• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    C–F bond functionalizations of trifluoromethyl groups via radical intermediates

    2022-06-18 10:52:26TesfayeTebekaSimurTianYeYouJieYuFengLianZhangYiFengWang
    Chinese Chemical Letters 2022年3期

    Tesfaye Tebeka Simur,Tian Ye,You-Jie Yu,Feng-Lian Zhang,Yi-Feng Wang

    Department of Chemistry,University of Science and Technology of China,Hefei 230026,China

    Keywords:C–F bond functionalizations Radical intermediates Trifluoromethyl groups Difluorinated compounds Monofluorinated compounds

    ABSTRACT Selective functionalization of C–F bonds in trifluoromethyl groups has recently received a growing interest,as it offers atom- and step-economic pathways to access highly valuable mono- and difluoroalkylsubstituted organic molecules using simple and inexpensive trifluoromethyl sources as the starting materials.In this regard,impressive progress has been made on the defluorinative functionalization reactions that proceed via radical intermediates.Nevertheless,it is still a great challenge to precisely control the defluorination process,due to the continuous decrease of the C–F bond strength after the replacement of one or two fluorine atoms with various functionalities.This review article is aimed to provide a brief overview of recently reported methods used to functionalize C–F bonds of CF3 groups via radical intermediates.An emphasis is placed on the discussion of mechanistic aspects and synthetic applications

    1.Introduction

    Monofluoro- and difluoro-containing organic molecules have become tremendously important in pharmaceuticals [1,2],agrochemicals [3],and materials [4],owing to the unique properties of fluorine atom and its incorporation enhances the chemical and biological properties of the target compounds [5,6].In the last decades,numerous mono- and difluoroalkylating precursors and C–F bond formation strategies have been established for the introduction of fluorine atoms into organic compounds [7-11].Aside from this,the defluorinative functionalization of inert C-F bonds of CF3compounds is also an important pathway to the synthesis of useful partially fluorinated organic molecules [12-14].Such strategy has gained an ever-increasing interest,given the low cost of many CF3sources and numerous routes available to install CF3motifs [15,16].In general,the cleavage of C–F bond of CF3groups proceeds through heterolytic pathway,affording difluoro-substituted carbon cations or anions as intermediates,and a number of comprehensive reviews have summarized the progress of this research topic [6].

    Defluorination reactionsviaradical intermediates represent a class of powerful transformations,in which the radical species can undergo different reaction pathways as compared to ionic intermediates,and thus providing versatile routes for chemical bond formation.However,such reactions are still insufficiently studied because of the high bond dissociated energy (BDE) of C–F bond that makes homolytic cleavage extremely difficult [17].Moreover,since C–F bond strength continuously decreases as defluorination proceeds,selectively formation of di- and monofluoroalkyl radical intermediates in a controlled manner becomes exceedingly diffi-cult and exhaustive defluorination is often resulted [18,19].So far,there have been some reports on deflurinative generation of radical interemediates and the CF3group is required to attached to aπ-system,such as arenes,alkenes,and carbonyls,so that the substrates can accept a single electron or a radical species and then induces fluoride anion elimination.This review will summarize recent progress of this topic and focus more on the mechanistic discussion.Meanwhile,the synthetic applications of the resulting radical intermediates will also be introduced.

    2.C–F bond functionalization of trifluoromethylarenes

    Selective functionalization of C(sp3)?F bond in trifluoromethylarenes has found an important place in modern organic synthesis,which provides direct access to the synthesis of a diverse range of aryldifluoromethyl and arylmonofluoromethyl molecules[14,20,21].Generally,defluorination occurs with the aid of UV irradiation [22,23]or under reductive reaction conditions.In the later cases,electrochemical reduction [24-26]and the use of Mg metal as the reducing agents are required [27-29].The reduction mechanismviaradical intermediates is shown in Scheme 1.The reaction begins with single-electron reduction of trifluoromethylarenes to generate radical anion intermediates,and subsequent elimination of a fluoride anion gives radical intermediates.These radical species can be easily reduced under strong reductive reaction conditions,affording carbanion intermediates,which can be trapped by electrophiles to deliver difluoro products.

    For example,in 2017,Prakash and co-workers demonstrated a magnesium metal-promoted defluorination of bis (trifluoromethyl)arenes in the presence of Br?nsted acid for the synthesis of difluoromethyl-containing arenes (Scheme 2) [30].In this protocol,functional groups like free amine,alcohol are well tolerated.However,reduction of all three C–F bonds was observed in the case of nitrile substituents.

    Scheme 1.A general mechanism for C–F bond cleavage of trifluoromethylarenes.

    Scheme 2.Mg-promoted reductive defluorination of trifluoromethylarenes.

    Scheme 3.C?F bond functionalization of trifluoromethylarenes through cascade radical addition with methylacrylamides.

    Scheme 4.C(sp3)–F and C–C bond functionalization through defluoroalkylation–distal heteroaryl migration.

    Scheme 5.A single C–F bond functionalization of ArCF3 via photoredox HAT dual catalytic strategy.

    Scheme 6.Hydrodefluorination of trifluoromethylarenes.

