in Fig.2a is a high resolution high–angle angular dark field scanning transmission electron microscopy (HAADF–STEM) image of an individual ZrN nanoparticle in our present study,where a conformal surface shell with thickness ofca.3 nm can be clearly observed.Further element mapping by energy dispersive X–ray (EDX) spectroscopy (Fig.2b) reveals a distinct oxygen segregation at the nanoparticle surface,confirming that the surface layer is composed of zirconium oxide,presumably in the form of insulating ZrO2or substoichiometric ZrO2?x[27,28].According to the general consensus from previous literature [29],for plasmonic applications the existence of such an ultra-thin insulating surface layer can allow for the transfer of photogenerated charge carriers through electron tunneling.Fig.S3 (Supporting information) shows the X-ray photoelectron spectroscopy (XPS) measurement results of ZrN nanoparticles.The broad band of photoelectron emissions across Fermi level can be well discerned from the XPS valance band spectrum,verifying typical metal-like electronic structure of ZrN nanoparticles,albeit the presence of a significant amount of Zr-O bonding states at the nanoparticle surfaces.

    Optical features of the ZrN nanoparticles were analyzed by UV–vis–NIR absorption spectroscopy.Fig.2c shows the optical absorption spectrum of the aqueous dispersion of the as–synthesized ZrN nanoparticles,and the inset is a photograph of the corresponding aqueous dispersion.The absorption spectrum shows a broad peak centered at ~690 nm originating from the plasmon resonance of ZrN.Spectral measurements on several other specimens revealed typical variations in peak wavelength less than 5 nm.Finite–difference time–domain (FDTD) simulations of the absorption spectra were carried out to compare with the experimental results.Fig.2d displays the simulated spectra of a spherical 30–nm–diameter ZrN nanoparticle with a bare surface and coated with a 3 nm ZrO2shell.As consistent with previous studies [30],it is quite noticeable that the presence of the oxide layer on the surface of ZrN nanoparticles leads to a distinct red–shift of the LSPR peak due to the higher refractive index of ZrO2with respect to the solvent.As compared to the simulated spectra,the experimentally observed spectrum exhibits apparently broadening and red–shifting of the absorption band,which is mainly resulted from the relatively large size distribution of ZrN nanoparticles,and more importantly,from the aggregation induced interparticle coupling of the surface plasmon oscillations.Note that,as evidenced from the TEM image in Fig.1c,even in the aqueous dispersion,not all ZrN nanoparticles are monodisperse and isolated,and a broad red–shifted absorption band is known to be characteristic of aggregates of plasmonic nanostructures [31–33].

    In a procedure similar to previously established method [34,35],we examined photocatalytic H2evolution over the plasmonic ZrN nanoparticles in aqueous solution with the presence of menthol(10 vol%) as a sacrificial electron donor.Without the help of any noble metal catalysts such as Pt,the bare ZrN nanoparticles achieved steady H2production under UV–visible light illumination.A typical time courses of H2evolution is shown in Fig.3a(black dots).Continuous H2evolution with no apparent degradation of the ZrN nanoparticles was clearly observed from the beginning of the reaction,with a rate of 0.48 mmol g?1h?1.No N2evolution was observed for the present catalyst even after the extended period of irradiation.The total evolution of H2after 24 h was 345.6 μmol,exceeding the molar amount of the starting ZrN catalyst.The stable photocatalytic activity observed in bare ZrN nanoparticles implies that there is an efficient separation of photogenerated electron-hole pairs,as also further confirmed by photoelectrochemical characterization.As seen in the time course of photocurrent generation on ZrN nanoparticle photocathode under potentiostatic condition (Fig.S4 in Supporting information),a fast response to the switching of the light ON–OFF signal can be clearly observed.Interestingly,with the addition of 1.0 wt% Pt as cocatalyst,only very limited enhancement of activity was observed,as shown in Fig.3a (blue dots),clearly suggesting a negligible effect of Pt on H2evolution over ZrN.Production of H2was also observed when other electron donors such as Na2S and triethanolamine (TEOA) were used instead of methanol.When Na2S was used as the sacrificial agent,much improved H2yields were observed,whereas in the case of TEOA,slightly decreased activity was observed in comparison with that of methanol (Fig.S5 in Supporting information).

