• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    C–F bond functionalizations of trifluoromethyl groups via radical intermediates

    2022-06-18 10:52:26TesfayeTebekaSimurTianYeYouJieYuFengLianZhangYiFengWang
    Chinese Chemical Letters 2022年3期

    Tesfaye Tebeka Simur,Tian Ye,You-Jie Yu,Feng-Lian Zhang,Yi-Feng Wang

    Department of Chemistry,University of Science and Technology of China,Hefei 230026,China

    Keywords:C–F bond functionalizations Radical intermediates Trifluoromethyl groups Difluorinated compounds Monofluorinated compounds

    ABSTRACT Selective functionalization of C–F bonds in trifluoromethyl groups has recently received a growing interest,as it offers atom- and step-economic pathways to access highly valuable mono- and difluoroalkylsubstituted organic molecules using simple and inexpensive trifluoromethyl sources as the starting materials.In this regard,impressive progress has been made on the defluorinative functionalization reactions that proceed via radical intermediates.Nevertheless,it is still a great challenge to precisely control the defluorination process,due to the continuous decrease of the C–F bond strength after the replacement of one or two fluorine atoms with various functionalities.This review article is aimed to provide a brief overview of recently reported methods used to functionalize C–F bonds of CF3 groups via radical intermediates.An emphasis is placed on the discussion of mechanistic aspects and synthetic applications

    1.Introduction

    Monofluoro- and difluoro-containing organic molecules have become tremendously important in pharmaceuticals [1,2],agrochemicals [3],and materials [4],owing to the unique properties of fluorine atom and its incorporation enhances the chemical and biological properties of the target compounds [5,6].In the last decades,numerous mono- and difluoroalkylating precursors and C–F bond formation strategies have been established for the introduction of fluorine atoms into organic compounds [7-11].Aside from this,the defluorinative functionalization of inert C-F bonds of CF3compounds is also an important pathway to the synthesis of useful partially fluorinated organic molecules [12-14].Such strategy has gained an ever-increasing interest,given the low cost of many CF3sources and numerous routes available to install CF3motifs [15,16].In general,the cleavage of C–F bond of CF3groups proceeds through heterolytic pathway,affording difluoro-substituted carbon cations or anions as intermediates,and a number of comprehensive reviews have summarized the progress of this research topic [6].

    Defluorination reactionsviaradical intermediates represent a class of powerful transformations,in which the radical species can undergo different reaction pathways as compared to ionic intermediates,and thus providing versatile routes for chemical bond formation.However,such reactions are still insufficiently studied because of the high bond dissociated energy (BDE) of C–F bond that makes homolytic cleavage extremely difficult [17].Moreover,since C–F bond strength continuously decreases as defluorination proceeds,selectively formation of di- and monofluoroalkyl radical intermediates in a controlled manner becomes exceedingly diffi-cult and exhaustive defluorination is often resulted [18,19].So far,there have been some reports on deflurinative generation of radical interemediates and the CF3group is required to attached to aπ-system,such as arenes,alkenes,and carbonyls,so that the substrates can accept a single electron or a radical species and then induces fluoride anion elimination.This review will summarize recent progress of this topic and focus more on the mechanistic discussion.Meanwhile,the synthetic applications of the resulting radical intermediates will also be introduced.

    2.C–F bond functionalization of trifluoromethylarenes

    Selective functionalization of C(sp3)?F bond in trifluoromethylarenes has found an important place in modern organic synthesis,which provides direct access to the synthesis of a diverse range of aryldifluoromethyl and arylmonofluoromethyl molecules[14,20,21].Generally,defluorination occurs with the aid of UV irradiation [22,23]or under reductive reaction conditions.In the later cases,electrochemical reduction [24-26]and the use of Mg metal as the reducing agents are required [27-29].The reduction mechanismviaradical intermediates is shown in Scheme 1.The reaction begins with single-electron reduction of trifluoromethylarenes to generate radical anion intermediates,and subsequent elimination of a fluoride anion gives radical intermediates.These radical species can be easily reduced under strong reductive reaction conditions,affording carbanion intermediates,which can be trapped by electrophiles to deliver difluoro products.

    For example,in 2017,Prakash and co-workers demonstrated a magnesium metal-promoted defluorination of bis (trifluoromethyl)arenes in the presence of Br?nsted acid for the synthesis of difluoromethyl-containing arenes (Scheme 2) [30].In this protocol,functional groups like free amine,alcohol are well tolerated.However,reduction of all three C–F bonds was observed in the case of nitrile substituents.

    Scheme 1.A general mechanism for C–F bond cleavage of trifluoromethylarenes.

    Scheme 2.Mg-promoted reductive defluorination of trifluoromethylarenes.

    Scheme 3.C?F bond functionalization of trifluoromethylarenes through cascade radical addition with methylacrylamides.

    Scheme 4.C(sp3)–F and C–C bond functionalization through defluoroalkylation–distal heteroaryl migration.

    Scheme 5.A single C–F bond functionalization of ArCF3 via photoredox HAT dual catalytic strategy.

    Scheme 6.Hydrodefluorination of trifluoromethylarenes.

