• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural Redundancy Verification for Side Shell Frame of Single Side Skin Bulk Carriers

    2022-06-18 07:39:54-,,-,,-
    船舶力學(xué) 2022年6期

    -,,-,,-

    (1.College of Civil Engineering and Architecture,Zhejiang University of Technology,Hangzhou 310014,China; 2.China Ship Scientific Research Center,Wuxi 214082,China;3.Shanghai Rules&Research Institute,CCS,Shanghai 200135,China)

    Abstract:According to the IMO regulations and stiffened panel buckling failure criteria of IACS Har?monized Common Structural Rules (CSR), this paper put forward a new methodology for the verifica?tion on the IMO Goal Based Standard (GBS) compliance of structural redundancy requirements to the side shell frame of single side skin bulk carriers (SSS-BC). The concepts and definitions in this meth?odology,such as the structural redundancy acceptance criterion,damage assumption based on the real ship, load scenarios, non-linear finite element analysis (FEA) approach of the stiffened panels, etc.,were proposed,and the calculation verification on the real ship was also carried out.By the calculation results,it is demonstrated that the side shell structures of SSS-BC designed as per CSR rules can satis?fy the strength requirement that‘localized damage of any stiffening structural member will not lead to immediate consequential collapse of the complete stiffened panel’,and have the appropriate structural redundancy accordingly.

    Key words:structural redundancy;single side skin bulk carrier;stiffened panel;nonlinear finite element analysis

    0 Introductioin

    The structural redundancy can be defined as a kind of capability of a structural system that can maintain to withstand the external loads after some members are damaged or fail. In recent years, from a series of damage accidents caused by the insufficient redundancy, it can be realized that some structural redundancy which is inherently in the requirements of the current rules may not ensure the structural safety after some members damage or fail. In last 90’s, it was found that some damage accidents occurred on side shell frame of SSS BC,where the single mechanical failure(likely due to cargo handling) of a side frame may lead to an overloading of its side frame neigh?bours and finally cause the collapse of the whole side frame structure, as shown in Fig.1. This phe?nomenon is called‘Domino effect’of the side frame. The statistics show that most bulk carriers with damage accidents have 15 years of age and above,and it seems that for early period, the major reason of the damage accidents is the underestimate of the hull structure damage or the sensitivity of the structure un?der special damage,sensitive degree of the structure un?der the special damage, which leads to the severe insuf?ficiency of hull residual capability. For this reason, in IMO MSC. 296(87) Resolution 7.3.1[1], it was pointed out that‘Does a ship designed to the rules have suffi?cient structural redundancy to survive localized damage to a stiffening member?’.

    Fig.1 Collapse of side shell frame on real ship stiffened panel of SSS-BC

    By now, some approaches for the structural redundancy criteria and their calculations have been proposed in the literatures.For example,the structural redundancy required by SOLAS Regu?lation XII/6.5.1 and 6.5.3[2]concerning the cargo hold range of bulk carriers has been verified by IACS using‘overload’approach.The concept of‘overload’approach is clear and understandable.However, the calculation model is rather too simple, and only one axial load action can be consid?ered. Decò et al[3]proposed another new kind of methodology to evaluate the redundancy of hull girder bending strength based on the probability assessment. In addition, Decò[4]also provided a comprehensive study report on the structural reliability and redundancy under all the working con?ditions with the corrosion effect, various sea conditions and ship speeds. Although this approach sounds good theoretically, it is really difficult in practice due to the data collection. Wu[5]detailed his concept of ship structural redundancy and explained the structural redundancy through his phi?losophy to perform‘one by one’step way to delete the yield strength of the longitudinal primary support member. Wu’s thought was just based on the yield strength failure but not on the typical panel buckling. Chen et al[6]investigated the failure progress of the side shell structures of the oil tanker to define its local structural redundancy.

    In accordance with the IMO GBS structural redundancy requirements and based on the dam?age assumption referring to the real ship and CSR stiffened panel buckling failure criteria, this pa?per proposed a new methodology for the verification on the IMO GBS compliance of structural re?dundancy requirements to the side shell frame of SSS-BC. The proposed methodology contains the structural redundancy acceptance criterion,damage assumption based on the real ship,load scenar?ios,non-linear FE collapse analysis approach of the stiffened panels,and numerical test on the real ships as well.This study can provide some important technical background to support IACS project of the verification on IMO GBS compliance for CSR.

    1 Ultimate capacity calculation

    In order to obtain the ultimate capacity of the stiffened panel under the intact and damaged condition respectively, the recognized non-linear software ABAQUS was adopted for the assess?ment.Calculation flow chart for the nonlinear finite element analysis is illustrated in Fig.2.