    Fig.3.(a) Typical time courses of H2 evolution from water containing 10 vol%methanol as electron donor by ZrN (black dots,almost coincide with the blue dots),ZrN–Pt (blue dots) and ZrN–CoOx (red dots).(b) Typical time courses of O2 evolution from water containing 0.1 mol/L Na2S2O8 as electron scavenger by ZrN (black dots) and CoOx–modified ZrN (red dots).The reaction was continued for 24 h,with evacuation every 6 h (dashed line).

    Of the two half–reactions involved in the splitting of water,water oxidation to produce molecular oxygen is mechanistically more challenging as it requires four positive holes and the formation of a new O–O bond.To overcome this rate limiting step,oxygen evolution cocatalysts (OEC) are commonly employed.Here in our present study,cobalt oxide (CoOx),which has been extensively used as OEC-cocatalyst for hole collectors in electrochemical and photocatalytic water splitting [36],was deposited on ZrN nanoparticles as OEC-cocatalyst to facilitate the separation of photogenerated charge carriers and further improve the photocatalytic activity.The deposition was achieved by an impregnation method from ethanol solution of Co(NO3)2,followed by NH3treatment at 700 °C and calcination at 200 °C in air [37].XPS measurements suggest that the CoOxcocatalyst is a mixture of Co2+and Co3+oxidation state (Fig.S6 in Supporting information).Whereas the bare ZrN catalyst was almost not active for water oxidation,producing only a trace of O2after 5 h of UV-visible illumination in an aqueous solution with Na2S2O8as electron scavenger,the oxygen evolution rate was dramatically increased when the CoOx–OEC was loaded.The optimal amount of CoOx–OEC in our present study is around 2.0 wt%,under which condition the O2–production rate can reach 32.44 mmol h?1g?1(Fig.3b).A further increase in the amount of CoOxaddition up to 3.0 wt% led to a slight decrease in activity,which may be caused by the agglomeration of CoOxinto larger nanoparticles resulting in less surface area.In addition,as compared to bare ZrN nanoparticles,a significant enhancement of H2evolution activity was also observed for CoOx–modified ZrN catalyst,with the H2evolution rate being ~10 times higher in the aqueous methanol solution under the same UV-visible illumination(Fig.3a).

    Fig.4.(a) Typical time courses of H2 and O2 evolution from water with 2.0 wt%by CoOx–modified ZrN catalyst in a pH 7 phosphate buffer.(b) Schematic of overall water splitting over the CoOx–modified plasmonic ZrN photocatalyst.

    Given the enhanced photocatalytic performance of CoOx–modified ZrN photocatalyst,its photocatalytic performance for the overall water splitting was further examined.In a pH 7 phosphate buffer,the steady H2and O2evolution was observed on CoOx–modified ZrN without any sacrificial agents under UV-visible illumination.At lower CoOxaddition amount such as 0.5 wt%,the stoichiometric ratio of H2and O2was not equal to 2:1 and O2evolution rate is slower than the theoretical value (Fig.S7 in Supporting information).Nevertheless,an increase of the loading of CoOxcocatalyst to 2.0 wt% can give rise to more stoichiometric H2and O2production approximately equal to 2:1 (Fig.4a).For a direct comparison,the bare ZrN and Pt–modified ZrN were also tested but both of them showed no detectable H2or O2evolution in pure water.Fig.4b shows a schematic of the plasmonically driven water-splitting process occurring over the CoOx–modified ZrN photocatalyst.The optically excited surface plasmons in ZrN nanoparticles decay into hot electron-hole pairs.The CoOxcocatalyst acts as hole collector to prompt the separation of hot electron-hole pairs and also serves as active sites to activate the water oxidation reaction for O2evolution.At the same time,the spatially separated hot electrons are directly injected into water molecules to drive the H2evolution reaction.The net result of whole process is the direct plasmon-driven splitting of water.

    We present the first demonstration of the use of plasmonic ZrN nanoparticles for direct hot electron–driven photocatalytic water splitting.The nanoplasmonic ZrN photocatalyst does not utilize any noble metal cocatalysts and can deliver stable photocatalytic activity for H2evolution in aqueous solution containing methanol as sacrificial electron donor.The modification of ZrN nanoparticles with CoOxcocatalyst can lead to significant enhancement of the H2evolution rate,and start up efficient O2evolution.More importantly,the direct overall water splitting for simultaneous H2and O2evolution can also be achieved by utilizing CoOxmodified ZrN photocatalysts in a pH 7 phosphate buffer without the requirement of any sacrificial agents.