    Scheme 7.C–F bond functionalization via fluoride-initiated sequential allylation

    Scheme 8.C–F bond functionalization of perfluoroalkylarenes via defluorinative allylation reaction.

    Scheme 9.The general mechanism of photoredox-catalyzed C–F bond cleavage of trifluoromethyl alkenes.

    Scheme 10.Photocatalytic decarboxylative/defluorinative functionalization of trifluoromethyl alkenes.

    Scheme 11.Photocatalytic construction of 1,1-difluoroalkenes from different radical precursors.

    Scheme 12.Photoredox-catalyzed radical defluorinative borylation of trifluoromethyl alkenes.

    The strategy shown above is difficult to capture the radical intermediate by various radical traps,as it prefers to undergo further reduction under those strong reductive reaction conditions.To address this challenge,developing new reductive protocols that can prevent the second reduction is desirable.Photoredox catalysis has recently emerged as a powerful method in organic synthesis.Notably,a large number of photoredox catalysts with a broad range of redox potentials are readily available,thus offering ample opportunities to precisely control the redox process.By taking this advantage,some defluorination reactions that can selectively generate difluoromethyl radical without further reduction have been reported.These radicals further participate in various transformations to access valuable ArCF2R derivatives.

    Gschwind and K?nig reported a protocol that emerges photoredox catalysis and Lewis acid activation,by which a single C?F bond of trifluoromethylarenes was selectively cleaved,giving aryldifluoromethyl radical intermediates.Those radicals were capable of performing radical addition to methacrylamides followed by cyclization to afford aryldifluoromethyl-tethered indolinone derivatives.Mechanistic studies suggested that thein situgenerated acidic borenium cation serves as an efficient fluoride scavenger that can accelerate the radical generation (Scheme 3) [31].

    After that,Qiu and Guo have extended this strategy to enable a tandem C(sp3)–F and C–C bond functionalization through defluoroalkylation–distal migration of the heteroaryl group(Scheme 4) [32].The reaction begins with the reductive generation ofα,α-difluorobenzylic radical intermediates,which are then trapped by simple olefins.The resulting alkyl radical attacks an intramolecular heteroaryl ring to trigger a distal aryl migration,and the ensuing oxidation and deprotonation affords ketone products.

    Scheme 13.Visible-light induced selective defluoroborylation of trifluoromethylalkenes.

    Scheme 14.Mg metal-promoted C–F bond activation of trifluoromethyl carbonyls compounds.

    Scheme 15.SmI2-promoted defluorination of trifluoroacetyl esters and amides.

    Jui and co-workers developed a new catalytic system for the single C–F bond cleavage of trifluoromethylarenes under visible light irradiation [33].In this protocol,N-phenylphenothiazine (PTH)was employed as photocatalyst and cyclohexanethiol (CySH) was used to promote hydrogen atom transfer (HAT).Under irradiation by blue LED,the highly reducing excited state PTH?(E1/2?=?2.10 Vvs.SCE) can deliver an electron to 1,3-bistrifluoromethylbenzene(E01/2=?2.07 Vvs.SCE) to generate difluorobenzylic radicals with the elimination of a fluoride anion.These radical intermediates then undergo efficient intermolecular coupling with simple alkenes to forge the desired difluoro products (Scheme 5A).This protocol is highly sensitive to the electronic properties of the trifluoromethylaromatic ring.Only the aryl ring bearing an additional strong electron-withdrawing group,such as CF3,phosphonate,and sulfonamide,is amenable in the reaction.

    To address this limitation,the same group then developed a method employing Miyake’s phenoxazine (E1/2?=?1.70 Vvs.SCE)as the photocatalyst,which has a long-lived triplet excited state.This method allows monodefluoroalkylation and monohydrodefluorination of unactivated trifluorotoluene derivatives (Scheme 5B)[34].As reported by the recent work of this group,a powerful single electron reductant (CO2??) (E1/2?=?2.20 Vvs.SCE) can be generatedviahydrogen atom transfer from a formate salt to a thiyl radical under the same reaction condition [35]and this reductant is likely also involved in this transformation.

    Gouverneur and co-workers quite recently disclosed a phtoredox protocol for the reductive defluorination of electron-poor trifluoromethylarenes under basic conditions (Scheme 6) [36].In this method,2,4,5,6-tetrakis(diphenylamino)isophthalonitrile (4-DPAIPN) was used as the organophotocatalyst,4-hydroxythiophenol was used as the hydrogen atom donor,under blue light irradiation,a series of complex trifluoromethylated drugs could be transformed into the corresponding difluoromethyl derivatives.

    Bander and co-workers developed a fluoride-initiated coupling reaction between trifluoromethylarenes and allylsilanes to access allylatedα,α-difluorobenzylic compounds (Scheme 7) [37].First,fluoride ion act as Lewis base and coordinate to allyltrimethylsilane to give pentacoordinate and hexacoordinate silicate intermediates,which then undergo single electron transfer (SET) to the trifluoromethylarene.The following cleavage of both a C–F and a C–Si bond induces concurrent generation of anα,α-difluorobenzylic radical and an allyl radical,and the quick recombination affords a defluoroallylation product.The expelled fluoride anion then activates another molecule of allyltrimethylsilane.