    Scheme 7.C–F bond functionalization via fluoride-initiated sequential allylation

    Scheme 8.C–F bond functionalization of perfluoroalkylarenes via defluorinative allylation reaction.

    Scheme 9.The general mechanism of photoredox-catalyzed C–F bond cleavage of trifluoromethyl alkenes.

    Scheme 10.Photocatalytic decarboxylative/defluorinative functionalization of trifluoromethyl alkenes.

    Scheme 11.Photocatalytic construction of 1,1-difluoroalkenes from different radical precursors.

    Scheme 12.Photoredox-catalyzed radical defluorinative borylation of trifluoromethyl alkenes.

    The strategy shown above is difficult to capture the radical intermediate by various radical traps,as it prefers to undergo further reduction under those strong reductive reaction conditions.To address this challenge,developing new reductive protocols that can prevent the second reduction is desirable.Photoredox catalysis has recently emerged as a powerful method in organic synthesis.Notably,a large number of photoredox catalysts with a broad range of redox potentials are readily available,thus offering ample opportunities to precisely control the redox process.By taking this advantage,some defluorination reactions that can selectively generate difluoromethyl radical without further reduction have been reported.These radicals further participate in various transformations to access valuable ArCF2R derivatives.

    Gschwind and K?nig reported a protocol that emerges photoredox catalysis and Lewis acid activation,by which a single C?F bond of trifluoromethylarenes was selectively cleaved,giving aryldifluoromethyl radical intermediates.Those radicals were capable of performing radical addition to methacrylamides followed by cyclization to afford aryldifluoromethyl-tethered indolinone derivatives.Mechanistic studies suggested that thein situgenerated acidic borenium cation serves as an efficient fluoride scavenger that can accelerate the radical generation (Scheme 3) [31].

    After that,Qiu and Guo have extended this strategy to enable a tandem C(sp3)–F and C–C bond functionalization through defluoroalkylation–distal migration of the heteroaryl group(Scheme 4) [32].The reaction begins with the reductive generation ofα,α-difluorobenzylic radical intermediates,which are then trapped by simple olefins.The resulting alkyl radical attacks an intramolecular heteroaryl ring to trigger a distal aryl migration,and the ensuing oxidation and deprotonation affords ketone products.

    Scheme 13.Visible-light induced selective defluoroborylation of trifluoromethylalkenes.

    Scheme 14.Mg metal-promoted C–F bond activation of trifluoromethyl carbonyls compounds.

    Scheme 15.SmI2-promoted defluorination of trifluoroacetyl esters and amides.

    Jui and co-workers developed a new catalytic system for the single C–F bond cleavage of trifluoromethylarenes under visible light irradiation [33].In this protocol,N-phenylphenothiazine (PTH)was employed as photocatalyst and cyclohexanethiol (CySH) was used to promote hydrogen atom transfer (HAT).Under irradiation by blue LED,the highly reducing excited state PTH?(E1/2?=?2.10 Vvs.SCE) can deliver an electron to 1,3-bistrifluoromethylbenzene(E01/2=?2.07 Vvs.SCE) to generate difluorobenzylic radicals with the elimination of a fluoride anion.These radical intermediates then undergo efficient intermolecular coupling with simple alkenes to forge the desired difluoro products (Scheme 5A).This protocol is highly sensitive to the electronic properties of the trifluoromethylaromatic ring.Only the aryl ring bearing an additional strong electron-withdrawing group,such as CF3,phosphonate,and sulfonamide,is amenable in the reaction.

    To address this limitation,the same group then developed a method employing Miyake’s phenoxazine (E1/2?=?1.70 Vvs.SCE)as the photocatalyst,which has a long-lived triplet excited state.This method allows monodefluoroalkylation and monohydrodefluorination of unactivated trifluorotoluene derivatives (Scheme 5B)[34].As reported by the recent work of this group,a powerful single electron reductant (CO2??) (E1/2?=?2.20 Vvs.SCE) can be generatedviahydrogen atom transfer from a formate salt to a thiyl radical under the same reaction condition [35]and this reductant is likely also involved in this transformation.

    Gouverneur and co-workers quite recently disclosed a phtoredox protocol for the reductive defluorination of electron-poor trifluoromethylarenes under basic conditions (Scheme 6) [36].In this method,2,4,5,6-tetrakis(diphenylamino)isophthalonitrile (4-DPAIPN) was used as the organophotocatalyst,4-hydroxythiophenol was used as the hydrogen atom donor,under blue light irradiation,a series of complex trifluoromethylated drugs could be transformed into the corresponding difluoromethyl derivatives.

    Bander and co-workers developed a fluoride-initiated coupling reaction between trifluoromethylarenes and allylsilanes to access allylatedα,α-difluorobenzylic compounds (Scheme 7) [37].First,fluoride ion act as Lewis base and coordinate to allyltrimethylsilane to give pentacoordinate and hexacoordinate silicate intermediates,which then undergo single electron transfer (SET) to the trifluoromethylarene.The following cleavage of both a C–F and a C–Si bond induces concurrent generation of anα,α-difluorobenzylic radical and an allyl radical,and the quick recombination affords a defluoroallylation product.The expelled fluoride anion then activates another molecule of allyltrimethylsilane.