    Declaration of competing interest

    The authors claim no conflicts of interest.

    Acknowledgments

    This work was supported by the Natural Science Foundation of China (Nos.21872172,21773303,51472267 and 51421002) and Chinese Academy of Sciences (Nos.XDB30000000,XDB07030100,Y8K5261B11 and ZDYZ2015-1).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.07.054.

    欧美bdsm另类| 肉色欧美久久久久久久蜜桃| 欧美日韩视频高清一区二区三区二| 成人毛片a级毛片在线播放| 女人被躁到高潮嗷嗷叫费观| 免费日韩欧美在线观看| 日韩制服骚丝袜av| 亚洲一码二码三码区别大吗| 又黄又粗又硬又大视频| 日本猛色少妇xxxxx猛交久久| 男的添女的下面高潮视频| 亚洲成人一二三区av| 色哟哟·www| 午夜日本视频在线| 国产精品香港三级国产av潘金莲 | 少妇人妻精品综合一区二区| av网站在线播放免费| 亚洲人成电影观看| 久久女婷五月综合色啪小说| 香蕉精品网在线| 午夜日韩欧美国产| 99国产综合亚洲精品| 春色校园在线视频观看| 久久ye,这里只有精品| 成人黄色视频免费在线看| 男女免费视频国产| 免费观看av网站的网址| 亚洲第一青青草原| 亚洲精品在线美女| 一本久久精品| 成人漫画全彩无遮挡| 成人国语在线视频| 看非洲黑人一级黄片| 最近中文字幕2019免费版| 少妇精品久久久久久久| 如何舔出高潮| 国产精品国产三级国产专区5o| 9热在线视频观看99| 9191精品国产免费久久| 成年女人毛片免费观看观看9 | 2021少妇久久久久久久久久久| 亚洲精品久久久久久婷婷小说| 九草在线视频观看| 久热这里只有精品99| 晚上一个人看的免费电影| 久久国内精品自在自线图片| 午夜免费鲁丝| 黑人猛操日本美女一级片| 七月丁香在线播放| 久久免费观看电影| 天堂中文最新版在线下载| 熟女av电影| 精品国产超薄肉色丝袜足j| 亚洲国产色片| 久久久久人妻精品一区果冻| 一区二区av电影网| 大话2 男鬼变身卡| 久久久久国产网址| 日韩一区二区视频免费看| 飞空精品影院首页| av不卡在线播放| 国产av国产精品国产| 成人国产av品久久久| 69精品国产乱码久久久| av有码第一页| 精品人妻在线不人妻| 日韩一区二区视频免费看| 精品亚洲乱码少妇综合久久| 亚洲国产成人一精品久久久| 国产片特级美女逼逼视频| 亚洲欧美清纯卡通| av国产久精品久网站免费入址| 中文字幕人妻丝袜一区二区 | 午夜老司机福利剧场| 免费av中文字幕在线| 久久久久精品久久久久真实原创| 亚洲av中文av极速乱| 日韩av不卡免费在线播放| 日韩熟女老妇一区二区性免费视频| 新久久久久国产一级毛片| 欧美亚洲日本最大视频资源| 国产一级毛片在线| 中文乱码字字幕精品一区二区三区| 精品第一国产精品| 美女国产视频在线观看| 免费高清在线观看视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 国产精品二区激情视频| 国产淫语在线视频| 国产免费又黄又爽又色| 一级黄片播放器| 成年人午夜在线观看视频| 免费在线观看视频国产中文字幕亚洲 | av天堂久久9| 十分钟在线观看高清视频www| 中文欧美无线码| 国产成人精品久久二区二区91 | 超碰成人久久| 精品少妇久久久久久888优播| 久久午夜综合久久蜜桃| 久久 成人 亚洲| 免费播放大片免费观看视频在线观看| 久久久国产精品麻豆| 国产精品二区激情视频| 久久久精品免费免费高清| 精品一区二区三卡| 97在线人人人人妻| 热re99久久精品国产66热6| 国产精品久久久久久精品古装| 精品久久蜜臀av无| 日韩av在线免费看完整版不卡| 人人妻人人澡人人爽人人夜夜| 欧美激情 高清一区二区三区| 国产精品久久久av美女十八| 韩国精品一区二区三区| 成人二区视频| 国产精品熟女久久久久浪| 99九九在线精品视频| 伦理电影免费视频| 久久久久久伊人网av| 欧美日韩精品成人综合77777| 国产一区二区三区av在线| 国产精品偷伦视频观看了| 亚洲精品自拍成人| 国产精品 国内视频| 色94色欧美一区二区| 国产精品不卡视频一区二区| 国产毛片在线视频| 另类亚洲欧美激情| 久久毛片免费看一区二区三区| 午夜免费观看性视频| 亚洲欧美色中文字幕在线| 亚洲精品一区蜜桃| 久久久久久人妻| 丝瓜视频免费看黄片| 波多野结衣av一区二区av| 伊人久久大香线蕉亚洲五| 蜜桃国产av成人99| 亚洲图色成人| 久久久久久久亚洲中文字幕| 国产精品二区激情视频| 亚洲精品美女久久av网站| 国产成人一区二区在线| 精品少妇黑人巨大在线播放| 黑丝袜美女国产一区| 精品福利永久在线观看| 免费高清在线观看视频在线观看| 国产精品无大码| 免费观看a级毛片全部| 国产精品秋霞免费鲁丝片| 中文字幕人妻熟女乱码| 少妇人妻久久综合中文| 亚洲精品乱久久久久久| 亚洲av福利一区| 久久久久国产一级毛片高清牌| 欧美少妇被猛烈插入视频| 日韩精品免费视频一区二区三区| 精品酒店卫生间| 日韩av不卡免费在线播放| 纵有疾风起免费观看全集完整版| 午夜日本视频在线| 美女主播在线视频| 极品人妻少妇av视频| 菩萨蛮人人尽说江南好唐韦庄| 美女国产视频在线观看| 欧美精品国产亚洲| 成人国语在线视频| 国产极品粉嫩免费观看在线| 国产成人免费观看mmmm| 精品国产一区二区久久| 国产成人精品婷婷| 9色porny在线观看| 亚洲国产精品一区三区| 中国国产av一级| 搡老乐熟女国产| 青青草视频在线视频观看| 搡老乐熟女国产| 人人妻人人添人人爽欧美一区卜| 欧美国产精品一级二级三级| 中文精品一卡2卡3卡4更新| 国产精品三级大全| 校园人妻丝袜中文字幕| 亚洲av免费高清在线观看| 老司机亚洲免费影院| 久久精品国产综合久久久| 99久国产av精品国产电影| 亚洲一区中文字幕在线| 国产精品99久久99久久久不卡 | 2018国产大陆天天弄谢| 亚洲内射少妇av| 欧美精品av麻豆av| 欧美日韩视频高清一区二区三区二| 最近中文字幕高清免费大全6| 免费观看无遮挡的男女| 大片免费播放器 马上看| 免费在线观看视频国产中文字幕亚洲 | 男女下面插进去视频免费观看| 黄频高清免费视频| 91午夜精品亚洲一区二区三区| 久久这里只有精品19| 成人国语在线视频| 男女国产视频网站| 一二三四中文在线观看免费高清| 天天躁日日躁夜夜躁夜夜| a 毛片基地| 国产一级毛片在线| 免费黄频网站在线观看国产| 成年动漫av网址| 尾随美女入室| 国产成人精品在线电影| 人成视频在线观看免费观看| 69精品国产乱码久久久| 精品午夜福利在线看| 大片电影免费在线观看免费| 欧美国产精品一级二级三级| 亚洲情色 制服丝袜| 日日摸夜夜添夜夜爱| 久久韩国三级中文字幕| 热99国产精品久久久久久7| 最近2019中文字幕mv第一页| 超碰97精品在线观看| 国产一级毛片在线| 国产野战对白在线观看| 久热这里只有精品99| 国产精品二区激情视频| 尾随美女入室| 