    Quite recently,Yasuda and co-workers reported a defluoroallylation reaction of perfluoroalkylarenes using Ir(III) photocatalyst and organotin reagent in cooperative mode of catalysis under visible light irradiation [38].In this transformation,the C–F bond functionalization takes place selectively at the benzylic position through perfluoroalkyl radicals generated from perfluoroalkylarenes by excited Ir(ppy)3in a single electron transfer pathway(Scheme 8).It should be noted that the destabilization and steric hindrance effects of the resulting perfluoroalkyl radicals are unfavorable for the sequential bond-forming reaction,thereby resulting in a retroprocess including back electron transfer and F?addition.Further DFT calculations suggest that thein situgenerated Bu3SnF is capable of trapping F?,which can suppress this retroreaction step.The generated perfluoroalkyl radicals then undergo addition to allylic stannanes followed by single electron oxidation and elimination of the stannyl cation,affording the corresponding defluoroallylation products.

    3.C–F bond functionalizations of trifluoromethyl alkenes

    Trifluoromethyl alkenes are privileged structural motifs for synthesizing a diverse range of partially fluorinated or nonfluorinated compounds.Over the past decades,various research groups have used visible-light-mediated reactions of carbon and heteroatom nucleophiles withα-trifluoromethyl alkenes to synthesizegem-difluoroalkenes [14,21].The general mechanism is shown in Scheme 9.Initially,the excited photocatalyst (PC?) is reductively quenched by a radical precursor,affording the radical R?and PC??.Radical addition to trifluoromethyl alkene formsα-CF3alkyl radical,which would be further reduced by PC??to give sp3-hybridized carbanion and regenerate PC.Finally,β-fluoride elimination shifts the double bond to givegem-difluoroalkene products

    Scheme 16.Sequential C–F bond functionalizations of trifluoroacetamides and trifluoroacetates via spin-center shifts.

    This strategy was applied to the decarboxylative/defluorinative cross coupling ofα-keto acids and trifluoromethyl alkenes for the synthesis ofγ,γ-difluoroallylic ketones using an Ir-based photocatalyst excited under blue light (Scheme 10) [39].This reaction features mild reaction conditions,simple operation,and good functional group tolerance.The process could also be extended toN-Boc protectedα-amino acids for the synthesis of 1,1-difluorohomoallylic amines.The resulting functionalizedgemdifluoroalkenes can be transformed to various difluoromethylated compounds and monofluorinated heterocycles.

    In 2017,Molander also demonstrated a visible light-mediated process for the synthesis of 1,1-difluoroalkenes by using an array of CF3-substituted alkenes with different carbon-radical precursorsviaradical defluorinative alkylation process (Scheme 11)[40].Whenα-silylamines were employed,various amine-tetheredgem-difluoroalkenes were produced.Potassium organotrifluoroborates and alkylbis(catecholato)silicates are also used as competent precursors of carbon centered radicals,providing a route to install a variety of alkyl-substitutedgem-difluoroalkenes.

    Organoboron compounds have broad applications in chemical synthesis,material sciences,and medicinal chemistry.Recently,the groups of Wang [41],Yang [42]and Wu [43]independently reported photoredox catalysis-enabled radical defluorinative borylations of trifluoromethyl alkenes to afford a wide range ofgemdifluoroallylboranes.In Wang’s work (Scheme 12),the key step is the generation ofN-heterocyclic carbene (NHC)-BH2?viaa singleelectron oxidation of NHC-BH3(Ep/2=+0.76 Vvs.SCE) by IrIV(ppy)3(E1/2red[IrIV/IrIII]=+0.77 Vvs.SCE),which subsequently undergoes cross-coupling with thein situgenerated radical anions to yield the defluoroborylation products [44].

    While in Yang’s protocol (Scheme 13),NHC-BH3is directly oxidized by excited Ir(Ⅲ) species followed by deprotonation to generate NHC-boryl radical.The following addition to CF3-substituted styrene gives anα-trifluoromethyl radical that then undergoes single electron reduction by Ir(Ⅱ) to form a carbanion intermediate.Finally,β-fluoride elimination affords the correspondinggemdifluoroallylboranes.In contrast,NHC-boryl radical is generated by HAT process in Wu’s procedure.The excited photocatalyst oxidizes a thiol catalyst to produce a thiyl radical,which then abstracts a hydrogen atom from NHC-BH3to generate NHC-boryl radical [45].The ensuring transformation including radical addition,SET reduction by the reduced state of the photocatalyst,and fluoride elimination,providesgem-difluoroallylborane products.