    Fig.2 Calculation flow chart for nonlinear finite element analysis

    1.1 Model extents and meshes

    As shown in Fig.3, the side shell stiffened panel of SSS-BC is taken as the calculation model.Since the rigidity of the top tank and hopper tank is significantly harder than that of the side shell stiffened panel connected in between,the top tank and hopper tank can be set as the (fixed)bound?ary condition for the side shell stiffened panel model. In accordance with the provisions of NLFEA IACS, the model in width covers 5 transverse side frames arranged evenly. And the T-bar type which is often used for the ship structure is taken as the side frame in the model.The mesh density of the model can be set as:

    (1) Side shell plating: six plate elements between the two adjacent side frames, with each ele?ment made close to square.

    (2)Web plate of the side frame:at least three plate elements along the web depth,with each el?ement made close to square.

    (3) Flange plate of the side frame: two plate elements for the flange plate on the T-bar cross section.

    Fig.3 Calculation model of a side shell

    1.2 Boundary conditions

    The coordinate system of the model is shown in Fig.3, where B1, B2 (including brackets), B3 and B4 denote 4 sides of the side shell panel/grillage and C1,C2,C3 and C4 represent 4 panel cor?ners,respectively.The boundary conditions of this model are:B1 and B2 sides are connected to the web frame.B1 side should be fixed,but B2 side is free to the uniform translation inxdirection and with constrained rotations aboutyandzaxes. B3 and B4 sides are connected to the panel edge sides to keep the uniform translation inydirection. However, the translation is not allowed in the perpendicular direction to the panel. The corner point C1 is fully fixed in any translation and rota?tion,meanwhile other corner points can be allowed to rotate about y axis.

    1.3 Assumption of localized damage

    Based on the SOLAS Regulations[2]and relevant standards of the annual survey, two damage models are proposed in this paper. The first one is the weld crack about 300-500 mm at the lower bracket of the side frame (see Fig. 4). For simulating this case, some web elements at lower end bracket of the middle frame (the 3rd one) are deleted as shown in Fig.4. It should be pointed out that this damage is simulated for the‘desoldering’in this model, and there is no connection with the adjacent structures. As the buckling represents the overall structural behavior, it is not neces?sary to change the element mesh size in the localized damaged model. The second one is to intro?duce the global permanent deformation with the maximum value of 6l/1000, wherelis the span of the side frame,as shown in Fig.5.

    Fig.4 Weld crack at lower end bracket of the frame

    Fig.5 Model with large deformation permanent

    1.4 Simulation of initial geometry imperfection

    The total initial geometry imperfection combines with the local and global deformations. The local initial imperfection can be obtained by calculating the first eigenvalue, and the global initial imperfection can be assumed by a half sine wave pattern.The tripping/transverse titling of the stiff?ener will be represented by the double trigonometric function. The maximum imperfection value is determined by the statistics on the real ships.

    1.5 Material properties

    A bi-linear material model including the strain hardening effect was applied in the analysis,i.e. the modulus of elasticityE=206 000 N/mm2and strain hardening parameterET=1000 N/mm2in the elastic and inelastic range respectively.

    1.6 Applied loads

    There are various kinds of loads acting on the side shell grillage structure in the ship service.Three external load types including the axial compressive force along the frame,transverse compres?sive force, axial compressive force + transverse compressive force + lateral pressure (axial, trans?verse,combined force for short)are taken into account,as shown in Fig.6.In addition,in order to in?vestigate the effects of all kinds of loads,some uniaxial load actions have been also considered.

    Fig.6 Applied loads

    2 Structural redundancy criteria of side shell structures

    2.1 Criterion 1

    For the plate and stiffener of the stiffened panel, the structural buckling criterion in CSR[7]is shown as

    whereηis defined as the buckling utilization factor corresponding to the actual applied design load.For combined load cases, the buckling utilization factorηcan be defined as the ratio between ap?plied working stress and structural buckling capacity andηalldenotes the allowable buckling utiliza?tion factor.

    In Chapter XII of IMO SOLAS[8], the structural redundancy requirements of bulk carriers are clearly stated, i.e.‘the structure of cargo areas shall be such that single failure of one stiffening structural member will not lead to immediate consequential failure of other structural items poten?tially leading to the collapse of the entire stiffened panels’.Based on the study of‘IACS Joint Bulk?er Project–Technical Backgrounds’of‘Structural redundancy requirements of SOLAS regulation XII/6.5.1 and 6.5.3 in CSR for Bulk Carriers’and document of IACS SC209, IACS CSR-BC CH6,Sec.3 and IACS CSR Pt1,CH8,Sec.5,it is also clearly indicated that,for all‘facing cargo structur?al members’in cargo holds of bulk carriers, including hatchway coamings, transverse bulkheads,panel plates of the top-side tankers and bilge hopper tankers facing the cargo hold, inner bottom,side shell of single-side skin construction or longitudinal bulkhead of double-side skin construc?tion,the safety factor should be magnified to 15%,which is taken as 1.15.