    Quite recently,Yasuda and co-workers reported a defluoroallylation reaction of perfluoroalkylarenes using Ir(III) photocatalyst and organotin reagent in cooperative mode of catalysis under visible light irradiation [38].In this transformation,the C–F bond functionalization takes place selectively at the benzylic position through perfluoroalkyl radicals generated from perfluoroalkylarenes by excited Ir(ppy)3in a single electron transfer pathway(Scheme 8).It should be noted that the destabilization and steric hindrance effects of the resulting perfluoroalkyl radicals are unfavorable for the sequential bond-forming reaction,thereby resulting in a retroprocess including back electron transfer and F?addition.Further DFT calculations suggest that thein situgenerated Bu3SnF is capable of trapping F?,which can suppress this retroreaction step.The generated perfluoroalkyl radicals then undergo addition to allylic stannanes followed by single electron oxidation and elimination of the stannyl cation,affording the corresponding defluoroallylation products.

    3.C–F bond functionalizations of trifluoromethyl alkenes

    Trifluoromethyl alkenes are privileged structural motifs for synthesizing a diverse range of partially fluorinated or nonfluorinated compounds.Over the past decades,various research groups have used visible-light-mediated reactions of carbon and heteroatom nucleophiles withα-trifluoromethyl alkenes to synthesizegem-difluoroalkenes [14,21].The general mechanism is shown in Scheme 9.Initially,the excited photocatalyst (PC?) is reductively quenched by a radical precursor,affording the radical R?and PC??.Radical addition to trifluoromethyl alkene formsα-CF3alkyl radical,which would be further reduced by PC??to give sp3-hybridized carbanion and regenerate PC.Finally,β-fluoride elimination shifts the double bond to givegem-difluoroalkene products

    Scheme 16.Sequential C–F bond functionalizations of trifluoroacetamides and trifluoroacetates via spin-center shifts.

    This strategy was applied to the decarboxylative/defluorinative cross coupling ofα-keto acids and trifluoromethyl alkenes for the synthesis ofγ,γ-difluoroallylic ketones using an Ir-based photocatalyst excited under blue light (Scheme 10) [39].This reaction features mild reaction conditions,simple operation,and good functional group tolerance.The process could also be extended toN-Boc protectedα-amino acids for the synthesis of 1,1-difluorohomoallylic amines.The resulting functionalizedgemdifluoroalkenes can be transformed to various difluoromethylated compounds and monofluorinated heterocycles.

    In 2017,Molander also demonstrated a visible light-mediated process for the synthesis of 1,1-difluoroalkenes by using an array of CF3-substituted alkenes with different carbon-radical precursorsviaradical defluorinative alkylation process (Scheme 11)[40].Whenα-silylamines were employed,various amine-tetheredgem-difluoroalkenes were produced.Potassium organotrifluoroborates and alkylbis(catecholato)silicates are also used as competent precursors of carbon centered radicals,providing a route to install a variety of alkyl-substitutedgem-difluoroalkenes.

    Organoboron compounds have broad applications in chemical synthesis,material sciences,and medicinal chemistry.Recently,the groups of Wang [41],Yang [42]and Wu [43]independently reported photoredox catalysis-enabled radical defluorinative borylations of trifluoromethyl alkenes to afford a wide range ofgemdifluoroallylboranes.In Wang’s work (Scheme 12),the key step is the generation ofN-heterocyclic carbene (NHC)-BH2?viaa singleelectron oxidation of NHC-BH3(Ep/2=+0.76 Vvs.SCE) by IrIV(ppy)3(E1/2red[IrIV/IrIII]=+0.77 Vvs.SCE),which subsequently undergoes cross-coupling with thein situgenerated radical anions to yield the defluoroborylation products [44].

    While in Yang’s protocol (Scheme 13),NHC-BH3is directly oxidized by excited Ir(Ⅲ) species followed by deprotonation to generate NHC-boryl radical.The following addition to CF3-substituted styrene gives anα-trifluoromethyl radical that then undergoes single electron reduction by Ir(Ⅱ) to form a carbanion intermediate.Finally,β-fluoride elimination affords the correspondinggemdifluoroallylboranes.In contrast,NHC-boryl radical is generated by HAT process in Wu’s procedure.The excited photocatalyst oxidizes a thiol catalyst to produce a thiyl radical,which then abstracts a hydrogen atom from NHC-BH3to generate NHC-boryl radical [45].The ensuring transformation including radical addition,SET reduction by the reduced state of the photocatalyst,and fluoride elimination,providesgem-difluoroallylborane products.

