• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of Chito-Oligosaccharide (COS) in Vitro and in Vivo: Permeability Characterization in Caco-2 Cells Monolayer and Pharmacokinetics Properties in Rats

    2022-06-14 06:18:24ZHANGPengpengZHANGMiaomiaoDONGKaiyuZHANGYicongYANGShuangWANGYuanhongJIANGTingfuYUMingmingandLVZhihua
    Journal of Ocean University of China 2022年3期

    ZHANGPengpeng,ZHANG Miaomiao, DONG Kaiyu, ZHANGYicong, YANGShuang, 2), 3), 4), WANGYuanhong, 2), 3), 4), JIANG Tingfu, 2), 3), 4), YU Mingming, 2), 3), 4), *, and LVZhihua, 2), 3), 4) , *

    Evaluation of Chito-Oligosaccharide (COS)and: Permeability Characterization in Caco-2 Cells Monolayer and Pharmacokinetics Properties in Rats

    ZHANGPengpeng1),ZHANG Miaomiao1), DONG Kaiyu1), ZHANGYicong1), YANGShuang1), 2), 3), 4), WANGYuanhong1), 2), 3), 4), JIANG Tingfu1), 2), 3), 4), YU Mingming1), 2), 3), 4), *, and LVZhihua1), 2), 3), 4) , *

    1)School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China 2) Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China 3) Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, China 4) Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, China

    Chito-oligosaccharide (COS) had shown a variety of biological activities and potential biomedical implications.The present study investigated the pharmacokinetics, bioavailability, andabsorption of COS with degrees of polymerization (DPs) 2-7 and explored the influence of DPs on them. From Caco-2 cell permeation studies, COS were low permeability compounds with no directional effects, suggesting a lowabsorption mediated by facilitation diffusion and paracellular absorption. After an intragastrical administration to rats, COS2 showed the highest systemic exposure in six oligosaccharides. The bioavailability of COS2-7 was 7.33%, 6.11%, 4.67%, 4.13%, 4.02%, 0.99%, respectively. Differences in bioavailability for each COS correlated to structural variations, with high DPs contributing to a decrease in bioavailability. In conclusion, COS could be absorbed by the intestinal tract bothand. The very low oral bioavailability of COS could be due to low permeability. DPs can affect absorption and bioavailability of COS2-7. This study provided evidence for the absorption characteristics of COS2-7 to help us better understanding the pharmacological actions.

    chito-oligosaccharide (COS); Caco-2; transport; pharmacokinetics; bioavailability

    1 Introduction

    Chito-oligosaccharide (COS) were the hydrolyzed pro- ducts of chitin or chitosan derived from abundant marine biological resource (shrimp and crab shells) and were an oligomer of β-(1-4)-linked D-glucosamine (Muanprasat and Chatsudthipong, 2017). Fig.1 shows the chemical structure of COS with complete deacetylation.Over the past decades, COS have been shown to exhibit remarka- ble antimicrobial (Rahman., 2014), anti-tumor (Park., 2014), antioxidant (Ngo., 2008), anti-inflammatory (Chung., 2012), immuno-stimulating (Zhang., 2014), anti-obesity (Huang., 2015), anti-diabetic (Zheng., 2018), anti-Alzheimer’s disease (Pan- gestuti., 2011) effect. Overall, COS had drawn significant interest among scholars and researchers as bioactive molecules.

    In contrast to the widely explored pharmacological ac- tions, studies on the absorption mechanisms and thefate of COS were limited and the influence of DPs was also unknown.Several researchers had indicated only COS2 and COS3 could be absorbed from the gastrointestinal tract (Chen., 2005). On the contrary, COS6 protected against acetaminophen-induced hepatotoxicity in mice (Barman., 2016). Therefore, the pharmacokinetics and bioavailability of COS with other DPs remain to be addressed due to challenging aspects of quantitative analysis. To have a better understanding of the pharmacokinetics behavior of COS, a transport study is necessary to clarify its absorption mechanism. COS had been shown to enter cells by facilitated passive diffusion for the first time (Li., 2014) in previous studies. On the other hand, concentration and active transporter were capable of mediating the absorption of COS2 and COS5 (Chen., 2019), which was against the previous results. Meanwhile, FITC-COS were used for transport experiments instead of COS in these studies, so these results might not reflect its transport mechanism cor-rectly. Thus, absorption mechanisms of COS should be further investigated. Caco-2 cells model is widely used as a stan-dard screening tool to evaluate the absorption me- chanism of transport of drug candidates (Hidalgo., 1989). Thus, the Caco-2 monolayer model was chosen in this study.

    Fig.1 The structure of the chito-oligosaccharide (COS).

    Therefore, the present study aims to investigate the pharmacokinetics and bioavailability of COS in rats and to monitor absorption properties in Caco-2 cell models.

    2 Materials and Methods

    2.1 Chemicals and Materials

    Caco-2 cell lines were purchased from the cell resource center of the Shanghai Institutes for Biological Sciences (Shanghai, China). COS standards (purity >95.0%) were provided by Qingdao BZ Oligo Biotech Co., Ltd (Qingdao, China). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl- tetra-zolium bromide (MTT), penicillin, streptomycin, propranolol, and atenolol were purchased from Sigma- Aldrich (St Louis, MO, USA). Phosphate buffer saline (PBS) and Hank’s balanced salt solution (HBSS) were bought from Solarbio Life Science (Beijing, China). Fetalbovine serum (FBS), trypsin, and Iscove’s Modified Dubecco’s Medium (IMDM) were obtained from Gibco (Grand Island, NY).HPLC-grade ammonium hydroxide, ammonium acetate, phloretin, quercetin, melibiose (internal standard, IS), and sodium deoxycholate were obtained from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). Transwell cell culture plate (0.4μm pore size) and 96-well cell culture plates were purchased from Corning Inc. (New York, USA). Acetonitrile and water (LC-MS grade) were obtained from Merck technologies Co., Ltd. (Darmstadt, Germany).