    4.C–F bond functionalization of trifluoromethyl carbonyl compounds

    The carbonyl group is an important unit in organic molecules due to its rich chemistry in further transformations.α,α,α-Trifluorocarbonyl compounds are a class of versatile precursors for the synthesis of di- and monofluorocarbonyl products.Previously,the defluorination of these moieties are exploited using reduction methods with low valent metals as the reducing agents[46]or by electrolysis [47].For example,using Mg as a reducing agent,α,α,α-trifluoroketones are converted to 2,2-difluoroenol silyl ethers,wherein chlorotrimethyl silane (TMSCl) is used to trap the resulting enolates (Scheme 14) [28].The possible mechanism involves a two-electron transfer process,As shown in Scheme 14,the first electron transfer from Mg to ketone gives a ketyl species,which is further reduced to an anionic species by Mg.Afterβfluoride elimination,2-fluoroenol silyl ether is formed as final product.Di-fluoroenol silyl ethers are potentially useful building blocks for various difluoro compounds such asβ-hydroxy ketones 45,α-halodifluoromethyl ketones 46,1,5-dicarbonyl compounds 47.The intramolecular [2+2]cycloaddition affords tetrafluorocyclobutanediols 48.It can also undergo transition metal catalyzed cross coupling reactions to give arylated products 49 and 50.

    Samarium(Ⅱ) iodide in conjunction with trimethylamine and water is another single-electron reduction approach used forαdefluorination of esters or amides (Scheme 15) [18].In this defluorination reaction,low temperature (-78 °C) and the addition of Et3N is crucial for controlling the degree of the defluorination process.However,only moderate yield and selectivity could be obtained by this strategy.

    Very recently,Wang’s group reported a 4-dimethylamino pyridine-boryl radical promoted sequential C–F bond functionalizations of trifluoromethyl group (Scheme 16) [48].The strategy comprises a controllable two-stage process,each involving a spincenter shift (SCS) pathway for defluorination.In stage A,the reaction starts by the attack of dimethylaminopyridine-BH2?(DMAPBH2?) to the carbonyl oxygen atom of CF3-carbonyl molecules,and the following defluorination occursviaan SCS mechanism,givingα,α-difluorocarbonyl radical intermediates.These intermediates are then reduced by a thiol catalyst or captured by alkenes to afford a wide range of difluorocarbonyl products.In stage A,these difluoro compounds repeat the same process,furnishing diverse monofluoro products.As outlined in Scheme 16,this twostage process shows broad substrate scope and good chemoselectivity.For example,reduction of stages A and B intermediates,wherein RSH was used as the polarity reversal catalyst,can afford di- and monofluoromethyl products selectively,and only minor over-reduction products were observed in the formation of difluoro products.Notably,no trihydrodefluorination product is detected in both cases.Alkenes could be used as the radical trap in both stages A and B,leading to diverse defluorinative coupling products.Interestingly,when two different alkenes were employed in stages A and B,products containing a monofluorinated-tertiary stereogenic center were constructed.

    Further DFT calculations revealed that the chemoselectivity is controlled by the declining reactivity of DMAP-BH2?towards the addition to the defluorinated products,which is attributed to the increasing singly occupied molecular orbital (SOMO)/lowest unoccupied molecular orbital (LUMO) gaps between DMAP-BH2?and the substrates.Therefore,once the first fluoride is removed,the resulting carbonyl group becomes less reactive,thus ensuring excellent chemoselectivity during defluorination [49].

    5.Conclusion

    C–F bond functionalization of CF3-compounds has recently appeared as an efficient method for the synthesis of partially fluorinated molecules.Recent advances on electrochemistry,photoredox catalysis,and radical chemistry of main group elements have rendered more strategies for C–F bond functionalization reactions.In this review,we summarized recent progress on C–F bond functionalization of CF3groups involving radical intermediates as the main transformation pathways.Although the C–F bond in the trifluoromethyl group is extremely inert and the defluorination chemoselectivity is difficult to control,important advancement has been made in selective functionalizations of one or two C–F bonds in CF3groups by different strategies.However,the limitations and challenges are still remained.For example,the sequential functionalization of C–F bonds of trifluoromethylarenes andα,α,αtrifluoroketones with high chemoselectivity has still remained an unsolved challenge.Moreover,the combination of radical chemistry and transition metal catalysis,which is expected to be a powerful tool to construct diversified mono- and difluoro products,has not been well studied.Furthermore,enantioselective transformations of difluoro compounds that are accessed from simple CF3sources has not been achieved yet.The realization of such strategy would of great value to make monofluorinated tertiary stereogenic centers [50]with high enantioselectiity from simple fluorine sources.We can expect that defluorinative functionalization strategies will continue to make important contributions in organic synthesis,medicinal chemistry,and material science.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    We thank the National Natural Science Foundation of China (No.21971226) and the Fundamental Research Funds for the Central Universities (No.WK2060000017) for financial support.