    4.C–F bond functionalization of trifluoromethyl carbonyl compounds

    The carbonyl group is an important unit in organic molecules due to its rich chemistry in further transformations.α,α,α-Trifluorocarbonyl compounds are a class of versatile precursors for the synthesis of di- and monofluorocarbonyl products.Previously,the defluorination of these moieties are exploited using reduction methods with low valent metals as the reducing agents[46]or by electrolysis [47].For example,using Mg as a reducing agent,α,α,α-trifluoroketones are converted to 2,2-difluoroenol silyl ethers,wherein chlorotrimethyl silane (TMSCl) is used to trap the resulting enolates (Scheme 14) [28].The possible mechanism involves a two-electron transfer process,As shown in Scheme 14,the first electron transfer from Mg to ketone gives a ketyl species,which is further reduced to an anionic species by Mg.Afterβfluoride elimination,2-fluoroenol silyl ether is formed as final product.Di-fluoroenol silyl ethers are potentially useful building blocks for various difluoro compounds such asβ-hydroxy ketones 45,α-halodifluoromethyl ketones 46,1,5-dicarbonyl compounds 47.The intramolecular [2+2]cycloaddition affords tetrafluorocyclobutanediols 48.It can also undergo transition metal catalyzed cross coupling reactions to give arylated products 49 and 50.

    Samarium(Ⅱ) iodide in conjunction with trimethylamine and water is another single-electron reduction approach used forαdefluorination of esters or amides (Scheme 15) [18].In this defluorination reaction,low temperature (-78 °C) and the addition of Et3N is crucial for controlling the degree of the defluorination process.However,only moderate yield and selectivity could be obtained by this strategy.

    Very recently,Wang’s group reported a 4-dimethylamino pyridine-boryl radical promoted sequential C–F bond functionalizations of trifluoromethyl group (Scheme 16) [48].The strategy comprises a controllable two-stage process,each involving a spincenter shift (SCS) pathway for defluorination.In stage A,the reaction starts by the attack of dimethylaminopyridine-BH2?(DMAPBH2?) to the carbonyl oxygen atom of CF3-carbonyl molecules,and the following defluorination occursviaan SCS mechanism,givingα,α-difluorocarbonyl radical intermediates.These intermediates are then reduced by a thiol catalyst or captured by alkenes to afford a wide range of difluorocarbonyl products.In stage A,these difluoro compounds repeat the same process,furnishing diverse monofluoro products.As outlined in Scheme 16,this twostage process shows broad substrate scope and good chemoselectivity.For example,reduction of stages A and B intermediates,wherein RSH was used as the polarity reversal catalyst,can afford di- and monofluoromethyl products selectively,and only minor over-reduction products were observed in the formation of difluoro products.Notably,no trihydrodefluorination product is detected in both cases.Alkenes could be used as the radical trap in both stages A and B,leading to diverse defluorinative coupling products.Interestingly,when two different alkenes were employed in stages A and B,products containing a monofluorinated-tertiary stereogenic center were constructed.

    Further DFT calculations revealed that the chemoselectivity is controlled by the declining reactivity of DMAP-BH2?towards the addition to the defluorinated products,which is attributed to the increasing singly occupied molecular orbital (SOMO)/lowest unoccupied molecular orbital (LUMO) gaps between DMAP-BH2?and the substrates.Therefore,once the first fluoride is removed,the resulting carbonyl group becomes less reactive,thus ensuring excellent chemoselectivity during defluorination [49].

    5.Conclusion

    C–F bond functionalization of CF3-compounds has recently appeared as an efficient method for the synthesis of partially fluorinated molecules.Recent advances on electrochemistry,photoredox catalysis,and radical chemistry of main group elements have rendered more strategies for C–F bond functionalization reactions.In this review,we summarized recent progress on C–F bond functionalization of CF3groups involving radical intermediates as the main transformation pathways.Although the C–F bond in the trifluoromethyl group is extremely inert and the defluorination chemoselectivity is difficult to control,important advancement has been made in selective functionalizations of one or two C–F bonds in CF3groups by different strategies.However,the limitations and challenges are still remained.For example,the sequential functionalization of C–F bonds of trifluoromethylarenes andα,α,αtrifluoroketones with high chemoselectivity has still remained an unsolved challenge.Moreover,the combination of radical chemistry and transition metal catalysis,which is expected to be a powerful tool to construct diversified mono- and difluoro products,has not been well studied.Furthermore,enantioselective transformations of difluoro compounds that are accessed from simple CF3sources has not been achieved yet.The realization of such strategy would of great value to make monofluorinated tertiary stereogenic centers [50]with high enantioselectiity from simple fluorine sources.We can expect that defluorinative functionalization strategies will continue to make important contributions in organic synthesis,medicinal chemistry,and material science.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    We thank the National Natural Science Foundation of China (No.21971226) and the Fundamental Research Funds for the Central Universities (No.WK2060000017) for financial support.