    Therefore,for the SSS-BC side shell frame that meets the structural redundancy requirements,the following criterion should be satisfied:

    whereηDis the utilization factor of damaged stiffened panel,σDis the working stress of localized damaged stiffened panel,UDis the ultimate capacity of stiffened panel with localized damage.

    whereγdenotes the index of the structural redundancy.

    In comparison with Eq.(2), the advantage of the new expression Eq.(5) lies in that Eq.(5) links the relationship between four parameters of working stress, ultimate capacity of damage and intact stiffened panels, and also relates to the working stress level (i.e. corresponding to the safety margin of intact stiffened panels)byηI.

    2.2 Criterion 2

    It can be seen from an amount of calculation on real ships that the localized damage on one stiffening member hardly changes the global stress distribution of the entire panel. Based on this conclusion and the definition of the working stress of localized damaged stiffened panel,σDcould be expressed asσD≈σID(6)whereσIDdenotes the global stress distribution of the intact stiffened panel under the damaged con?dition.

    Then,according to the corresponding definition,the utilization factors can be derived as

    Criterion 2 emphasizes the difference betweenUDandUIin terms of the ultimate strength of the stiffened panel. It also ignores the global stress change of the cargo hold caused by the damage of one stiffening member.Compared with Criterion 1,this criterion does not contain the stress item,so that any stress combination need not be considered in the calculation fortunately.And the stiffen?er buckling is taken into account reasonably.

    3 Verification on real ships

    Based on the methodology described above, a structural redundancy assessment process is de?signed, and the verification has been performed on many actual CSR ships. In addition, non-linear FE analyses have been carried out to capture the ultimate capacity of the stiffened panel,i.e.firstly,take the stress value from the coarse mesh model results;secondly,get the stress ratio(e.g.y/x)(see in details in Section 4.4),and then increase the applied loads acting on the non-linear panel model in accordance with the stress ratio till the panel collapses; and finally, obtain the ultimate capacity of the stiffened panel both for intact and damaged model accordingly.

    3.1 Working procedure for structural redundancy evaluation

    The working procedure for structural redundancy evaluation on the side shell structure is shown in Fig.7.

    Fig.7 Working procedure for structural redundancy evaluation on side shell structure

    3.2 Load combination

    In the IMO relevant structural redundancy documentation (IMO SLS.14/Circ.250[1]),it explicit?ly states that‘a(chǎn) single localized damage, which is of a size that is likely to be detected, should not lead to complete collapse of the stiffened panel under a load equal to the maximum allowable de?sign still water load plus 80% of the maximum lifetime dynamic load.’. In this paper, the applied load combinations are as follows:

    (1)Damaged load combination:100%Static loads+80%Dynamic loads;(2)Intact load combination:100%Static loads+100%Dynamic loads.

    where the extreme loads in the intact condition correspond to a probability level of 10-8.

    Furthermore, the loading sequence of the combined operating conditions is described in Sec?tion 3.4 below.

    3.3 Stress calculation

    In order to seek the tendency of the working stress ratio between the damage and intact condi?tions, i.e.σD/σI, the statistics and analyses have been carried out to investigate the working stress from an amount of stiffened panels of actual bulk carriers and oil tankers under two conditions by cargo hold FE analysis. The cargo hold FE analysis is in line with the requirements of CSR, Pt1,Ch7,and the working stress is based on the coarse mesh cargo hold model[7].

    3.4 Selection of load cases

    The working stress to be selected for this study is based on the corresponding load case and combinations. The stress components are interactive on the buckling capacity curve, i.e. different ratio ofσy/σxcorresponds to different buckling capacity (see Fig.8). So not only should the selected working stress be based on the most severest/governing load case/condition, but also the panel capacity should correspond to the ratio ofσy/σxunder the most severe load condition. In order to deter?mine the governing load cases, the stress inxandydirec?tions,combined stress andηhave been taken out for mak?ing comparison as per the following process:

    (1) For all the seagoing conditions, the load combina?tion of‘100%Static loads+80%Dynamic loads’is applied to conduct the cargo hold FE analysis.From all stiffened panels in each areas, the governing load condition is found out, which corre?sponds to maximumσDx,σDy,ηD, and also the relevant stresses(σDx,σDy,τD)ηD_MAX.σDcan be calcu?lated by the formula:

    Fig.8 Relationship between biaxial stress and its ultimate capacity[7]

    3.5 Stress filtering

    Since there are large amounts of working stress data from the FE analyses, some filtering should be conducted to select the representative data to be used for structural redundancy assess?ment.The principles of the stress filtering are:

    (1) Filter out the stress data ofηI>1.It should be noted that some scantlings of CSR ships may not satisfy CSR rules, i.e. some of buckling utilization factors are greater than 1.0 under the CSR load combinations because the new version of CSR[7]is a little bit conservative than the old versions of CSR[9-10].Since it is meaningless to evaluate the redundancy for those not satisfying the rules,the stiffened panels with utilization factors greater than 1.0 should be filtered out firstly.