    久9热在线精品视频| 亚洲一码二码三码区别大吗| 免费女性裸体啪啪无遮挡网站| 超色免费av| 少妇人妻久久综合中文| 国产精品欧美亚洲77777| 日日爽夜夜爽网站| 亚洲五月色婷婷综合| 建设人人有责人人尽责人人享有的| 午夜福利视频在线观看免费| 亚洲成av片中文字幕在线观看| 午夜福利免费观看在线| 1024视频免费在线观看| 又粗又硬又长又爽又黄的视频| 国产成人a∨麻豆精品| 国产精品国产三级国产专区5o| 国产野战对白在线观看| 欧美日本中文国产一区发布| 国产成人影院久久av| 色婷婷av一区二区三区视频| 两个人看的免费小视频| 欧美性长视频在线观看| 午夜免费成人在线视频| 岛国毛片在线播放| 亚洲美女黄色视频免费看| 日本猛色少妇xxxxx猛交久久| 欧美日韩国产mv在线观看视频| 少妇 在线观看| 亚洲少妇的诱惑av| 国产亚洲欧美在线一区二区| 制服诱惑二区| 欧美大码av| 手机成人av网站| 免费黄频网站在线观看国产| 国产av精品麻豆| 日韩伦理黄色片| 国产精品三级大全| 亚洲午夜精品一区,二区,三区| 久久精品国产a三级三级三级| 亚洲,欧美精品.| 国产女主播在线喷水免费视频网站| 国产麻豆69| 国产一区二区 视频在线| 亚洲精品国产av成人精品| 纯流量卡能插随身wifi吗| 午夜免费男女啪啪视频观看| 男的添女的下面高潮视频| 99热国产这里只有精品6| 9色porny在线观看| 97人妻天天添夜夜摸| 涩涩av久久男人的天堂| 久久鲁丝午夜福利片| 亚洲国产欧美一区二区综合| 亚洲av男天堂| 啦啦啦在线免费观看视频4| 欧美日韩av久久| 新久久久久国产一级毛片| 国产欧美日韩精品亚洲av| 这个男人来自地球电影免费观看| √禁漫天堂资源中文www| 精品久久久精品久久久| 女人高潮潮喷娇喘18禁视频| 性高湖久久久久久久久免费观看| 制服诱惑二区| 人人澡人人妻人| 秋霞在线观看毛片| 欧美变态另类bdsm刘玥| 80岁老熟妇乱子伦牲交| 午夜影院在线不卡| 人体艺术视频欧美日本| 久久精品久久久久久噜噜老黄| 一级毛片女人18水好多 | 一级,二级,三级黄色视频| 大码成人一级视频| 日韩免费高清中文字幕av| 黑人巨大精品欧美一区二区蜜桃| 九草在线视频观看| bbb黄色大片| 两个人看的免费小视频| 黄网站色视频无遮挡免费观看| 男女无遮挡免费网站观看| 大话2 男鬼变身卡| 2018国产大陆天天弄谢| 欧美精品啪啪一区二区三区 | 日韩视频在线欧美| 日本a在线网址| 亚洲成国产人片在线观看| 天天躁日日躁夜夜躁夜夜| 18禁观看日本| 成人亚洲精品一区在线观看| 国产成人91sexporn| 热re99久久国产66热| 狠狠精品人妻久久久久久综合| 中文字幕人妻丝袜一区二区| 久久精品亚洲av国产电影网| 伦理电影免费视频| 丰满饥渴人妻一区二区三| 宅男免费午夜| 久久性视频一级片| 黄片播放在线免费| 妹子高潮喷水视频| 成年人免费黄色播放视频| 亚洲美女黄色视频免费看| 天堂8中文在线网| 国产精品国产三级国产专区5o| 亚洲精品一二三| 国产黄色免费在线视频| 成人18禁高潮啪啪吃奶动态图| 国产成人免费无遮挡视频| 人妻人人澡人人爽人人| 亚洲欧美精品综合一区二区三区| 久久久久久人人人人人| 精品亚洲成a人片在线观看| 亚洲第一av免费看| 午夜免费男女啪啪视频观看| 十八禁网站网址无遮挡| 精品国产乱码久久久久久男人| 国产精品久久久久久人妻精品电影 | 91麻豆精品激情在线观看国产 | 一本大道久久a久久精品| xxxhd国产人妻xxx| 久久ye,这里只有精品| 国产精品亚洲av一区麻豆| 精品久久久久久电影网| 看免费av毛片| 下体分泌物呈黄色| 999精品在线视频| 热99久久久久精品小说推荐| 久久久国产精品麻豆| 亚洲国产欧美一区二区综合| 狂野欧美激情性xxxx| 美国免费a级毛片| 亚洲欧美激情在线| 成年av动漫网址| 蜜桃在线观看..