• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural Redundancy Verification for Side Shell Frame of Single Side Skin Bulk Carriers

    2022-06-18 07:39:54-,,-,,-
    船舶力學(xué) 2022年6期

    -,,-,,-

    (1.College of Civil Engineering and Architecture,Zhejiang University of Technology,Hangzhou 310014,China; 2.China Ship Scientific Research Center,Wuxi 214082,China;3.Shanghai Rules&Research Institute,CCS,Shanghai 200135,China)

    Abstract:According to the IMO regulations and stiffened panel buckling failure criteria of IACS Har?monized Common Structural Rules (CSR), this paper put forward a new methodology for the verifica?tion on the IMO Goal Based Standard (GBS) compliance of structural redundancy requirements to the side shell frame of single side skin bulk carriers (SSS-BC). The concepts and definitions in this meth?odology,such as the structural redundancy acceptance criterion,damage assumption based on the real ship, load scenarios, non-linear finite element analysis (FEA) approach of the stiffened panels, etc.,were proposed,and the calculation verification on the real ship was also carried out.By the calculation results,it is demonstrated that the side shell structures of SSS-BC designed as per CSR rules can satis?fy the strength requirement that‘localized damage of any stiffening structural member will not lead to immediate consequential collapse of the complete stiffened panel’,and have the appropriate structural redundancy accordingly.

    Key words:structural redundancy;single side skin bulk carrier;stiffened panel;nonlinear finite element analysis

    0 Introductioin

    The structural redundancy can be defined as a kind of capability of a structural system that can maintain to withstand the external loads after some members are damaged or fail. In recent years, from a series of damage accidents caused by the insufficient redundancy, it can be realized that some structural redundancy which is inherently in the requirements of the current rules may not ensure the structural safety after some members damage or fail. In last 90’s, it was found that some damage accidents occurred on side shell frame of SSS BC,where the single mechanical failure(likely due to cargo handling) of a side frame may lead to an overloading of its side frame neigh?bours and finally cause the collapse of the whole side frame structure, as shown in Fig.1. This phe?nomenon is called‘Domino effect’of the side frame. The statistics show that most bulk carriers with damage accidents have 15 years of age and above,and it seems that for early period, the major reason of the damage accidents is the underestimate of the hull structure damage or the sensitivity of the structure un?der special damage,sensitive degree of the structure un?der the special damage, which leads to the severe insuf?ficiency of hull residual capability. For this reason, in IMO MSC. 296(87) Resolution 7.3.1[1], it was pointed out that‘Does a ship designed to the rules have suffi?cient structural redundancy to survive localized damage to a stiffening member?’.

    Fig.1 Collapse of side shell frame on real ship stiffened panel of SSS-BC

    By now, some approaches for the structural redundancy criteria and their calculations have been proposed in the literatures.For example,the structural redundancy required by SOLAS Regu?lation XII/6.5.1 and 6.5.3[2]concerning the cargo hold range of bulk carriers has been verified by IACS using‘overload’approach.The concept of‘overload’approach is clear and understandable.However, the calculation model is rather too simple, and only one axial load action can be consid?ered. Decò et al[3]proposed another new kind of methodology to evaluate the redundancy of hull girder bending strength based on the probability assessment. In addition, Decò[4]also provided a comprehensive study report on the structural reliability and redundancy under all the working con?ditions with the corrosion effect, various sea conditions and ship speeds. Although this approach sounds good theoretically, it is really difficult in practice due to the data collection. Wu[5]detailed his concept of ship structural redundancy and explained the structural redundancy through his phi?losophy to perform‘one by one’step way to delete the yield strength of the longitudinal primary support member. Wu’s thought was just based on the yield strength failure but not on the typical panel buckling. Chen et al[6]investigated the failure progress of the side shell structures of the oil tanker to define its local structural redundancy.

    In accordance with the IMO GBS structural redundancy requirements and based on the dam?age assumption referring to the real ship and CSR stiffened panel buckling failure criteria, this pa?per proposed a new methodology for the verification on the IMO GBS compliance of structural re?dundancy requirements to the side shell frame of SSS-BC. The proposed methodology contains the structural redundancy acceptance criterion,damage assumption based on the real ship,load scenar?ios,non-linear FE collapse analysis approach of the stiffened panels,and numerical test on the real ships as well.This study can provide some important technical background to support IACS project of the verification on IMO GBS compliance for CSR.

    1 Ultimate capacity calculation

    In order to obtain the ultimate capacity of the stiffened panel under the intact and damaged condition respectively, the recognized non-linear software ABAQUS was adopted for the assess?ment.Calculation flow chart for the nonlinear finite element analysis is illustrated in Fig.2.