    (2) Set the tensile stress equal to zero forσxandσy, because the tensile stress has less influ?ence on the stiffened panel buckling.

    (3)Filter outσxorσywith values lower than 10 MPa since they are insignificant.

    3.6 Calculation results

    The calculation results of structural redundancy assessments of only a 180k SSS-BC ship are shown below due to the space limit of the paper. Tab.1 shows the intact and damaged ultimate ca?pacities of the side shell panel subjected to the uniaxial stress while Tab.2 shows the intact and damaged ultimate capacities of the side shell panel subjected to the combined stress. The calculat?ed collapse illustration in Fig.9 can reflect the actual damage shown in Fig.1.

    Tab.1 Intact and damaged ultimate capacities of side shell panel subjected to the uniaxial stress

    Tab.2 Intact and damaged ultimate capacities of side shell panel subjected to the combined stress*

    Fig.9 Collapse illustration of damaged model I(deformation amplified 10 times)

    According to the proposed structural redundancy criteria and in consideration of the influence of localized damage(as described in Section 2.3),the structural redundancies of the side shell panel plating and side frame of 180k SSS-BC ship are listed in Tab.3 and Tab.4,while Fig.10 and Fig.11 show the side shell panel structural redundancy of 180k SSS-BC ship according to Criterion 2. In general, the structural redundancy corresponding to the maximum combined stress is the lowest one.Besides,it should be noted that the panel number shown in Fig.10 and Fig.11 may be different due to the fact that the stresses have been filtered,as shown in Section 3.5 in detail.

    Tab.3 Structural redundancy of the side shell panel plating*

    Tab.4 Structural redundancy of the side frame*

    Fig.10 Structural redundancy of the side shell plating

    Fig.11 Structural redundancy of the side frame

    It can be seen that the structural redundancies of all the considered structural members are greater than 1.15, which demonstrates that all the considered structural members have the‘inher?ent’structural redundancy. That is to say, the side shell panel structure designed to CSR rules has a sufficient structural redundancy.It also demonstrates that the structural redundancy requirements have been covered in the strength requirements of CSR rules.

    4 Concluding remarks

    On the basis of the guidance on the IMO GBS structural redundancy compliance verification requirements, this paper proposed a new methodology for the verification on the IMO GBS compli?ance of structural redundancy requirements to the side shell frame of SSS-BC. The proposed meth?odology set up 2 damage assumptions and damaged load combinations,and contained the structural redundancy criteria and non-linear FE collapse analysis approach as well. Numerical test on some real CSR ships were performed. It can be seen that all the calculation results have satisfied the structural requirements.Therefore,it is demonstrated that the side shell panel structure designed to CSR rules has a sufficient structural redundancy, and can also satisfy the structural redundancy re?quirement of‘that localized damage of any stiffening structural member will not lead to immediate consequential collapse of the complete stiffened panel’. The methodology and structural redundan?cy criteria proposed in this paper are suitable for other ship types.