| 日韩一本色道免费dvd| 亚洲伊人久久精品综合| 亚洲欧洲精品一区二区精品久久久| 日日摸夜夜添夜夜爱| 美国免费a级毛片| 亚洲精品在线美女| 伊人久久大香线蕉亚洲五| 日日摸夜夜添夜夜爱| 男人爽女人下面视频在线观看| 人人妻,人人澡人人爽秒播 | 亚洲情色 制服丝袜| 热re99久久精品国产66热6| 精品人妻熟女毛片av久久网站| 99香蕉大伊视频| 午夜福利视频精品| 精品人妻1区二区| 成年美女黄网站色视频大全免费| 国产亚洲欧美精品永久| 亚洲精品成人av观看孕妇| 一二三四社区在线视频社区8| 欧美日韩一级在线毛片| 9191精品国产免费久久| 在线观看免费视频网站a站| 亚洲av国产av综合av卡| 亚洲,一卡二卡三卡| 99久久人妻综合| 国产免费现黄频在线看| 日韩中文字幕视频在线看片| 久久久久国产精品人妻一区二区| 熟女av电影| 一区在线观看完整版| 丝袜美足系列| 极品少妇高潮喷水抽搐| 国产精品二区激情视频| 免费观看人在逋| 久久精品成人免费网站| 首页视频小说图片口味搜索 | 国产91精品成人一区二区三区 | 老司机深夜福利视频在线观看 | 热re99久久精品国产66热6| 精品亚洲乱码少妇综合久久| 人妻一区二区av| 国产精品av久久久久免费| 亚洲五月婷婷丁香| 熟女少妇亚洲综合色aaa.| 国产av国产精品国产| a级毛片黄视频| 亚洲中文字幕日韩| 国产成人a∨麻豆精品| 乱人伦中国视频| 丝袜脚勾引网站| 久久久久久久久免费视频了| 欧美少妇被猛烈插入视频| 国产av国产精品国产| 国产成人免费无遮挡视频| 一级黄色大片毛片| 欧美+亚洲+日韩+国产| 嫩草影视91久久| 人妻一区二区av| 日韩大码丰满熟妇| 久久久国产一区二区| 一本综合久久免费| 在线观看一区二区三区激情| h视频一区二区三区| 久久鲁丝午夜福利片| 18在线观看网站| 精品久久蜜臀av无| av不卡在线播放| 午夜免费成人在线视频| 国产精品香港三级国产av潘金莲 | 欧美精品一区二区免费开放| 国产一区二区在线观看av| 亚洲欧洲精品一区二区精品久久久| 大片免费播放器 马上看| 99久久99久久久精品蜜桃| av不卡在线播放| 天堂俺去俺来也www色官网| 国产午夜精品一二区理论片| 亚洲国产欧美一区二区综合| 18禁裸乳无遮挡动漫免费视频| 我的亚洲天堂| 老司机深夜福利视频在线观看 | 少妇被粗大的猛进出69影院| 亚洲欧美一区二区三区黑人| 99热国产这里只有精品6| 成人影院久久| 亚洲欧美精品综合一区二区三区| 久久久国产欧美日韩av| 熟女av电影| 欧美在线一区亚洲| 在线观看免费日韩欧美大片| 婷婷丁香在线五月| av在线播放精品| a级毛片黄视频| 成人国产一区最新在线观看 | 成人18禁高潮啪啪吃奶动态图| 欧美 亚洲 国产 日韩一| 亚洲成人免费电影在线观看 | 国产免费视频播放在线视频| av线在线观看网站| av网站在线播放免费| 午夜视频精品福利| 国产97色在线日韩免费| 老鸭窝网址在线观看| 亚洲精品一二三| 国产深夜福利视频在线观看| 国产免费视频播放在线视频| 国产精品免费大片| 国产一区二区在线观看av| 午夜av观看不卡| 超色免费av| 日韩人妻精品一区2区三区| 亚洲成色77777| 亚洲中文av在线| 久久天堂一区二区三区四区| 考比视频在线观看| 搡老岳熟女国产| 国产一区有黄有色的免费视频| 亚洲专区中文字幕在线| 午夜福利乱码中文字幕| 午夜免费成人在线视频| 精品人妻1区二区| 欧美av亚洲av综合av国产av| 乱人伦中国视频| 亚洲av成人不卡在线观看播放网 | 一区二区三区乱码不卡18| 国产精品欧美亚洲77777| 日本vs欧美在线观看视频| 国产精品秋霞免费鲁丝片| 69精品国产乱码久久久| 十八禁人妻一区二区| 只有这里有精品99| 51午夜福利影视在线观看| 天天操日日干夜夜撸| 精品国产乱码久久久久久男人| 国产三级黄色录像| 99国产精品免费福利视频| 亚洲欧美色中文字幕在线| 国产成人系列免费观看| 国产真人三级小视频在线观看| 久久国产精品男人的天堂亚洲| 国产亚洲精品第一综合不卡| 伊人久久大香线蕉亚洲五| 久久久久久久国产电影| 中文字幕亚洲精品专区| 亚洲国产成人一精品久久久| 中文字幕亚洲精品专区| av线在线观看网站| 精品人妻一区二区三区麻豆| 亚洲精品一区蜜桃| 91麻豆精品激情在线观看国产 | 国产午夜精品一二区理论片| 国产av一区二区精品久久| 亚洲成色77777| 亚洲五月婷婷丁香| 中文字幕人妻丝袜制服| 50天的宝宝边吃奶边哭怎么回事| 在线 av 中文字幕| 午夜福利在线免费观看网站| 久久久久国产一级毛片高清牌| 丝袜在线中文字幕| 亚洲av电影在线进入| av天堂久久9| 黄网站色视频无遮挡免费观看| 国产免费福利视频在线观看| 国产人伦9x9x在线观看| 午夜福利乱码中文字幕| 超色免费av| 99国产精品一区二区三区| 人妻 