    久久人人爽人人爽人人片va| 超碰97精品在线观看| 久久ye,这里只有精品| 日韩欧美精品v在线| 插逼视频在线观看| 国产成人freesex在线| 成人亚洲精品av一区二区| 日韩亚洲欧美综合| 久久精品久久久久久噜噜老黄| 白带黄色成豆腐渣| 日日啪夜夜爽| 麻豆成人午夜福利视频| 精品一区在线观看国产| 欧美日韩视频精品一区| 大陆偷拍与自拍| 成人美女网站在线观看视频| 中国国产av一级| 永久免费av网站大全| 天堂网av新在线| 成年av动漫网址| 中国三级夫妇交换| av天堂中文字幕网| 天美传媒精品一区二区| 成人免费观看视频高清| 男女那种视频在线观看| 国产69精品久久久久777片| 国产精品嫩草影院av在线观看| 一个人观看的视频www高清免费观看| 七月丁香在线播放| 身体一侧抽搐| 日日摸夜夜添夜夜添av毛片| 亚洲天堂国产精品一区在线| 美女视频免费永久观看网站| 国产精品国产三级国产专区5o| 久久精品夜色国产| 成年人午夜在线观看视频| 精品少妇久久久久久888优播| 男人舔奶头视频| 国产又色又爽无遮挡免| 成年女人在线观看亚洲视频 | 国产精品一区二区在线观看99| 国产精品国产av在线观看| 日韩一区二区视频免费看| 免费看日本二区| 一本久久精品| 嫩草影院精品99| 美女国产视频在线观看| 亚洲精品视频女| 少妇高潮的动态图| 黄色欧美视频在线观看| 国产v大片淫在线免费观看| 午夜福利视频1000在线观看| 18禁在线播放成人免费| 亚洲综合色惰| 最新中文字幕久久久久| 夫妻性生交免费视频一级片| 成人午夜精彩视频在线观看| 欧美高清性xxxxhd video| 色视频www国产| 天美传媒精品一区二区| 亚洲av男天堂| 日韩av在线免费看完整版不卡| 成年版毛片免费区| 可以在线观看毛片的网站| 国产精品久久久久久精品古装| 一级毛片我不卡| 偷拍熟女少妇极品色| 国产一区二区亚洲精品在线观看| av在线观看视频网站免费| 日本免费在线观看一区| 欧美区成人在线视频| 免费少妇av软件| 亚洲精品成人av观看孕妇| 日日摸夜夜添夜夜爱| 国产亚洲午夜精品一区二区久久 | 国产亚洲av嫩草精品影院| 免费观看无遮挡的男女| 搡老乐熟女国产| 少妇的逼好多水| 97超视频在线观看视频| 欧美日韩在线观看h| 2022亚洲国产成人精品| 久久久久国产网址| 久久精品熟女亚洲av麻豆精品| 嘟嘟电影网在线观看| 欧美成人a在线观看| 国产男人的电影天堂91| 精品一区二区免费观看| 欧美bdsm另类| 人体艺术视频欧美日本| 亚洲精品一二三| 亚洲精华国产精华液的使用体验| 18+在线观看网站| 精品人妻一区二区三区麻豆| 香蕉精品网在线| 免费看av在线观看网站| 国产精品蜜桃在线观看| 国产爽快片一区二区三区| 99热这里只有是精品在线观看| 激情五月婷婷亚洲| 亚洲成人精品中文字幕电影| 国内精品美女久久久久久| 精品国产露脸久久av麻豆| 99视频精品全部免费 在线| 亚洲经典国产精华液单| 美女脱内裤让男人舔精品视频| 美女脱内裤让男人舔精品视频| 国产亚洲av片在线观看秒播厂| 人妻系列 视频| 女人被狂操c到高潮| 少妇的逼好多水| 久久国产乱子免费精品| 日韩av不卡免费在线播放| 你懂的网址亚洲精品在线观看| 岛国毛片在线播放| 久久久久久久久久成人| 欧美变态另类bdsm刘玥| 天堂网av新在线| 国产亚洲av片在线观看秒播厂| 免费黄网站久久成人精品| 超碰97精品在线观看| 秋霞在线观看毛片| 精品一区二区三区视频在线| 亚洲va在线va天堂va国产| 性插视频无遮挡在线免费观看| 91在线精品国自产拍蜜月| 国国产精品蜜臀av免费| 黑人高潮一二区| 丰满人妻一区二区三区视频av| 视频区图区小说| 精华霜和精华液先用哪个| 亚洲自拍偷在线| 成人黄色视频免费在线看| 深夜a级毛片| 少妇被粗大猛烈的视频| 国产精品一区二区性色av| 在线看a的网站| 99精国产麻豆久久婷婷| 1000部很黄的大片| av天堂中文字幕网| 伊人久久精品亚洲午夜| 十八禁网站网址无遮挡 | 欧美日韩综合久久久久久| 一个人看视频在线观看www免费| 国产成人午夜福利电影在线观看| 精品视频人人做人人爽| 免费少妇av软件| 欧美日韩亚洲高清精品| 亚洲av不卡在线观看| 高清毛片免费看| 丝袜喷水一区| 女人被狂操c到高潮| 少妇人妻精品综合一区二区| 