国产有黄有色有爽视频| av在线观看视频网站免费| av免费在线看不卡| 国产亚洲欧美精品永久| 亚洲精品久久午夜乱码| 亚洲国产最新在线播放| 曰老女人黄片| 精品99又大又爽又粗少妇毛片| 久久久a久久爽久久v久久| 久久av网站| 99国产综合亚洲精品| 汤姆久久久久久久影院中文字幕| 五月伊人婷婷丁香| 久久久久视频综合| 久久午夜综合久久蜜桃| 午夜91福利影院| 水蜜桃什么品种好| 亚洲国产成人一精品久久久| 91成人精品电影| 亚洲精华国产精华液的使用体验| 亚洲经典国产精华液单| 中文字幕人妻丝袜制服| 91aial.com中文字幕在线观看| 中国三级夫妇交换| 天美传媒精品一区二区| 嫩草影院入口| 国产乱来视频区| 亚洲精品国产av蜜桃| 老女人水多毛片| www.av在线官网国产| 一级,二级,三级黄色视频| 观看av在线不卡| 大片电影免费在线观看免费| 亚洲国产av新网站| 伦理电影免费视频| 妹子高潮喷水视频| 捣出白浆h1v1| 国产有黄有色有爽视频| 街头女战士在线观看网站| 一级毛片 在线播放| 看免费av毛片| 日韩中文字幕欧美一区二区 | 精品国产一区二区三区久久久樱花| 1024视频免费在线观看| 国产一区亚洲一区在线观看| 国产成人a∨麻豆精品| 少妇 在线观看| 精品亚洲乱码少妇综合久久| 亚洲,欧美,日韩| 国产av精品麻豆| 如日韩欧美国产精品一区二区三区| 日韩一卡2卡3卡4卡2021年| 久久ye,这里只有精品| 国语对白做爰xxxⅹ性视频网站| 曰老女人黄片| 亚洲欧美日韩另类电影网站| 久久精品夜色国产| 晚上一个人看的免费电影| 国产色婷婷99| 欧美成人午夜免费资源| 国产淫语在线视频| 国产淫语在线视频| 高清视频免费观看一区二区| 国产熟女欧美一区二区| av免费观看日本| 国产综合精华液| 中文乱码字字幕精品一区二区三区| 乱人伦中国视频| 伦精品一区二区三区| 在线天堂最新版资源| 搡女人真爽免费视频火全软件| 亚洲国产精品一区三区| 热99国产精品久久久久久7| 欧美日韩亚洲高清精品| 国产不卡av网站在线观看| 高清黄色对白视频在线免费看| 亚洲天堂av无毛| 欧美精品av麻豆av| 2021少妇久久久久久久久久久| 亚洲av在线观看美女高潮| 亚洲经典国产精华液单| 亚洲av欧美aⅴ国产| 色吧在线观看| 人人澡人人妻人| 一边摸一边做爽爽视频免费| 精品一区二区三卡| 久久女婷五月综合色啪小说| 久久99蜜桃精品久久| 久久影院123| 国产片特级美女逼逼视频| 18禁动态无遮挡网站| 免费看不卡的av| 久久精品国产亚洲av高清一级| 99热国产这里只有精品6| 9色porny在线观看| av女优亚洲男人天堂| 亚洲伊人色综图| 黄色一级大片看看| 精品国产乱码久久久久久小说| 人人妻人人添人人爽欧美一区卜| 天天躁日日躁夜夜躁夜夜| 亚洲美女搞黄在线观看| 久久久久国产网址| 街头女战士在线观看网站| 夫妻午夜视频| 国产精品熟女久久久久浪| 国产深夜福利视频在线观看| 国产成人一区二区在线| 1024视频免费在线观看| 国产激情久久老熟女| 日本欧美国产在线视频| 极品少妇高潮喷水抽搐| 成人免费观看视频高清| 亚洲熟女精品中文字幕| 夫妻午夜视频| 下体分泌物呈黄色| 国产精品麻豆人妻色哟哟久久| 久久久久久久久久久免费av| 性色av一级| 尾随美女入室| 超色免费av| 看免费av毛片| 精品少妇久久久久久888优播| 免费黄色在线免费观看| 精品视频人人做人人爽| 欧美精品一区二区大全| 男女边吃奶边做爰视频| 日本欧美国产在线视频| 欧美精品高潮呻吟av久久| 亚洲人成77777在线视频| 国产欧美日韩综合在线一区二区| 亚洲成人手机| 亚洲国产欧美日韩在线播放| 老汉色av国产亚洲站长工具| 