    Fig.2 Calculation flow chart for nonlinear finite element analysis

    1.1 Model extents and meshes

    As shown in Fig.3, the side shell stiffened panel of SSS-BC is taken as the calculation model.Since the rigidity of the top tank and hopper tank is significantly harder than that of the side shell stiffened panel connected in between,the top tank and hopper tank can be set as the (fixed)bound?ary condition for the side shell stiffened panel model. In accordance with the provisions of NLFEA IACS, the model in width covers 5 transverse side frames arranged evenly. And the T-bar type which is often used for the ship structure is taken as the side frame in the model.The mesh density of the model can be set as:

    (1) Side shell plating: six plate elements between the two adjacent side frames, with each ele?ment made close to square.

    (2)Web plate of the side frame:at least three plate elements along the web depth,with each el?ement made close to square.

    (3) Flange plate of the side frame: two plate elements for the flange plate on the T-bar cross section.

    Fig.3 Calculation model of a side shell

    1.2 Boundary conditions

    The coordinate system of the model is shown in Fig.3, where B1, B2 (including brackets), B3 and B4 denote 4 sides of the side shell panel/grillage and C1,C2,C3 and C4 represent 4 panel cor?ners,respectively.The boundary conditions of this model are:B1 and B2 sides are connected to the web frame.B1 side should be fixed,but B2 side is free to the uniform translation inxdirection and with constrained rotations aboutyandzaxes. B3 and B4 sides are connected to the panel edge sides to keep the uniform translation inydirection. However, the translation is not allowed in the perpendicular direction to the panel. The corner point C1 is fully fixed in any translation and rota?tion,meanwhile other corner points can be allowed to rotate about y axis.

    1.3 Assumption of localized damage

    Based on the SOLAS Regulations[2]and relevant standards of the annual survey, two damage models are proposed in this paper. The first one is the weld crack about 300-500 mm at the lower bracket of the side frame (see Fig. 4). For simulating this case, some web elements at lower end bracket of the middle frame (the 3rd one) are deleted as shown in Fig.4. It should be pointed out that this damage is simulated for the‘desoldering’in this model, and there is no connection with the adjacent structures. As the buckling represents the overall structural behavior, it is not neces?sary to change the element mesh size in the localized damaged model. The second one is to intro?duce the global permanent deformation with the maximum value of 6l/1000, wherelis the span of the side frame,as shown in Fig.5.

    Fig.4 Weld crack at lower end bracket of the frame

    Fig.5 Model with large deformation permanent

    1.4 Simulation of initial geometry imperfection

    The total initial geometry imperfection combines with the local and global deformations. The local initial imperfection can be obtained by calculating the first eigenvalue, and the global initial imperfection can be assumed by a half sine wave pattern.The tripping/transverse titling of the stiff?ener will be represented by the double trigonometric function. The maximum imperfection value is determined by the statistics on the real ships.

    1.5 Material properties

    A bi-linear material model including the strain hardening effect was applied in the analysis,i.e. the modulus of elasticityE=206 000 N/mm2and strain hardening parameterET=1000 N/mm2in the elastic and inelastic range respectively.

    1.6 Applied loads

    There are various kinds of loads acting on the side shell grillage structure in the ship service.Three external load types including the axial compressive force along the frame,transverse compres?sive force, axial compressive force + transverse compressive force + lateral pressure (axial, trans?verse,combined force for short)are taken into account,as shown in Fig.6.In addition,in order to in?vestigate the effects of all kinds of loads,some uniaxial load actions have been also considered.

    Fig.6 Applied loads

    2 Structural redundancy criteria of side shell structures

    2.1 Criterion 1

    For the plate and stiffener of the stiffened panel, the structural buckling criterion in CSR[7]is shown as

    whereηis defined as the buckling utilization factor corresponding to the actual applied design load.For combined load cases, the buckling utilization factorηcan be defined as the ratio between ap?plied working stress and structural buckling capacity andηalldenotes the allowable buckling utiliza?tion factor.

    In Chapter XII of IMO SOLAS[8], the structural redundancy requirements of bulk carriers are clearly stated, i.e.‘the structure of cargo areas shall be such that single failure of one stiffening structural member will not lead to immediate consequential failure of other structural items poten?tially leading to the collapse of the entire stiffened panels’.Based on the study of‘IACS Joint Bulk?er Project–Technical Backgrounds’of‘Structural redundancy requirements of SOLAS regulation XII/6.5.1 and 6.5.3 in CSR for Bulk Carriers’and document of IACS SC209, IACS CSR-BC CH6,Sec.3 and IACS CSR Pt1,CH8,Sec.5,it is also clearly indicated that,for all‘facing cargo structur?al members’in cargo holds of bulk carriers, including hatchway coamings, transverse bulkheads,panel plates of the top-side tankers and bilge hopper tankers facing the cargo hold, inner bottom,side shell of single-side skin construction or longitudinal bulkhead of double-side skin construc?tion,the safety factor should be magnified to 15%,which is taken as 1.15.