    国产深夜福利视频在线观看| 亚洲无线观看免费| 亚洲av男天堂| av专区在线播放| 丰满少妇做爰视频| 国产一区二区三区av在线| 亚洲三级黄色毛片| 欧美xxxx黑人xx丫x性爽| 欧美日韩精品成人综合77777| 欧美变态另类bdsm刘玥| 狂野欧美白嫩少妇大欣赏| 久久久精品94久久精品| 少妇人妻一区二区三区视频| 欧美高清成人免费视频www| 少妇 在线观看| a级毛片免费高清观看在线播放| 人妻 亚洲 视频| videossex国产| 国产真实伦视频高清在线观看| 国产在线视频一区二区| 国产欧美日韩一区二区三区在线 | 国产精品99久久久久久久久| 最近手机中文字幕大全| 亚洲电影在线观看av| 大香蕉97超碰在线| 91久久精品国产一区二区三区| 国产精品一区二区性色av| 国产精品久久久久成人av| 亚洲精品日韩av片在线观看| 亚洲人成网站高清观看| 国产在视频线精品| 国产精品免费大片| 日韩国内少妇激情av| 国产成人aa在线观看| 一区在线观看完整版| 在线播放无遮挡| 91精品伊人久久大香线蕉| 九草在线视频观看| 青春草国产在线视频| 青青草视频在线视频观看| 国产av码专区亚洲av| 国产无遮挡羞羞视频在线观看| 黑人猛操日本美女一级片| 午夜福利高清视频| av专区在线播放| 国产视频内射| 精品久久国产蜜桃| 少妇人妻一区二区三区视频| 青春草视频在线免费观看| 亚洲精品国产av成人精品| 男人舔奶头视频| 国产成人精品一,二区| 97热精品久久久久久| 日本wwww免费看| 黄色日韩在线| 亚洲不卡免费看| 精品久久久久久久末码| 国内揄拍国产精品人妻在线| 内射极品少妇av片p| 国产亚洲一区二区精品| 精品久久国产蜜桃| 亚洲欧美一区二区三区黑人 | 国产av一区二区精品久久 | tube8黄色片| 综合色丁香网| 免费人妻精品一区二区三区视频| 大又大粗又爽又黄少妇毛片口| 久久6这里有精品| av网站免费在线观看视频| av在线老鸭窝| 成年免费大片在线观看| 亚洲高清免费不卡视频| 身体一侧抽搐| 一级爰片在线观看| 一区二区三区乱码不卡18| 少妇人妻 视频| 午夜福利网站1000一区二区三区| 国产淫语在线视频| 久久人人爽人人片av| 国精品久久久久久国模美| 少妇人妻 视频| 三级国产精品欧美在线观看| 欧美激情极品国产一区二区三区 | 嫩草影院新地址| 久久久久久久久久人人人人人人| 国产爽快片一区二区三区| 欧美一区二区亚洲| 岛国毛片在线播放| 内地一区二区视频在线| 一本久久精品| 丰满乱子伦码专区| 国产一区二区三区av在线| 亚洲三级黄色毛片| 免费在线观看成人毛片| 日韩三级伦理在线观看| 高清黄色对白视频在线免费看 | 亚洲精华国产精华液的使用体验| 国产视频内射| 久久99热这里只频精品6学生| av国产免费在线观看| 国产在线免费精品| 久热久热在线精品观看| 久久影院123| 3wmmmm亚洲av在线观看| 性高湖久久久久久久久免费观看| 国产精品久久久久久精品古装| 久久人人爽av亚洲精品天堂 | 搡女人真爽免费视频火全软件| 不卡视频在线观看欧美| 亚洲精品国产av成人精品| 五月伊人婷婷丁香| 日日啪夜夜撸| 欧美97在线视频| 噜噜噜噜噜久久久久久91| 国产精品99久久久久久久久| 哪个播放器可以免费观看大片| av专区在线播放| 午夜免费男女啪啪视频观看| 黄色日韩在线| 日本av免费视频播放| 1000部很黄的大片| 最新中文字幕久久久久| 色网站视频免费| a级一级毛片免费在线观看| 欧美最新免费一区二区三区| 国产成人91sexporn| 亚洲精品日韩在线中文字幕| 国产一区亚洲一区在线观看| 插阴视频在线观看视频| 国产69精品久久久久777片| 国产深夜福利视频在线观看| 国产精品麻豆人妻色哟哟久久| 欧美高清成人免费视频www| 大陆偷拍与自拍| 亚洲av国产av综合av卡| 国产欧美另类精品又又久久亚洲欧美| 嫩草影院入口| 国产精品久久久久久久久免| 久久精品熟女亚洲av麻豆精品| 精品国产一区二区三区久久久樱花 | 日本黄色日本黄色录像| 亚洲精品aⅴ在线观看| 在线观看免费日韩欧美大片 | 人体艺术视频欧美日本| 日韩不卡一区二区三区视频在线| 日本爱情动作片www.在线观看| 最近的中文字幕免费完整| 久久久久久久亚洲中文字幕| 欧美一级a爱片免费观看看| 18禁动态无遮挡网站| 亚洲精华国产精华液的使用体验| 夜夜爽夜夜爽视频| av.