亚洲 视频| 波多野结衣一区麻豆| 欧美日韩国产mv在线观看视频| 亚洲国产成人一精品久久久| 国产色视频综合| 亚洲色图综合在线观看| 国产午夜精品一二区理论片| 最黄视频免费看| 97精品久久久久久久久久精品| 久久精品国产亚洲av涩爱| 爱豆传媒免费全集在线观看| 午夜两性在线视频| 国产精品二区激情视频| 久久影院123| 晚上一个人看的免费电影| 一级片免费观看大全| 青青草视频在线视频观看| 日韩精品免费视频一区二区三区| 69精品国产乱码久久久| 九色亚洲精品在线播放| 成人免费观看视频高清| 校园人妻丝袜中文字幕| 丁香六月天网| 久久久久久亚洲精品国产蜜桃av| 又紧又爽又黄一区二区| 久久99一区二区三区| 一级毛片电影观看| 日韩一区二区三区影片| 免费高清在线观看日韩| 国产av国产精品国产| 丝袜喷水一区| bbb黄色大片| 中文乱码字字幕精品一区二区三区| 欧美激情极品国产一区二区三区| 亚洲欧洲日产国产| 免费黄频网站在线观看国产| 国产色视频综合| 亚洲欧美日韩另类电影网站| 亚洲av日韩精品久久久久久密 | 精品高清国产在线一区| 熟女av电影| 国产成人免费观看mmmm| 国产野战对白在线观看| 成人亚洲精品一区在线观看| 99国产精品99久久久久| 欧美激情极品国产一区二区三区| 搡老乐熟女国产| 日韩精品免费视频一区二区三区| 69精品国产乱码久久久| 欧美日韩黄片免| 午夜福利免费观看在线| 精品一区二区三区av网在线观看 | 精品人妻熟女毛片av久久网站| 伊人久久大香线蕉亚洲五| 大陆偷拍与自拍| 久久国产精品人妻蜜桃| 国产又色又爽无遮挡免| bbb黄色大片| 久久久久久人人人人人| 人成视频在线观看免费观看| 女性被躁到高潮视频| 亚洲男人天堂网一区| 多毛熟女@视频| 丝袜在线中文字幕| 欧美人与性动交α欧美精品济南到| 欧美人与性动交α欧美软件| 久久中文字幕一级| 国产日韩一区二区三区精品不卡| 宅男免费午夜| 中文字幕色久视频| 亚洲欧美色中文字幕在线| 亚洲一区二区三区欧美精品| 国产亚洲av高清不卡| 成年人免费黄色播放视频| 色视频在线一区二区三区| 新久久久久国产一级毛片| 老司机午夜十八禁免费视频| 一边摸一边做爽爽视频免费| 国产色视频综合| 高清欧美精品videossex| 午夜福利免费观看在线| 精品第一国产精品| 赤兔流量卡办理| 久久久精品国产亚洲av高清涩受| 中文字幕亚洲精品专区| 男人操女人黄网站| 久久久久网色| 久久精品国产亚洲av高清一级| 精品一区二区三区av网在线观看 | 中文字幕另类日韩欧美亚洲嫩草| 又粗又硬又长又爽又黄的视频| www.熟女人妻精品国产| 午夜影院在线不卡| 国产99久久九九免费精品| √禁漫天堂资源中文www| 免费av中文字幕在线| 亚洲精品av麻豆狂野| 精品亚洲成国产av| 国产三级黄色录像| 免费高清在线观看视频在线观看| 免费在线观看日本一区| 久热爱精品视频在线9| 午夜福利乱码中文字幕| 男人操女人黄网站| 亚洲,一卡二卡三卡| 午夜福利影视在线免费观看| 欧美+亚洲+日韩+国产| 亚洲,欧美精品.| 丁香六月天网| 黄色视频不卡| 最近最新中文字幕大全免费视频 | 欧美日韩福利视频一区二区| 最新在线观看一区二区三区 | 黄色一级大片看看| 宅男免费午夜| 黄色视频不卡| 亚洲国产精品一区二区三区在线| 大片电影免费在线观看免费| 精品国产国语对白av| 曰老女人黄片| 一本色道久久久久久精品综合| 50天的宝宝边吃奶边哭怎么回事| 五月天丁香电影| 自线自在国产av| 国产成人精品久久久久久| 日韩伦理黄色片| 一本大道久久a久久精品| 亚洲图色成人| 19禁男女啪啪无遮挡网站| 99香蕉大伊视频| av网站在线播放免费| 亚洲 国产 在线| 久久久精品国产亚洲av高清涩受| 国产精品久久久久久精品古装| 精品国产乱码久久久久久小说| 国产片特级美女逼逼视频| 亚洲激情五月婷婷啪啪| 天天躁日日躁夜夜躁夜夜| 国产av精品麻豆| 欧美国产精品一级二级三级| 久久久欧美国产精品| √禁漫天堂资源中文www| 国产亚洲av片在线观看秒播厂| 性少妇av在线| 狠狠精品人妻久久久久久综合| 性少妇av在线| 999久久久国产精品视频| 国产极品粉嫩免费观看在线| 精品少妇一区二区三区视频日本电影| 久久99精品国语久久久| 国产精品久久久久久精品电影小说| 国产麻豆69| 在线 av 中文字幕| 亚洲欧美一区二区三区黑人| 