91国产中文字幕| 国产片内射在线| 国产黄色视频一区二区在线观看| 成年女人在线观看亚洲视频| 一级,二级,三级黄色视频| 亚洲精品国产色婷婷电影| 97精品久久久久久久久久精品| 80岁老熟妇乱子伦牲交| 亚洲av国产av综合av卡| 久久99蜜桃精品久久| 精品少妇一区二区三区视频日本电影 | 日本免费在线观看一区| 18禁裸乳无遮挡动漫免费视频| 9191精品国产免费久久| 国产野战对白在线观看| 叶爱在线成人免费视频播放| 国产97色在线日韩免费| 美国免费a级毛片| 在线观看人妻少妇| av.在线天堂| 欧美日韩亚洲国产一区二区在线观看 | 国产成人午夜福利电影在线观看| 欧美人与性动交α欧美精品济南到 | 亚洲精品乱久久久久久| 欧美日韩av久久| 久久毛片免费看一区二区三区| 国产精品一国产av| 午夜日韩欧美国产| 国产精品麻豆人妻色哟哟久久| 欧美日韩一区二区视频在线观看视频在线| 啦啦啦在线观看免费高清www| 亚洲精品第二区| 精品人妻熟女毛片av久久网站| 人人妻人人澡人人看| av卡一久久| 自线自在国产av| 欧美xxⅹ黑人| 中文字幕av电影在线播放| 久久精品aⅴ一区二区三区四区 | 国产人伦9x9x在线观看 | 五月伊人婷婷丁香| 免费观看无遮挡的男女| 精品亚洲成国产av| 国产成人精品久久二区二区91 | 人人妻人人澡人人爽人人夜夜| 亚洲av福利一区| 新久久久久国产一级毛片| 国产 一区精品| 亚洲av免费高清在线观看| 久久鲁丝午夜福利片| 欧美国产精品一级二级三级| 国产野战对白在线观看| 26uuu在线亚洲综合色| 日韩 亚洲 欧美在线| 免费观看在线日韩| 久久国产亚洲av麻豆专区| 欧美黄色片欧美黄色片| 久久久国产一区二区| 男女午夜视频在线观看| 边亲边吃奶的免费视频| 制服人妻中文乱码| 欧美成人精品欧美一级黄| 国产精品一区二区在线观看99| 一本—道久久a久久精品蜜桃钙片| 午夜日韩欧美国产| 伊人久久国产一区二区| 精品国产乱码久久久久久男人| 在线观看三级黄色| 麻豆乱淫一区二区| 国产一区二区激情短视频 | 男的添女的下面高潮视频| 在线观看国产h片| 中文字幕亚洲精品专区| 丝袜美腿诱惑在线| 男女高潮啪啪啪动态图| 亚洲国产欧美日韩在线播放| 永久网站在线| 精品第一国产精品| 亚洲伊人色综图| 男的添女的下面高潮视频| 综合色丁香网| 免费黄频网站在线观看国产| 91午夜精品亚洲一区二区三区| 搡老乐熟女国产| 久久精品国产鲁丝片午夜精品| 亚洲精品aⅴ在线观看| 在线观看免费高清a一片| 在线观看一区二区三区激情| 丝袜人妻中文字幕| 王馨瑶露胸无遮挡在线观看| 一区二区日韩欧美中文字幕| av免费观看日本| 男人爽女人下面视频在线观看| 国产在线视频一区二区| 极品人妻少妇av视频| 久久久久精品性色| 国产av一区二区精品久久| 久久久精品国产亚洲av高清涩受| 国产精品嫩草影院av在线观看| 一二三四中文在线观看免费高清| 丝袜脚勾引网站| 十八禁网站网址无遮挡| 国产成人精品婷婷| 在线亚洲精品国产二区图片欧美| 亚洲av欧美aⅴ国产| 我的亚洲天堂| 一边摸一边做爽爽视频免费| 免费高清在线观看日韩| 丰满迷人的少妇在线观看| 精品亚洲成a人片在线观看| 亚洲激情五月婷婷啪啪| 9191精品国产免费久久| 亚洲精华国产精华液的使用体验| 日日撸夜夜添| 蜜桃国产av成人99| 成年美女黄网站色视频大全免费| 国精品久久久久久国模美| 国产精品香港三级国产av潘金莲 | 国产成人aa在线观看| 成人免费观看视频高清| www.