在线天堂| 久久久久精品久久久久真实原创| 久久97久久精品| 日韩一区二区三区影片| 欧美日本视频| 纵有疾风起免费观看全集完整版| 一区二区av电影网| 脱女人内裤的视频| bbb黄色大片| 久久午夜综合久久蜜桃| 亚洲精品第二区| 中文字幕精品免费在线观看视频| 97在线人人人人妻| 大陆偷拍与自拍| 免费人妻精品一区二区三区视频| 久久热在线av| 日本欧美国产在线视频| 男女午夜视频在线观看| 岛国毛片在线播放| 香蕉国产在线看| 搡老乐熟女国产| 国产精品免费视频内射| 国产主播在线观看一区二区 | 亚洲av欧美aⅴ国产| 性少妇av在线| 亚洲精品国产av成人精品| 黑人巨大精品欧美一区二区蜜桃| 波野结衣二区三区在线| 国产成人精品在线电影| 国产97色在线日韩免费| 最近手机中文字幕大全| 国产精品麻豆人妻色哟哟久久| 亚洲精品国产av蜜桃| 欧美激情 高清一区二区三区| 老鸭窝网址在线观看| 爱豆传媒免费全集在线观看| 两个人看的免费小视频| 亚洲中文字幕日韩| 91麻豆精品激情在线观看国产 | 亚洲精品国产av蜜桃| 欧美黑人欧美精品刺激| 制服诱惑二区| 丁香六月欧美| 国产视频一区二区在线看| 亚洲国产看品久久| 男女下面插进去视频免费观看| 亚洲国产欧美在线一区| 亚洲国产最新在线播放| 在线观看人妻少妇| 免费女性裸体啪啪无遮挡网站| 少妇人妻 视频| 亚洲色图综合在线观看| 好男人电影高清在线观看| 一二三四社区在线视频社区8| 亚洲一区二区三区欧美精品| 免费av中文字幕在线| 精品一区二区三区av网在线观看 | 欧美日韩精品网址| 午夜视频精品福利| av有码第一页| 精品久久久久久电影网| www日本在线高清视频| 国产爽快片一区二区三区| 午夜福利,免费看| 免费高清在线观看视频在线观看| 免费久久久久久久精品成人欧美视频| 亚洲精品日本国产第一区| 日韩一区二区三区影片| 在线精品无人区一区二区三| 精品熟女少妇八av免费久了| 黄片播放在线免费| 色婷婷久久久亚洲欧美| 精品一品国产午夜福利视频| 色精品久久人妻99蜜桃| 制服人妻中文乱码| 建设人人有责人人尽责人人享有的| a级片在线免费高清观看视频| 日韩人妻精品一区2区三区| av又黄又爽大尺度在线免费看| 亚洲国产中文字幕在线视频| 久久精品久久久久久久性| kizo精华| 国产精品国产三级专区第一集| 久久久久精品国产欧美久久久 | 天天躁日日躁夜夜躁夜夜| 国产老妇伦熟女老妇高清| videos熟女内射| 少妇裸体淫交视频免费看高清 | 国产爽快片一区二区三区| 色94色欧美一区二区| 极品人妻少妇av视频| 午夜福利视频精品| 国产又爽黄色视频| 十八禁人妻一区二区| 欧美中文综合在线视频| 亚洲精品在线美女| 欧美日本中文国产一区发布| 国产成人91sexporn| 一本久久精品| 80岁老熟妇乱子伦牲交| 成年美女黄网站色视频大全免费| 视频区图区小说| 午夜91福利影院| 国产精品久久久av美女十八| 久久精品成人免费网站| 亚洲欧美日韩高清在线视频 | 中文字幕人妻丝袜一区二区| 男人操女人黄网站| 国产av国产精品国产| www.自偷自拍.com| 大话2 男鬼变身卡| 国产人伦9x9x在线观看| 天天躁夜夜躁狠狠躁躁| 国产高清不卡午夜福利| 日日摸夜夜添夜夜爱| 99久久人妻综合| 香蕉丝袜av| 一级片'在线观看视频| 狂野欧美激情性bbbbbb| 成年人免费黄色播放视频| 免费在线观看黄色视频的| xxxhd国产人妻xxx| 国产视频一区二区在线看| 亚洲久久久国产精品| 别揉我奶头~嗯~啊~动态视频 | 成人亚洲精品一区在线观看| 久久久久久亚洲精品国产蜜桃av| 18禁观看日本| 成年美女黄网站色视频大全免费| 我的亚洲天堂| 悠悠久久av| 青春草视频在线免费观看| 国产在线观看jvid| 国精品久久久久久国模美| 久久久久久久精品精品| 搡老乐熟女国产| 男男h啪啪无遮挡| 日韩 亚洲 欧美在线| 亚洲,一卡二卡三卡| 黑人猛操日本美女一级片| 777久久人妻少妇嫩草av网站| 黄色视频在线播放观看不卡| 日韩中文字幕欧美一区二区 | 巨乳人妻的诱惑在线观看| 成人免费观看视频高清| 成人亚洲欧美一区二区av| 视频在线观看一区二区三区| 精品一区在线观看国产| 亚洲精品国产av蜜桃| 国产在线免费精品| 欧美在线一区亚洲| 大话2 男鬼变身卡| 麻豆国产av国片精品| 色网站视频免费| 91国产中文字幕| 母亲3免费完整高清在线观看| 日韩制服骚丝袜av| 人人妻人人澡人人爽人人夜夜| 亚洲天堂av无毛| 