午夜爱爱视频在线播放| 国产淫片久久久久久久久| 简卡轻食公司| 国产黄色视频一区二区在线观看| 国产黄色视频一区二区在线观看| 成人无遮挡网站| 国产成人免费无遮挡视频| 亚洲av一区综合| 国产亚洲最大av| 久久久久久国产a免费观看| 日韩人妻高清精品专区| 中文天堂在线官网| 亚洲激情五月婷婷啪啪| 男人舔奶头视频| 亚洲真实伦在线观看| 国产精品偷伦视频观看了| 欧美亚洲 丝袜 人妻 在线| 国产极品天堂在线| 欧美亚洲 丝袜 人妻 在线| 亚洲精品,欧美精品| 亚洲成人精品中文字幕电影| 精品人妻视频免费看| 亚洲成人精品中文字幕电影| 亚洲熟女精品中文字幕| 精品久久久久久久久亚洲| 看非洲黑人一级黄片| 亚洲欧美成人综合另类久久久| 国产精品久久久久久精品电影| 一级毛片 在线播放| 久久久久久伊人网av| 免费看a级黄色片| 亚洲精品日韩av片在线观看| 国产精品秋霞免费鲁丝片| 精品午夜福利在线看| 2018国产大陆天天弄谢| 欧美另类一区| 久久久久久久精品精品| 毛片女人毛片| 如何舔出高潮| 狠狠精品人妻久久久久久综合| 新久久久久国产一级毛片| 赤兔流量卡办理| 色综合色国产| 永久免费av网站大全| 国产免费福利视频在线观看| 91狼人影院| 国产欧美亚洲国产| 国产黄片美女视频| 成人毛片a级毛片在线播放| 欧美日韩视频精品一区| 国产一区亚洲一区在线观看| 一级毛片久久久久久久久女| 一本一本综合久久| 国产精品久久久久久久久免| 一级毛片电影观看| 神马国产精品三级电影在线观看| 亚洲欧美精品专区久久| 五月玫瑰六月丁香| 国产成人a∨麻豆精品| 最近手机中文字幕大全| 丝袜脚勾引网站| 色视频www国产| 狂野欧美激情性bbbbbb| 久久午夜福利片| 国产精品嫩草影院av在线观看| 男插女下体视频免费在线播放| 国产精品女同一区二区软件| 大片电影免费在线观看免费| 国产精品国产三级国产av玫瑰| 久久久久久国产a免费观看| 久久综合国产亚洲精品| 一二三四中文在线观看免费高清| 18禁裸乳无遮挡免费网站照片| 简卡轻食公司| 国产精品伦人一区二区| videos熟女内射| 80岁老熟妇乱子伦牲交| 日韩,欧美,国产一区二区三区| 国产真实伦视频高清在线观看| a级毛片免费高清观看在线播放| 国产av不卡久久| 搡老乐熟女国产| 男男h啪啪无遮挡| 一本一本综合久久| 欧美日韩亚洲高清精品| 性色av一级| 成年免费大片在线观看| 精品人妻一区二区三区麻豆| 成人一区二区视频在线观看| 99精国产麻豆久久婷婷| 国产一区二区在线观看日韩| 亚洲欧美精品专区久久| 又大又黄又爽视频免费| 搡老乐熟女国产| 久久6这里有精品| 亚洲欧美日韩另类电影网站 | 在线观看一区二区三区| 黑人高潮一二区| 国产精品女同一区二区软件| 能在线免费看毛片的网站| 97精品久久久久久久久久精品| 中文字幕制服av| 中文字幕久久专区| 人妻制服诱惑在线中文字幕| 国内精品美女久久久久久| 精品人妻视频免费看| 国产一区亚洲一区在线观看| 超碰av人人做人人爽久久| 婷婷色综合www| 免费看av在线观看网站| 日本一本二区三区精品| 人人妻人人爽人人添夜夜欢视频 | 97人妻精品一区二区三区麻豆| 18禁裸乳无遮挡动漫免费视频 | 国产成人精品一,二区| 人人妻人人看人人澡| 内射极品少妇av片p| 成年女人看的毛片在线观看| 成人黄色视频免费在线看| 好男人视频免费观看在线| 午夜福利视频精品| 一级黄片播放器| 在线观看人妻少妇| 日韩,欧美,国产一区二区三区| 蜜臀久久99精品久久宅男| 激情五月婷婷亚洲| 国产片特级美女逼逼视频| 亚洲精品乱码久久久v下载方式| 国产伦精品一区二区三区四那| 免费大片黄手机在线观看| 91久久精品电影网| 精品国产三级普通话版| 麻豆国产97在线/欧美| 卡戴珊不雅视频在线播放| 亚洲精品第二区| 国产高清三级在线| 天天一区二区日本电影三级| 亚洲av欧美aⅴ国产| 视频区图区小说| 国产高清国产精品国产三级 | 国产亚洲最大av| 亚洲欧美清纯卡通| 一级av片app| 日韩电影二区| 肉色欧美久久久久久久蜜桃 | 日韩 亚洲 欧美在线| 蜜桃久久精品国产亚洲av| 看黄色毛片网站| av.