    Therefore,for the SSS-BC side shell frame that meets the structural redundancy requirements,the following criterion should be satisfied:

    whereηDis the utilization factor of damaged stiffened panel,σDis the working stress of localized damaged stiffened panel,UDis the ultimate capacity of stiffened panel with localized damage.

    whereγdenotes the index of the structural redundancy.

    In comparison with Eq.(2), the advantage of the new expression Eq.(5) lies in that Eq.(5) links the relationship between four parameters of working stress, ultimate capacity of damage and intact stiffened panels, and also relates to the working stress level (i.e. corresponding to the safety margin of intact stiffened panels)byηI.

    2.2 Criterion 2

    It can be seen from an amount of calculation on real ships that the localized damage on one stiffening member hardly changes the global stress distribution of the entire panel. Based on this conclusion and the definition of the working stress of localized damaged stiffened panel,σDcould be expressed asσD≈σID(6)whereσIDdenotes the global stress distribution of the intact stiffened panel under the damaged con?dition.

    Then,according to the corresponding definition,the utilization factors can be derived as

    Criterion 2 emphasizes the difference betweenUDandUIin terms of the ultimate strength of the stiffened panel. It also ignores the global stress change of the cargo hold caused by the damage of one stiffening member.Compared with Criterion 1,this criterion does not contain the stress item,so that any stress combination need not be considered in the calculation fortunately.And the stiffen?er buckling is taken into account reasonably.

    3 Verification on real ships

    Based on the methodology described above, a structural redundancy assessment process is de?signed, and the verification has been performed on many actual CSR ships. In addition, non-linear FE analyses have been carried out to capture the ultimate capacity of the stiffened panel,i.e.firstly,take the stress value from the coarse mesh model results;secondly,get the stress ratio(e.g.y/x)(see in details in Section 4.4),and then increase the applied loads acting on the non-linear panel model in accordance with the stress ratio till the panel collapses; and finally, obtain the ultimate capacity of the stiffened panel both for intact and damaged model accordingly.

    3.1 Working procedure for structural redundancy evaluation

    The working procedure for structural redundancy evaluation on the side shell structure is shown in Fig.7.

    Fig.7 Working procedure for structural redundancy evaluation on side shell structure

    3.2 Load combination

    In the IMO relevant structural redundancy documentation (IMO SLS.14/Circ.250[1]),it explicit?ly states that‘a(chǎn) single localized damage, which is of a size that is likely to be detected, should not lead to complete collapse of the stiffened panel under a load equal to the maximum allowable de?sign still water load plus 80% of the maximum lifetime dynamic load.’. In this paper, the applied load combinations are as follows:

    (1)Damaged load combination:100%Static loads+80%Dynamic loads;(2)Intact load combination:100%Static loads+100%Dynamic loads.

    where the extreme loads in the intact condition correspond to a probability level of 10-8.

    Furthermore, the loading sequence of the combined operating conditions is described in Sec?tion 3.4 below.

    3.3 Stress calculation

    In order to seek the tendency of the working stress ratio between the damage and intact condi?tions, i.e.σD/σI, the statistics and analyses have been carried out to investigate the working stress from an amount of stiffened panels of actual bulk carriers and oil tankers under two conditions by cargo hold FE analysis. The cargo hold FE analysis is in line with the requirements of CSR, Pt1,Ch7,and the working stress is based on the coarse mesh cargo hold model[7].

    3.4 Selection of load cases

    The working stress to be selected for this study is based on the corresponding load case and combinations. The stress components are interactive on the buckling capacity curve, i.e. different ratio ofσy/σxcorresponds to different buckling capacity (see Fig.8). So not only should the selected working stress be based on the most severest/governing load case/condition, but also the panel capacity should correspond to the ratio ofσy/σxunder the most severe load condition. In order to deter?mine the governing load cases, the stress inxandydirec?tions,combined stress andηhave been taken out for mak?ing comparison as per the following process:

    (1) For all the seagoing conditions, the load combina?tion of‘100%Static loads+80%Dynamic loads’is applied to conduct the cargo hold FE analysis.From all stiffened panels in each areas, the governing load condition is found out, which corre?sponds to maximumσDx,σDy,ηD, and also the relevant stresses(σDx,σDy,τD)ηD_MAX.σDcan be calcu?lated by the formula:

    Fig.8 Relationship between biaxial stress and its ultimate capacity[7]

    3.5 Stress filtering

    Since there are large amounts of working stress data from the FE analyses, some filtering should be conducted to select the representative data to be used for structural redundancy assess?ment.The principles of the stress filtering are:

    (1) Filter out the stress data ofηI>1.It should be noted that some scantlings of CSR ships may not satisfy CSR rules, i.e. some of buckling utilization factors are greater than 1.0 under the CSR load combinations because the new version of CSR[7]is a little bit conservative than the old versions of CSR[9-10].Since it is meaningless to evaluate the redundancy for those not satisfying the rules,the stiffened panels with utilization factors greater than 1.0 should be filtered out firstly.