一本—道久久a久久精品蜜桃钙片| xxxhd国产人妻xxx| 97精品久久久久久久久久精品| 午夜免费成人在线视频| 国产精品免费大片| 国产高清videossex| 五月天丁香电影| 精品国产一区二区久久| 亚洲色图综合在线观看| 亚洲成人免费电影在线观看 | 久9热在线精品视频| 亚洲成国产人片在线观看| 99国产精品99久久久久| 手机成人av网站| 日韩中文字幕欧美一区二区 | 欧美日韩成人在线一区二区| 性少妇av在线| 久久 成人 亚洲| 国产欧美日韩综合在线一区二区| av线在线观看网站| 亚洲av综合色区一区| 狂野欧美激情性bbbbbb| 国产精品免费视频内射| 久久精品国产a三级三级三级| 国产精品香港三级国产av潘金莲 | 搡老乐熟女国产| 男女边吃奶边做爰视频| 99久久综合免费| 久久精品国产综合久久久| 97人妻天天添夜夜摸| 高清欧美精品videossex| 成人国产一区最新在线观看 | 国产日韩欧美亚洲二区| 国产精品99久久99久久久不卡| 热re99久久精品国产66热6| 黑人欧美特级aaaaaa片| 免费在线观看日本一区| 欧美人与性动交α欧美精品济南到| 一区二区av电影网| 青青草视频在线视频观看| 亚洲一码二码三码区别大吗| 亚洲熟女精品中文字幕| 成人国语在线视频| 国产日韩一区二区三区精品不卡| 搡老乐熟女国产| 国产精品99久久99久久久不卡| av视频免费观看在线观看| 天堂中文最新版在线下载| 成人手机av| 午夜久久久在线观看| 大码成人一级视频| 亚洲欧洲国产日韩| 十分钟在线观看高清视频www| 欧美精品啪啪一区二区三区 | 国产欧美日韩精品亚洲av| av网站免费在线观看视频| 日韩av不卡免费在线播放| 一区二区av电影网| xxx大片免费视频| 亚洲国产欧美网| 丝袜脚勾引网站| 成年av动漫网址| 在线亚洲精品国产二区图片欧美| 国产精品香港三级国产av潘金莲 | 国产又色又爽无遮挡免| 亚洲成av片中文字幕在线观看| 成人免费观看视频高清| 久久精品国产亚洲av高清一级| 夫妻性生交免费视频一级片| 尾随美女入室| 亚洲av电影在线进入| 成年人免费黄色播放视频| 久久精品国产亚洲av涩爱| 国产av一区二区精品久久| 成人亚洲精品一区在线观看| 性色av乱码一区二区三区2| 丝袜美腿诱惑在线| 女警被强在线播放| av一本久久久久| 久久青草综合色| 夜夜骑夜夜射夜夜干| 欧美日韩亚洲高清精品| 亚洲国产日韩一区二区| 亚洲欧洲国产日韩| 亚洲精品av麻豆狂野| 午夜激情久久久久久久| 热99国产精品久久久久久7| 在线观看免费视频网站a站| videos熟女内射| 国产xxxxx性猛交| 波多野结衣av一区二区av| av有码第一页| 国产一卡二卡三卡精品| 亚洲成色77777| 亚洲欧美精品自产自拍| 在线看a的网站| 视频区图区小说| 亚洲精品av麻豆狂野| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产最新在线播放| 久久久久久免费高清国产稀缺| 啦啦啦啦在线视频资源| 亚洲国产看品久久| 丁香六月天网| 老汉色av国产亚洲站长工具| 嫁个100分男人电影在线观看 | 大码成人一级视频| 伦理电影免费视频| 97精品久久久久久久久久精品| 在线观看人妻少妇| 亚洲精品一区蜜桃| 一二三四社区在线视频社区8| 欧美精品高潮呻吟av久久| 国产深夜福利视频在线观看| 国产欧美日韩精品亚洲av| 成年美女黄网站色视频大全免费| 如日韩欧美国产精品一区二区三区| 你懂的网址亚洲精品在线观看| 又大又黄又爽视频免费| 亚洲精品av麻豆狂野| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久久成人av| 久久久久久久国产电影| 少妇精品久久久久久久| 90打野战视频偷拍视频| 婷婷色麻豆天堂久久| 成人亚洲欧美一区二区av| 观看av在线不卡| 国产精品一区二区在线不卡| 国产人伦9x9x在线观看| 人人澡人人妻人| 九色亚洲精品在线播放| 女人高潮潮喷娇喘18禁视频| 国产精品一二三区在线看| 日韩精品免费视频一区二区三区| 国产伦人伦偷精品视频| 精品久久久久久电影网| 男女边吃奶边做爰视频| 老司机影院成人| 国产日韩欧美在线精品| av视频免费观看在线观看| 亚洲激情五月婷婷啪啪| 精品国产乱码久久久久久小说| 只有这里有精品99| 爱豆传媒免费全集在线观看| 午夜福利影视在线免费观看| 韩国精品一区二区三区| 