在线天堂| 免费播放大片免费观看视频在线观看| 亚洲怡红院男人天堂| 在线观看三级黄色| 亚洲精品影视一区二区三区av| 久久国内精品自在自线图片| 极品少妇高潮喷水抽搐| 成年女人在线观看亚洲视频 | 久久99热这里只频精品6学生| 国产中年淑女户外野战色| 黄色欧美视频在线观看| 精品国产露脸久久av麻豆| 亚洲欧美成人综合另类久久久| 一二三四中文在线观看免费高清| 特大巨黑吊av在线直播| 在线精品无人区一区二区三 | www.av在线官网国产| 亚洲天堂av无毛| 久久久久久久精品精品| 美女视频免费永久观看网站| 亚洲欧美成人精品一区二区| 男的添女的下面高潮视频| www.色视频.com| 亚洲av电影在线观看一区二区三区 | 国产av不卡久久| 久久国内精品自在自线图片| 国产 一区 欧美 日韩| 国产av码专区亚洲av| 国产精品三级大全| 午夜爱爱视频在线播放| 18+在线观看网站| 亚洲精品,欧美精品| 午夜亚洲福利在线播放| 欧美3d第一页| 国产男女超爽视频在线观看| www.色视频.com| 综合色丁香网| 色视频www国产| 人妻一区二区av| 国产精品成人在线| 青春草亚洲视频在线观看| 麻豆乱淫一区二区| 少妇的逼水好多| 两个人的视频大全免费| 免费不卡的大黄色大毛片视频在线观看| 国产成人a∨麻豆精品| 国产一级毛片在线| av在线亚洲专区| 国产乱人视频| 少妇的逼好多水| 热99国产精品久久久久久7| 中文在线观看免费www的网站| 久久久久久久久久久免费av| 少妇人妻一区二区三区视频| 舔av片在线| 麻豆乱淫一区二区| 免费看不卡的av| 男女啪啪激烈高潮av片| 麻豆国产97在线/欧美| 精品一区二区三区视频在线| 国产成人a区在线观看| 精品国产露脸久久av麻豆| 爱豆传媒免费全集在线观看| 久久午夜福利片| 97在线人人人人妻| 国产熟女欧美一区二区| 久久久成人免费电影| 婷婷色综合www| 国产伦精品一区二区三区四那| 国产高潮美女av| 亚洲精品乱久久久久久| 免费观看性生交大片5| 国模一区二区三区四区视频| 欧美高清性xxxxhd video| 在线天堂最新版资源| 欧美国产精品一级二级三级 | 91精品一卡2卡3卡4卡| 亚洲精品久久久久久婷婷小说| 亚洲精品国产色婷婷电影| 黄色视频在线播放观看不卡| 美女被艹到高潮喷水动态| 22中文网久久字幕| 丰满乱子伦码专区| 免费在线观看成人毛片| 在线播放无遮挡| 中文欧美无线码| 啦啦啦中文免费视频观看日本| 国产精品伦人一区二区| 免费大片黄手机在线观看| 精品国产三级普通话版| 久久午夜福利片| 国产大屁股一区二区在线视频| av.在线天堂| 国产国拍精品亚洲av在线观看| 午夜爱爱视频在线播放| 另类亚洲欧美激情| 久久99蜜桃精品久久| 日日摸夜夜添夜夜爱| 五月天丁香电影| 欧美潮喷喷水| 亚洲自拍偷在线| 午夜福利视频精品| 黄色欧美视频在线观看| 国产精品国产三级专区第一集| 视频中文字幕在线观看| 午夜精品国产一区二区电影 | 蜜臀久久99精品久久宅男| 亚洲av一区综合| 中文字幕免费在线视频6| av福利片在线观看| 黑人高潮一二区| 日韩 亚洲 欧美在线| 亚洲国产精品999| 3wmmmm亚洲av在线观看| 久久午夜福利片| 国产成人精品一,二区| 亚洲av欧美aⅴ国产| av在线天堂中文字幕| 国产精品蜜桃在线观看| 国产高清不卡午夜福利| 自拍欧美九色日韩亚洲蝌蚪91 | 午夜福利网站1000一区二区三区| 舔av片在线| 欧美高清性xxxxhd video| 寂寞人妻少妇视频99o| 听说在线观看完整版免费高清| 欧美xxxx性猛交bbbb| 国产成人一区二区在线| 国产精品秋霞免费鲁丝片| 中文乱码字字幕精品一区二区三区| 免费少妇av软件| 久久久午夜欧美精品| 日日摸夜夜添夜夜爱| 丝袜喷水一区| 男人舔奶头视频| 国精品久久久久久国模美| 在线观看人妻少妇| 男女边摸边吃奶| 一级毛片电影观看| 插阴视频在线观看视频| 国产成人精品一,二区| 久久久午夜欧美精品| 免费观看性生交大片5| 熟女人妻精品中文字幕| 久热这里只有精品99| 国产免费一级a男人的天堂| 亚洲av成人精品一二三区| 在现免费观看毛片| 亚洲欧美成人精品一区二区| 久久精品国产自在天天线| 亚洲欧美清纯卡通| 看黄色毛片网站| 26uuu在线亚洲综合色| 一本一本综合久久| 亚洲国产精品999| 日韩大片免费观看网站| 午夜老司机福利剧场| 国产伦精品一区二区三区四那| 精品国产三级普通话版| 午夜爱爱视频在线播放| 