    (2) Set the tensile stress equal to zero forσxandσy, because the tensile stress has less influ?ence on the stiffened panel buckling.

    (3)Filter outσxorσywith values lower than 10 MPa since they are insignificant.

    3.6 Calculation results

    The calculation results of structural redundancy assessments of only a 180k SSS-BC ship are shown below due to the space limit of the paper. Tab.1 shows the intact and damaged ultimate ca?pacities of the side shell panel subjected to the uniaxial stress while Tab.2 shows the intact and damaged ultimate capacities of the side shell panel subjected to the combined stress. The calculat?ed collapse illustration in Fig.9 can reflect the actual damage shown in Fig.1.

    Tab.1 Intact and damaged ultimate capacities of side shell panel subjected to the uniaxial stress

    Tab.2 Intact and damaged ultimate capacities of side shell panel subjected to the combined stress*

    Fig.9 Collapse illustration of damaged model I(deformation amplified 10 times)

    According to the proposed structural redundancy criteria and in consideration of the influence of localized damage(as described in Section 2.3),the structural redundancies of the side shell panel plating and side frame of 180k SSS-BC ship are listed in Tab.3 and Tab.4,while Fig.10 and Fig.11 show the side shell panel structural redundancy of 180k SSS-BC ship according to Criterion 2. In general, the structural redundancy corresponding to the maximum combined stress is the lowest one.Besides,it should be noted that the panel number shown in Fig.10 and Fig.11 may be different due to the fact that the stresses have been filtered,as shown in Section 3.5 in detail.

    Tab.3 Structural redundancy of the side shell panel plating*

    Tab.4 Structural redundancy of the side frame*

    Fig.10 Structural redundancy of the side shell plating

    Fig.11 Structural redundancy of the side frame

    It can be seen that the structural redundancies of all the considered structural members are greater than 1.15, which demonstrates that all the considered structural members have the‘inher?ent’structural redundancy. That is to say, the side shell panel structure designed to CSR rules has a sufficient structural redundancy.It also demonstrates that the structural redundancy requirements have been covered in the strength requirements of CSR rules.

    4 Concluding remarks

    On the basis of the guidance on the IMO GBS structural redundancy compliance verification requirements, this paper proposed a new methodology for the verification on the IMO GBS compli?ance of structural redundancy requirements to the side shell frame of SSS-BC. The proposed meth?odology set up 2 damage assumptions and damaged load combinations,and contained the structural redundancy criteria and non-linear FE collapse analysis approach as well. Numerical test on some real CSR ships were performed. It can be seen that all the calculation results have satisfied the structural requirements.Therefore,it is demonstrated that the side shell panel structure designed to CSR rules has a sufficient structural redundancy, and can also satisfy the structural redundancy re?quirement of‘that localized damage of any stiffening structural member will not lead to immediate consequential collapse of the complete stiffened panel’. The methodology and structural redundan?cy criteria proposed in this paper are suitable for other ship types.