国产99久久九九免费精品| 久久久久精品国产欧美久久久 | 欧美少妇被猛烈插入视频| svipshipincom国产片| 黄网站色视频无遮挡免费观看| 欧美黑人精品巨大| 亚洲国产精品一区二区三区在线| 七月丁香在线播放| 欧美乱码精品一区二区三区| 国产爽快片一区二区三区| av天堂在线播放| 亚洲人成网站在线观看播放| 久久久欧美国产精品| 久久精品成人免费网站| 国产亚洲午夜精品一区二区久久| 色综合欧美亚洲国产小说| 久久热在线av| 日本猛色少妇xxxxx猛交久久| 美女大奶头黄色视频| 国产高清videossex| 性色av一级| 五月开心婷婷网| 桃花免费在线播放| 在线 av 中文字幕| 欧美变态另类bdsm刘玥| 免费看十八禁软件| 久久精品久久精品一区二区三区| 午夜精品国产一区二区电影| 精品人妻1区二区| 飞空精品影院首页| 少妇精品久久久久久久| 亚洲欧美一区二区三区黑人| 免费人妻精品一区二区三区视频| 多毛熟女@视频| 亚洲国产最新在线播放| 少妇 在线观看| 蜜桃在线观看..| 亚洲,欧美,日韩| 免费在线观看黄色视频的| 久久精品久久精品一区二区三区| 激情视频va一区二区三区| 91字幕亚洲| 天天添夜夜摸| av网站免费在线观看视频| 成人三级做爰电影| 亚洲av美国av| 18禁黄网站禁片午夜丰满| 一区二区三区四区激情视频| 国产高清videossex| 亚洲精品成人av观看孕妇| 午夜免费成人在线视频| 最近最新中文字幕大全免费视频 | 国产激情久久老熟女| 中文字幕精品免费在线观看视频| 丝瓜视频免费看黄片| 老司机影院毛片| 菩萨蛮人人尽说江南好唐韦庄| 在线观看免费高清a一片| 亚洲精品国产av蜜桃| 久久天堂一区二区三区四区| 超色免费av| 色视频在线一区二区三区| 老司机影院成人| 日韩欧美一区视频在线观看| 亚洲精品日韩在线中文字幕| 大码成人一级视频| 老司机影院成人| 国产在线视频一区二区| 国产欧美日韩综合在线一区二区| 国产人伦9x9x在线观看| 另类精品久久| 黑丝袜美女国产一区| 日韩制服骚丝袜av| 欧美国产精品va在线观看不卡| netflix在线观看网站| 国产精品久久久久久精品古装| 午夜福利免费观看在线| 国产免费福利视频在线观看| 黑人猛操日本美女一级片| 丁香六月欧美| 大片免费播放器 马上看| 侵犯人妻中文字幕一二三四区| 1024香蕉在线观看| 人妻一区二区av| 一级毛片黄色毛片免费观看视频| 婷婷丁香在线五月| 丝袜脚勾引网站| 婷婷色综合www| 熟女av电影| 精品熟女少妇八av免费久了| 高潮久久久久久久久久久不卡| 热99国产精品久久久久久7| 久久久欧美国产精品| 国产欧美日韩综合在线一区二区| 真人做人爱边吃奶动态| 久久精品国产a三级三级三级| 午夜免费观看性视频| 精品国产国语对白av| 老司机亚洲免费影院| 精品人妻在线不人妻| 观看av在线不卡| 免费一级毛片在线播放高清视频 | 母亲3免费完整高清在线观看| 天堂8中文在线网| 十八禁高潮呻吟视频| 亚洲成色77777| 国产亚洲欧美精品永久| 不卡av一区二区三区| 亚洲第一青青草原| 欧美在线一区亚洲| 超色免费av| 日本av免费视频播放| 午夜福利视频精品| 少妇被粗大的猛进出69影院| 亚洲一卡2卡3卡4卡5卡精品中文| 精品久久久精品久久久| 999精品在线视频| 免费少妇av软件| 99热国产这里只有精品6| 老司机亚洲免费影院| 19禁男女啪啪无遮挡网站| www.精华液| 啦啦啦视频在线资源免费观看| 搡老岳熟女国产| 19禁男女啪啪无遮挡网站| 欧美激情 高清一区二区三区| 中文字幕亚洲精品专区| 欧美在线一区亚洲| 咕卡用的链子| 国产免费又黄又爽又色| 麻豆国产av国片精品| 欧美日韩一级在线毛片| 亚洲天堂av无毛| 又黄又粗又硬又大视频| 国产欧美日韩一区二区三 | 1024视频免费在线观看| 久久久精品国产亚洲av高清涩受| 国精品久久久久久国模美| av天堂在线播放| 午夜免费男女啪啪视频观看| 1024视频免费在线观看| 精品熟女少妇八av免费久了| xxxhd国产人妻xxx| 午夜免费观看性视频| a级片在线免费高清观看视频| 天天添夜夜摸| 国产亚洲精品久久久久5区| 日韩av在线免费看完整版不卡| 国产精品亚洲av一区麻豆| 伦理电影免费视频| 亚洲少妇的诱惑av| 黄片小视频在线播放| 最黄视频免费看| 黄网站色视频无遮挡免费观看| 国产成人精品在线电影| 黄片播放在线免费| 曰老女人黄片|