老司机影院毛片| 久久久精品94久久精品| 国产亚洲av片在线观看秒播厂| 91aial.com中文字幕在线观看| 禁无遮挡网站| 日韩,欧美,国产一区二区三区| 亚洲欧美清纯卡通| 欧美97在线视频| 日韩伦理黄色片| 大香蕉97超碰在线| 大香蕉久久网| 国产男女内射视频| 成年av动漫网址| 街头女战士在线观看网站| 在现免费观看毛片| 日本熟妇午夜| 国产成人福利小说| 日本三级黄在线观看| 免费看a级黄色片| 午夜福利视频1000在线观看| 免费看光身美女| 男女边吃奶边做爰视频| 久久精品国产鲁丝片午夜精品| 日日啪夜夜撸| 99久久精品国产国产毛片| 人妻制服诱惑在线中文字幕| 国产成人福利小说| 亚洲精品乱码久久久v下载方式| 国产极品天堂在线| 高清欧美精品videossex| 免费大片黄手机在线观看| 国国产精品蜜臀av免费| 久久久久久久国产电影| av网站免费在线观看视频| 卡戴珊不雅视频在线播放| 99久久精品一区二区三区| 搡女人真爽免费视频火全软件| 狂野欧美激情性bbbbbb| 久久久久久久久久人人人人人人| 亚洲精品国产成人久久av| 极品少妇高潮喷水抽搐| 黄片wwwwww| 韩国av在线不卡| 欧美三级亚洲精品| 亚洲国产精品成人综合色| 久久久久国产网址| 久久影院123| 亚洲三级黄色毛片| 精品一区二区免费观看| 久热久热在线精品观看| 午夜福利在线观看免费完整高清在| 观看美女的网站| 免费人成在线观看视频色| 日韩精品有码人妻一区| a级毛色黄片| 交换朋友夫妻互换小说| 能在线免费看毛片的网站| 伊人久久精品亚洲午夜| 精品一区在线观看国产| 国产亚洲av片在线观看秒播厂| 国产 一区精品| 亚洲成人久久爱视频| 欧美区成人在线视频| 精品少妇久久久久久888优播| 国产欧美日韩精品一区二区| 日日撸夜夜添| 在线亚洲精品国产二区图片欧美 | 日日摸夜夜添夜夜添av毛片| 少妇的逼好多水| 免费黄频网站在线观看国产| 99热国产这里只有精品6| 国产精品一二三区在线看| 精品人妻偷拍中文字幕| 2021少妇久久久久久久久久久| h日本视频在线播放| 色视频在线一区二区三区| 亚洲国产精品999| 有码 亚洲区| 最近最新中文字幕大全电影3| 欧美bdsm另类| 国产精品久久久久久精品古装| 日韩av在线免费看完整版不卡| 国产精品熟女久久久久浪| 免费av不卡在线播放| 久久99热这里只频精品6学生| 欧美高清成人免费视频www| 一边亲一边摸免费视频| 久久久a久久爽久久v久久| 亚洲av成人精品一二三区| 免费看日本二区| 蜜臀久久99精品久久宅男| 午夜爱爱视频在线播放| av.在线天堂| 成人无遮挡网站| 白带黄色成豆腐渣| 嫩草影院新地址| 麻豆成人av视频| 亚洲最大成人av| a级一级毛片免费在线观看| 大片电影免费在线观看免费| 亚洲国产精品国产精品| 又大又黄又爽视频免费| 晚上一个人看的免费电影| 国产黄色免费在线视频| 国产精品久久久久久av不卡| 欧美高清成人免费视频www| 欧美少妇被猛烈插入视频| 欧美潮喷喷水| 少妇的逼好多水| 大又大粗又爽又黄少妇毛片口| 国产精品一及| av线在线观看网站| 亚洲av成人精品一二三区| 国产欧美日韩一区二区三区在线 | 久久久久国产精品人妻一区二区| 我的老师免费观看完整版| 禁无遮挡网站| 欧美日韩一区二区视频在线观看视频在线 | 大码成人一级视频| tube8黄色片| 97超视频在线观看视频| 涩涩av久久男人的天堂| 精品一区二区免费观看| 日本三级黄在线观看| 亚洲美女视频黄频| 亚洲不卡免费看| 草草在线视频免费看| 久久精品国产亚洲av天美| 日韩精品有码人妻一区| 中文字幕免费在线视频6| 26uuu在线亚洲综合色| 18禁动态无遮挡网站| 国产一区二区在线观看日韩| 亚洲国产成人一精品久久久| 美女主播在线视频| 蜜桃久久精品国产亚洲av| 搡女人真爽免费视频火全软件| 欧美成人午夜免费资源| 亚洲怡红院男人天堂| videos熟女内射| 大片电影免费在线观看免费| 成人一区二区视频在线观看| 久久精品综合一区二区三区| kizo精华| 少妇裸体淫交视频免费看高清| 十八禁网站网址无遮挡 | 小蜜桃在线观看免费完整版高清| 男女国产视频网站| 日韩成人伦理影院| 免费大片18禁| 欧美激情久久久久久爽电影| 性插视频无遮挡在线免费观看| 国产老妇女一区| 麻豆成人午夜福利视频|