    国产亚洲午夜精品一区二区久久 | a级毛片免费高清观看在线播放| 欧美性猛交╳xxx乱大交人| 最近手机中文字幕大全| 特大巨黑吊av在线直播| 欧美老熟妇乱子伦牲交| 2021天堂中文幕一二区在线观| 国产精品国产三级国产av玫瑰| 男男h啪啪无遮挡| 久久精品国产亚洲网站| av专区在线播放| 欧美xxⅹ黑人| 又粗又硬又长又爽又黄的视频| 国模一区二区三区四区视频| 亚洲天堂国产精品一区在线| 久久久久久久久久人人人人人人| 亚洲国产精品专区欧美| 18禁裸乳无遮挡免费网站照片| 熟妇人妻不卡中文字幕| 国产成人精品福利久久| 亚洲熟女精品中文字幕| 日日摸夜夜添夜夜爱| 免费看av在线观看网站| 黄色一级大片看看| 国产精品av视频在线免费观看| 精品少妇久久久久久888优播| av在线播放精品| 精品国产乱码久久久久久小说| 久久精品国产鲁丝片午夜精品| 国产爽快片一区二区三区| tube8黄色片| 精品一区二区三区视频在线| 一本一本综合久久| 免费看日本二区| 熟妇人妻不卡中文字幕| 国产精品不卡视频一区二区| 日韩一区二区视频免费看| 小蜜桃在线观看免费完整版高清| 久久久精品免费免费高清| 白带黄色成豆腐渣| 亚洲精品自拍成人| 五月玫瑰六月丁香| 国产免费一区二区三区四区乱码| 国产精品伦人一区二区| 亚洲精华国产精华液的使用体验| 国产成人一区二区在线| 麻豆久久精品国产亚洲av| 搡女人真爽免费视频火全软件| 久久精品综合一区二区三区| 久久午夜福利片| 干丝袜人妻中文字幕| 国产一区有黄有色的免费视频| 99久久精品一区二区三区| 亚洲欧美精品自产自拍| 老司机影院毛片| 五月伊人婷婷丁香| 国产成年人精品一区二区| 久久97久久精品| 一本一本综合久久| 国产91av在线免费观看| 亚洲精品一二三| 美女脱内裤让男人舔精品视频| 欧美日韩在线观看h| 男女边吃奶边做爰视频| 国精品久久久久久国模美| 久久精品夜色国产| 亚洲精品国产av蜜桃| 成人综合一区亚洲| 久久久久国产网址| av.在线天堂| 亚洲人成网站在线播| 一级av片app| 别揉我奶头 嗯啊视频| 日韩成人伦理影院| 国产成人freesex在线| 黄色一级大片看看| 国产免费福利视频在线观看| 亚洲精品,欧美精品| 99久久精品热视频| 国产亚洲最大av| 久久午夜福利片| 韩国高清视频一区二区三区| 亚洲av成人精品一区久久| 日日摸夜夜添夜夜添av毛片| 国产成人精品福利久久| 亚洲精品乱码久久久久久按摩| 少妇熟女欧美另类| 精品一区二区三区视频在线| 女人被狂操c到高潮| 老师上课跳d突然被开到最大视频| 中文资源天堂在线| .国产精品久久| 久久久午夜欧美精品| 最新中文字幕久久久久| 男女国产视频网站| videossex国产| 色婷婷久久久亚洲欧美| 久久99热这里只频精品6学生| 亚洲精品日本国产第一区| 丝瓜视频免费看黄片| 色5月婷婷丁香| 国产爱豆传媒在线观看| 免费电影在线观看免费观看| 一区二区三区四区激情视频| 久久精品国产亚洲网站| 成年女人在线观看亚洲视频 | 久久久久久国产a免费观看| 婷婷色综合www| 欧美极品一区二区三区四区| 中文资源天堂在线| 在线观看av片永久免费下载| 黑人高潮一二区| 一区二区三区免费毛片| 女的被弄到高潮叫床怎么办| 免费av观看视频| av网站免费在线观看视频| av又黄又爽大尺度在线免费看| 嫩草影院入口| 欧美极品一区二区三区四区| 国产精品99久久久久久久久| 亚洲精品亚洲一区二区| 精品久久国产蜜桃| 色婷婷久久久亚洲欧美| 国产大屁股一区二区在线视频| 欧美激情久久久久久爽电影| 2021天堂中文幕一二区在线观| 男女边吃奶边做爰视频| 好男人在线观看高清免费视频| 中文字幕人妻熟人妻熟丝袜美| 99久久九九国产精品国产免费| 久久99蜜桃精品久久| 久久ye,这里只有精品| 人妻少妇偷人精品九色| 国产成人精品一,二区| 久久久久久久久久人人人人人人| 在线观看一区二区三区| av国产精品久久久久影院| 啦啦啦啦在线视频资源| 国产成人午夜福利电影在线观看| 久久热精品热| 国产精品一及| 久久ye,这里只有精品| 一本久久精品| 91精品国产九色| 久久久欧美国产精品| 久久久久国产网址| 国产午夜精品久久久久久一区二区三区| 大片电影免费在线观看免费| av国产久精品久网站免费入址| 性色av一级| 午夜视频国产福利| av网站免费在线观看视频| 亚洲自偷自拍三级| videossex国产| 