精华液| 亚洲av在线观看美女高潮| 1024视频免费在线观看| 91在线精品国自产拍蜜月| 午夜影院在线不卡| 91国产中文字幕| 深夜精品福利| 一边亲一边摸免费视频| 久久久久久久亚洲中文字幕| 国产精品亚洲av一区麻豆 | 乱人伦中国视频| av福利片在线| 国产乱来视频区| 高清黄色对白视频在线免费看| 免费观看性生交大片5| 亚洲第一av免费看| 亚洲熟女精品中文字幕| 热99国产精品久久久久久7| 成年人免费黄色播放视频| 国产男人的电影天堂91| 18禁动态无遮挡网站| 麻豆av在线久日| 一本大道久久a久久精品| 国产免费现黄频在线看| 9色porny在线观看| 日韩视频在线欧美| 亚洲国产av新网站| 亚洲精品在线美女| 亚洲av日韩在线播放| 91精品国产国语对白视频| 国产午夜精品一二区理论片| 女人精品久久久久毛片| 亚洲av综合色区一区| 欧美精品人与动牲交sv欧美| 色播在线永久视频| 少妇的逼水好多| 精品午夜福利在线看| www.自偷自拍.com| 美女主播在线视频| 在线观看www视频免费| 狠狠婷婷综合久久久久久88av| xxxhd国产人妻xxx| 热99久久久久精品小说推荐| 精品久久蜜臀av无| 丝瓜视频免费看黄片| 亚洲熟女精品中文字幕| 国产精品一二三区在线看| 欧美亚洲 丝袜 人妻 在线| 亚洲精品第二区| 精品人妻偷拍中文字幕| 免费日韩欧美在线观看| 成人亚洲精品一区在线观看| 国产精品女同一区二区软件| 午夜免费观看性视频| 各种免费的搞黄视频| 乱人伦中国视频| 日本色播在线视频| 国产成人aa在线观看| 欧美xxⅹ黑人| videossex国产| 亚洲精品美女久久久久99蜜臀 | 如何舔出高潮| 汤姆久久久久久久影院中文字幕| 久久久久网色| 99精国产麻豆久久婷婷| 啦啦啦中文免费视频观看日本| 午夜免费男女啪啪视频观看| 中国三级夫妇交换| 久久精品国产鲁丝片午夜精品| 男人操女人黄网站| 麻豆乱淫一区二区| 成人毛片a级毛片在线播放| 日韩欧美精品免费久久| 欧美激情极品国产一区二区三区| 美女xxoo啪啪120秒动态图| 午夜福利一区二区在线看| 777米奇影视久久| 涩涩av久久男人的天堂| 国产麻豆69| 国产爽快片一区二区三区| 亚洲精品,欧美精品| 一边摸一边做爽爽视频免费| 亚洲激情五月婷婷啪啪| 下体分泌物呈黄色| 满18在线观看网站| 欧美国产精品va在线观看不卡| 日本免费在线观看一区| 久久午夜福利片| 午夜福利在线免费观看网站| 国产精品久久久久久av不卡| 看免费成人av毛片| 国精品久久久久久国模美| 亚洲精品美女久久av网站| 黄色怎么调成土黄色| 日韩在线高清观看一区二区三区| 夫妻午夜视频| 在线观看免费视频网站a站| 啦啦啦在线观看免费高清www| 丝袜喷水一区| 免费不卡的大黄色大毛片视频在线观看| 极品少妇高潮喷水抽搐| 精品一区二区免费观看| 亚洲伊人色综图| 国产一区二区在线观看av| 99久久人妻综合| 日日撸夜夜添| 国产日韩欧美亚洲二区| 色吧在线观看| 久久久国产欧美日韩av| 免费不卡的大黄色大毛片视频在线观看| videos熟女内射| 免费不卡的大黄色大毛片视频在线观看| 午夜福利视频在线观看免费| av免费在线看不卡| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产欧美在线一区| 久久狼人影院| 国产亚洲午夜精品一区二区久久| 秋霞伦理黄片| 男女高潮啪啪啪动态图| 18+在线观看网站| 两个人看的免费小视频| 国产一区二区三区综合在线观看| 久久99热这里只频精品6学生| 国产探花极品一区二区| 免费观看性生交大片5| 国产在线免费精品| 毛片一级片免费看久久久久| 亚洲成人av在线免费| 国产免费一区二区三区四区乱码| 久久国产精品大桥未久av| 性色avwww在线观看| 免费观看av网站的网址| 免费日韩欧美在线观看| 亚洲av欧美aⅴ国产|