久久久国产一区二区| 午夜免费成人在线视频| 69精品国产乱码久久久| 在线观看人妻少妇| 精品久久久久久电影网| 国产日韩欧美在线精品| 午夜av观看不卡| a 毛片基地| 视频在线观看一区二区三区| a 毛片基地| 亚洲五月婷婷丁香| 国产免费一区二区三区四区乱码| 最近中文字幕2019免费版| 国产精品熟女久久久久浪| 中文字幕另类日韩欧美亚洲嫩草| 精品福利观看| 久久女婷五月综合色啪小说| 美女国产高潮福利片在线看| 亚洲激情五月婷婷啪啪| 日韩 亚洲 欧美在线| 久久性视频一级片| 一二三四在线观看免费中文在| 大香蕉久久成人网| 热99国产精品久久久久久7| 99精国产麻豆久久婷婷| 手机成人av网站| 日本a在线网址| 狂野欧美激情性bbbbbb| 美女脱内裤让男人舔精品视频| 欧美日韩av久久| 如日韩欧美国产精品一区二区三区| 国产精品99久久99久久久不卡| 午夜av观看不卡| 美女国产高潮福利片在线看| 男人操女人黄网站| 少妇 在线观看| 日本色播在线视频| 无遮挡黄片免费观看| 日韩伦理黄色片| 天天影视国产精品| 国产97色在线日韩免费| av欧美777| 青春草亚洲视频在线观看| 天天影视国产精品| 欧美日韩视频高清一区二区三区二| tube8黄色片| 制服人妻中文乱码| 国产成人系列免费观看| 日韩一卡2卡3卡4卡2021年| 久久狼人影院| av又黄又爽大尺度在线免费看| 午夜免费观看性视频| 伦理电影免费视频| 久久久欧美国产精品| 久久国产亚洲av麻豆专区| www.999成人在线观看| 午夜福利影视在线免费观看| 亚洲一区二区三区欧美精品| 一边摸一边做爽爽视频免费| 亚洲欧洲国产日韩| 国产一级毛片在线| 亚洲精品乱久久久久久| 成人午夜精彩视频在线观看| 国产精品免费大片| av有码第一页| 高潮久久久久久久久久久不卡| 成人亚洲欧美一区二区av| 亚洲午夜精品一区,二区,三区| 欧美精品一区二区大全| 亚洲中文字幕日韩| 日韩av不卡免费在线播放| 免费在线观看影片大全网站 | 午夜91福利影院| 亚洲国产欧美一区二区综合| 一本久久精品| 中文欧美无线码| 日韩一区二区三区影片| 极品人妻少妇av视频| 久久久欧美国产精品| 激情五月婷婷亚洲| videosex国产| a级毛片黄视频| a级毛片在线看网站| 999精品在线视频| 欧美日韩视频精品一区| 国产野战对白在线观看| 国产高清videossex| 国产不卡av网站在线观看| 啦啦啦在线免费观看视频4| 国产一区二区激情短视频 | 欧美精品亚洲一区二区| 99精品久久久久人妻精品| 王馨瑶露胸无遮挡在线观看| 亚洲av欧美aⅴ国产| 欧美日韩亚洲高清精品| 国产精品一国产av| 欧美97在线视频| 久久久久久亚洲精品国产蜜桃av| 亚洲av美国av| 一本大道久久a久久精品| 久久中文字幕一级| 亚洲成人免费电影在线观看 | 精品少妇内射三级| 男的添女的下面高潮视频| 手机成人av网站| 人人妻人人澡人人看| 欧美av亚洲av综合av国产av| 欧美中文综合在线视频| 国产亚洲欧美在线一区二区| 啦啦啦中文免费视频观看日本| 国产精品久久久久久人妻精品电影 | 精品亚洲成a人片在线观看| www.熟女人妻精品国产| 丝瓜视频免费看黄片| 欧美大码av| 国产熟女欧美一区二区| 美国免费a级毛片| 91国产中文字幕| 丁香六月天网| 国产亚洲午夜精品一区二区久久| 视频区欧美日本亚洲| 久久国产精品影院| 日本av免费视频播放| 日韩精品免费视频一区二区三区| 国产1区2区3区精品| 免费观看人在逋| 亚洲精品中文字幕在线视频| 在线看a的网站| 久久久久久久国产电影| 欧美国产精品一级二级三级| 久久天堂一区二区三区四区| 午夜日韩欧美国产| 汤姆久久久久久久影院中文字幕| 亚洲三区欧美一区| 中文字幕色久视频| av有码第一页| 国产免费一区二区三区四区乱码| 欧美日韩成人在线一区二区| 国产精品麻豆人妻色哟哟久久| 亚洲国产欧美在线一区| 精品国产一区二区三区四区第35| 久久影院123| 搡老岳熟女国产| 激情五月婷婷亚洲| 成人午夜精彩视频在线观看| 国产精品一区二区在线不卡| 亚洲国产成人一精品久久久| 国产成人啪精品午夜网站| 国产成人精品在线电影| 妹子高潮喷水视频| 亚洲国产中文字幕在线视频| 欧美老熟妇乱子伦牲交| 又黄又粗又硬又大视频| 久久精品久久久久久噜噜老黄| 麻豆乱淫一区二区| 一级片'在线观看视频| 黄色视频不卡|