久久精品国产a三级三级三级| 欧美+日韩+精品| 婷婷色麻豆天堂久久| 丰满乱子伦码专区| 在现免费观看毛片| 精品亚洲乱码少妇综合久久| 欧美激情久久久久久爽电影| 久久国产乱子免费精品| 听说在线观看完整版免费高清| 五月天丁香电影| 精品久久久噜噜| 高清午夜精品一区二区三区| 日韩制服骚丝袜av| 一区二区三区免费毛片| 国产日韩欧美亚洲二区| 三级男女做爰猛烈吃奶摸视频| 国产精品国产三级国产av玫瑰| 18禁裸乳无遮挡免费网站照片| 少妇 在线观看| 亚洲av成人精品一区久久| 大香蕉久久网| 亚洲自拍偷在线| 日韩成人av中文字幕在线观看| 简卡轻食公司| 国产一区有黄有色的免费视频| 亚洲经典国产精华液单| 国产一区二区在线观看日韩| 久久久精品欧美日韩精品| 在线免费观看不下载黄p国产| 夜夜爽夜夜爽视频| 成年女人看的毛片在线观看| 国产成人免费观看mmmm| 国产精品久久久久久av不卡| 国产精品伦人一区二区| 亚洲,欧美,日韩| 亚洲精品久久久久久婷婷小说| 狂野欧美激情性xxxx在线观看| 热99国产精品久久久久久7| 日本三级黄在线观看| 三级经典国产精品| 久久久久久伊人网av| 春色校园在线视频观看| 伊人久久国产一区二区| 日本-黄色视频高清免费观看| 麻豆国产97在线/欧美| 久久久久网色| 亚洲精品一二三| 婷婷色综合大香蕉| 国产免费视频播放在线视频| 中文在线观看免费www的网站| 三级国产精品欧美在线观看| 搡老乐熟女国产| 欧美极品一区二区三区四区| 一级毛片黄色毛片免费观看视频| 18禁裸乳无遮挡动漫免费视频 | 在线看a的网站| 亚洲av电影在线观看一区二区三区 | 久久久久久伊人网av| 国产免费一区二区三区四区乱码| 国产日韩欧美亚洲二区| 久久久久久久久久久免费av| 久久久久久久久大av| 亚洲四区av| 亚洲国产精品国产精品| 欧美xxⅹ黑人| 夫妻午夜视频| 一本久久精品| 成人二区视频| 一个人看视频在线观看www免费| 亚洲天堂av无毛| 性插视频无遮挡在线免费观看| 亚洲美女搞黄在线观看| 国产精品一区二区在线观看99| 国产欧美另类精品又又久久亚洲欧美| 国产精品99久久99久久久不卡 | 赤兔流量卡办理| 免费观看a级毛片全部| 18禁在线无遮挡免费观看视频| 国产v大片淫在线免费观看| 欧美日韩综合久久久久久| 亚洲精品乱久久久久久| 黄色视频在线播放观看不卡| 久久这里有精品视频免费| 亚洲欧美精品专区久久| 亚洲精品影视一区二区三区av| 国产精品麻豆人妻色哟哟久久| 身体一侧抽搐| 亚洲精品乱久久久久久| 久久久久网色| 亚洲,欧美,日韩| 亚洲国产精品专区欧美| 丝袜脚勾引网站| 亚洲在久久综合| 亚洲自拍偷在线| 国模一区二区三区四区视频| 国产免费又黄又爽又色| 亚洲电影在线观看av| 亚洲国产精品专区欧美| av女优亚洲男人天堂| 80岁老熟妇乱子伦牲交| 全区人妻精品视频| 中国三级夫妇交换| 麻豆成人午夜福利视频| 久久这里有精品视频免费| 国内少妇人妻偷人精品xxx网站| 噜噜噜噜噜久久久久久91| 国产精品国产三级国产专区5o| 人人妻人人看人人澡| 欧美亚洲 丝袜 人妻 在线| 69人妻影院| 亚洲美女搞黄在线观看| 大话2 男鬼变身卡| 亚洲内射少妇av| 99热全是精品| 搞女人的毛片| 亚洲国产av新网站| 亚洲四区av| 欧美潮喷喷水| 自拍偷自拍亚洲精品老妇| 国产高清有码在线观看视频| 直男gayav资源| 亚洲电影在线观看av| 精品久久久久久久久av| 99热全是精品| 亚洲色图av天堂| 国产午夜精品久久久久久一区二区三区| 色婷婷久久久亚洲欧美| 夜夜看夜夜爽夜夜摸| 欧美zozozo另类| 中文字幕制服av| 国产高清不卡午夜福利| 综合色丁香网| 美女被艹到高潮喷水动态| 国产精品av视频在线免费观看| 一区二区三区乱码不卡18| 免费人成在线观看视频色| 亚洲伊人久久精品综合| 精品一区二区三区视频在线| 日韩,欧美,国产一区二区三区| 国产一区二区亚洲精品在线观看| 国产淫语在线视频| 国产男人的电影天堂91| 久久久a久久爽久久v久久| 国产一区二区在线观看日韩| 久热久热在线精品观看| 91aial.com中文字幕在线观看| 国产精品一区www在线观看| 大陆偷拍与自拍| 校园人妻丝袜中文字幕| 91狼人影院| 国国产精品蜜臀av免费| 国产淫语在线视频| 国产国拍精品亚洲av在线观看| 久久久久久久久久久丰满| 97人妻精品一区二区三区麻豆| 少妇熟女欧美另类| 日韩av不卡免费在线播放| 亚洲最大成人手机在线| av福利片在线观看| 好男人视频免费观看在线| 黄色配什么色好看| 69av精品久久久久久| 国产毛片在线视频| 国产视频首页在线观看| 国产精品人妻久久久久久| 国产黄a三级三级三级人| 日本一本二区三区精品| 日韩大片免费观看网站| 国产色爽女视频免费观看| 精品国产三级普通话版| 精品99又大又爽又粗少妇毛片| 欧美日韩视频精品一区| 嘟嘟电影网在线观看| 日产精品乱码卡一卡2卡三| 水蜜桃什么品种好| 精品人妻偷拍中文字幕| 最近的中文字幕免费完整| 大话2 男鬼变身卡| 亚洲精品日本国产第一区| 亚洲国产高清在线一区二区三| 亚洲婷婷狠狠爱综合网| 国产高清不卡午夜福利| 性色avwww在线观看| h日本视频在线播放| 亚洲欧美日韩卡通动漫| 99久久九九国产精品国产免费| 天美传媒精品一区二区| 久久鲁丝午夜福利片| 国产一区二区亚洲精品在线观看| 成人鲁丝片一二三区免费| 国产精品久久久久久久电影| 久久久欧美国产精品| 亚洲国产高清在线一区二区三| 一级片'在线观看视频| 亚洲国产成人一精品久久久| 三级男女做爰猛烈吃奶摸视频| 亚洲av免费在线观看| 亚洲成人一二三区av| 寂寞人妻少妇视频99o| 成人漫画全彩无遮挡| 国产乱人偷精品视频| 交换朋友夫妻互换小说| 亚洲精品色激情综合| 亚洲国产精品成人久久小说| 夫妻性生交免费视频一级片| 日韩制服骚丝袜av| 亚洲精品乱久久久久久| 国产视频内射| 久久久久久久久久人人人人人人| 嫩草影院精品99| 在线观看人妻少妇| 免费看a级黄色片| 美女cb高潮喷水在线观看| 欧美高清成人免费视频www| 26uuu在线亚洲综合色| 黄色视频在线播放观看不卡| 国产一区二区三区综合在线观看 | 国产探花极品一区二区| 我的女老师完整版在线观看| 日韩一区二区三区影片| 国产欧美亚洲国产| 国产国拍精品亚洲av在线观看| 成人亚洲精品av一区二区| av在线蜜桃| 精品少妇久久久久久888优播| 夜夜爽夜夜爽视频| 久久精品国产自在天天线| 国产精品久久久久久精品电影小说 | 丝瓜视频免费看黄片| 午夜日本视频在线| 性插视频无遮挡在线免费观看| 午夜免费男女啪啪视频观看| 一边亲一边摸免费视频| 人妻 亚洲 视频| 国产精品三级大全| 中国美白少妇内射xxxbb| 成人特级av手机在线观看| 伊人久久国产一区二区| 国内精品美女久久久久久| 视频中文字幕在线观看| 国产成人精品一,二区| 中文欧美无线码| 最近手机中文字幕大全| av在线亚洲专区| 777米奇影视久久| 国产一级毛片在线| 中文字幕av成人在线电影| 超碰av人人做人人爽久久| 天堂网av新在线| 日本午夜av视频| 国产成人aa在线观看| 成人亚洲欧美一区二区av| 亚洲av一区综合| 国产色爽女视频免费观看| 精品久久久久久久久亚洲| 午夜爱爱视频在线播放| 人体艺术视频欧美日本| 天美传媒精品一区二区| 看十八女毛片水多多多| 午夜福利视频1000在线观看| 日韩欧美 国产精品| 久久久久国产精品人妻一区二区| 自拍偷自拍亚洲精品老妇| 国产精品伦人一区二区| 菩萨蛮人人尽说江南好唐韦庄| 在线观看人妻少妇| 国产亚洲午夜精品一区二区久久 | 一二三四中文在线观看免费高清| 人体艺术视频欧美日本| 久久久久精品性色| 国产精品福利在线免费观看| 熟妇人妻不卡中文字幕| 国产一区亚洲一区在线观看| 国产精品国产av在线观看| 中国国产av一级| 国产探花极品一区二区| 欧美日韩国产mv在线观看视频 | 久久人人爽人人爽人人片va| 亚洲精华国产精华液的使用体验| 亚洲色图综合在线观看| 大陆偷拍与自拍| 日韩亚洲欧美综合| 亚洲av中文av极速乱| 成年免费大片在线观看| 一区二区av电影网| 午夜精品一区二区三区免费看| 久久久久久久午夜电影| 日韩国内少妇激情av| 色播亚洲综合网| 亚洲成人av在线免费| 免费观看的影片在线观看| 天天躁夜夜躁狠狠久久av| 久久精品久久久久久久性| 少妇丰满av| 亚洲天堂国产精品一区在线| h日本视频在线播放| 精品久久久久久久末码| 欧美xxⅹ黑人| a级毛色黄片| 少妇被粗大猛烈的视频| 国产一区有黄有色的免费视频| 色哟哟·www| 在线播放无遮挡| 免费观看无遮挡的男女| 免费观看在线日韩| 99热6这里只有精品| 亚洲自拍偷在线| 久久精品国产亚洲av天美| 亚洲自偷自拍三级| 免费av观看视频| 女人十人毛片免费观看3o分钟| 在线a可以看的网站| 国内精品宾馆在线| 久久99精品国语久久久| 亚洲精品乱码久久久v下载方式| 日韩大片免费观看网站| 国产精品人妻久久久久久| 一区二区三区四区激情视频| 日本免费在线观看一区| 国产黄色视频一区二区在线观看| 97人妻精品一区二区三区麻豆| av黄色大香蕉| 男女国产视频网站| 大香蕉久久网| 久久久久网色| 亚洲熟女精品中文字幕| 久久久a久久爽久久v久久| 欧美国产精品一级二级三级 | 午夜视频国产福利| 国精品久久久久久国模美| 在线天堂最新版资源| 免费黄色在线免费观看| 久久久久精品久久久久真实原创| 夜夜爽夜夜爽视频| 色视频在线一区二区三区| 在线a可以看的网站| 黄色视频在线播放观看不卡| 欧美日韩精品成人综合77777| 老女人水多毛片| 亚洲国产欧美人成| 国产一区二区三区综合在线观看 | 又黄又爽又刺激的免费视频.| 国产亚洲午夜精品一区二区久久 | 美女cb高潮喷水在线观看| 亚洲精品自拍成人| 亚洲人成网站在线播| 欧美精品国产亚洲| 国产精品不卡视频一区二区| videossex国产| 国产乱人视频| 免费黄网站久久成人精品| 国产国拍精品亚洲av在线观看| 欧美+日韩+精品| 国语对白做爰xxxⅹ性视频网站| 男女边摸边吃奶| 亚洲精品中文字幕在线视频 | 永久网站在线| 亚洲成人一二三区av| 亚洲伊人久久精品综合| 国产精品国产av在线观看| 色播亚洲综合网| 成人毛片a级毛片在线播放| 亚洲成人一二三区av| 丰满人妻一区二区三区视频av| 亚洲精品一二三| 欧美成人一区二区免费高清观看| 亚洲欧美一区二区三区黑人 | 黄色欧美视频在线观看| 大香蕉97超碰在线| 国产成人精品久久久久久| 久久久久网色| 日韩欧美 国产精品| 精品人妻熟女av久视频| 22中文网久久字幕| 高清欧美精品videossex| 国产av码专区亚洲av| 亚洲国产最新在线播放| 久久久久久久久久人人人人人人| 91久久精品国产一区二区成人| av福利片在线观看| 久久6这里有精品| 久久女婷五月综合色啪小说 | 干丝袜人妻中文字幕| 美女主播在线视频| 中文字幕亚洲精品专区| 又大又黄又爽视频免费| 99久久人妻综合| av免费在线看不卡| 国产成人a区在线观看| 国产黄a三级三级三级人| 赤兔流量卡办理| av在线天堂中文字幕| 久久鲁丝午夜福利片| 色播亚洲综合网| 99精国产麻豆久久婷婷| 婷婷色综合www| 国产免费一级a男人的天堂| 亚洲欧美一区二区三区国产| 免费看a级黄色片| 国产精品蜜桃在线观看| 日韩精品有码人妻一区| 尤物成人国产欧美一区二区三区| 亚洲精品乱久久久久久| 国产探花在线观看一区二区| 激情五月婷婷亚洲| 伦精品一区二区三区| 亚洲色图综合在线观看| 三级国产精品欧美在线观看| 久久久久久久国产电影| 日韩三级伦理在线观看| 看免费成人av毛片| 国产成人aa在线观看| 精品久久久久久电影网| 亚洲无线观看免费| 久久久色成人| 美女主播在线视频| 久久久精品免费免费高清| 国产免费一区二区三区四区乱码| av在线观看视频网站免费| 亚洲人成网站高清观看| 国产av国产精品国产| 久久久亚洲精品成人影院| 别揉我奶头 嗯啊视频| 在线观看国产h片| 插逼视频在线观看| 成年免费大片在线观看| 在线观看三级黄色| 女人久久www免费人成看片| 亚洲欧美日韩另类电影网站 | 国产高清国产精品国产三级 | 国产av不卡久久| 久久久久久久久久久免费av| 麻豆乱淫一区二区| 18禁裸乳无遮挡动漫免费视频 | 99久国产av精品国产电影| 黄片wwwwww| 人妻 亚洲 视频| 国语对白做爰xxxⅹ性视频网站| 欧美日韩在线观看h| 久久精品熟女亚洲av麻豆精品| 嫩草影院入口| 亚洲欧美精品专区久久| 男女无遮挡免费网站观看| 亚洲高清免费不卡视频| 亚洲欧美精品专区久久| 久久精品熟女亚洲av麻豆精品| 国产免费一区二区三区四区乱码| 黄片无遮挡物在线观看| 午夜精品一区二区三区免费看| 一个人观看的视频www高清免费观看| 亚洲精品久久久久久婷婷小说| 亚洲av成人精品一区久久| 亚洲国产精品成人综合色| 蜜臀久久99精品久久宅男| 午夜精品一区二区三区免费看| 毛片一级片免费看久久久久| 亚洲精品日韩在线中文字幕| 99热这里只有是精品50| 少妇猛男粗大的猛烈进出视频 | 又爽又黄a免费视频| 亚洲精品久久午夜乱码|