    2.2 UPLC-MS/MS Apparatuses and Operation Conditions

    The chromatography separation was performed using the UPLC System (UltiMate 3000, Thermo Fisher Scientific, MA, USA). The collected samples were separated by theXBridge Amide column (3.5μm, 2.1mm×150mm). Optimized mobile phase A consisted of 10mmolL?1aque- ous ammonium acetate (pH=9) in water, whereas mobile phase B consisted of 10mmolL?1aqueous ammonium acetate (pH=9) in acetonitrile run at a flow rate of 0.20mLmin?1and the column temperature was 60℃. The pro- portion of organic phase used for elution of plasma samples and cell samples were 50% and 40%, respectively.

    Quantitative analysis was conducted on TSQ QuantivaTM triple quadruple mass spectrometer (Thermo Fisher Scientific, MA, USA). The data were collected in the MRM mode, and the parameters were listed in Table 1.

    Table 1 Optimized MS/MS parameters of analytes and internal standards in MRM mode

    2.3 Transport of COS Across Caco-2 Cells

    The cells were grown in IMDM containing 20% FBS, 100UmL?1penicillin, and 100μgmL?1streptomycin and inoculated in polycarbonate at a density of 5×104cells per well and cultured for 21 days. Caco-2 cells were cultured in an incubator at 37℃in humidified air containing 5% CO2. The integrity of the cells monolayer was examined by calculating the apparent permeability coefficients (app) values of the markers atenolol and propranolol and measuring the transepithelial electrical resistance (TEER) across each well before and after transport experiments. When the TEER values of a consistent monolayer were no lower than 300Ωcm2during the experiment (Li., 2016) and atenolol (around 10?7cms?1) and propranolol (around 10?5cms?1) had appropriateappvalues,the Caco-2 monolayer cells can be used for transport experiments.

    Before the study, the consistent cell monolayer was washed with HBSS (pH7.4) twice times to remove the interfering substances on the cell surface and incubated in HBSS alone or HBSS containing phloretin (100μmolL?1) or quercetin (50μmolL?1) or sodium deoxycholate (1mmolL?1). Following a 30min incubation, for transfer in the AP-BL direction, 0.2mL drug solution was added to the AP side as the supply pool, and 0.6mL HBSS solution was added to the BL side as the receiving pool. In the BL-AP direction, 0.6mL compound solution was added to the BL side as the supply pool, and 0.2mL HBSS solution was added to the AP side as the receiving pool. To see whether transporters were involved in the absorption of COS2-7, the bidirectional transport assays with or without phloretin (Granchi., 2016) (100μmolL?1, the inhibitor of GLUT1) or quercetin (Kwon., 2007) (50 μmolL?1, the inhibitor of GLUT2) were performed.Meanwhile, sodium deoxycholate (Chen., 2019) (1mmolL?1) was used to explore whether the transport of COS wasthe paracellular pathway. Samples (50μL) were collected from the receiver chamber every half hour for three hours and replaced with an equal volume of HBSS alone or in HBSS containing phloretin (100μmolL?1) or quercetin (50μmolL?1) or sodium deoxycholate (1mmolL?1). All samples were stored at ?40℃ prior to tes- ting. The absorption and transport characteristics of COS in the Caco-2 cell model were evaluated with theapp(Grès., 1998), Efflux ratio (ER) (Ma., 2019).

    2.4 Pharmacokinetics Study of COS

    The male SD rats were purchased from Qingdao Daren Fortune Animal Technology Co., Ltd. (Qingdao, China, SCXK 20190003). The relevant animal experiment design was carried out in accordance with the guidelines of the Institutional Animal Care and Use Committee of Qingdao. Animals were housed under controlled environmental conditions (12 h dark-light cycle, the temperature was 23±2℃, and the humidity was 55±5%). Male rats (body weight 200±20g) were fasted overnight with free access to water in preparation for the experiments. COS were dissolved in sterile saline and administered to rats via the caudal vein at doses of 3.5mgkg?1. Blood samples (0.30mL) were collected from the orbital cavity at 0, 0.083, 0.167, 0.25, 0.50, 0.75, 1.0, 1.5, 2.0, 4.0 and 8.0h after drug administration. COS were dissolved in sterile saline and administered to rats by oral gavage at doses of 35mgkg?1(Chen., 2005). Blood samples were collected from the orbital cavity at 0, 0.083, 0.167, 0.25, 0.50, 1.0, 1.5, 2.0, 4.0, 8.0, 12.0, 24.0h after intragastrical administration. All samples were stored in tubes moistened with heparin. After each sampling, an equal volume of heparinized normal saline was given to rats immediately for compensation of blood withdrawal. Plasma was obtained by centrifugation at 4000rmin?1for 10min. Rat plasma (100μL) was extracted with 200μL acetonitrile containing internal standard (IS, melibiose). Then the mixtures were vortexed and centrifuged at 14000rmin?1for 10min. The supernatant was evaporated and the residue was reconstituted in 50μL of acetonitrile-water1:1, v/v). The supernatant after vortex and centrifuged was used for LC-MS/MS detection (Elendran., 2019).

    2.5 Statistical Analysis

    All data were expressed as the mean ± standard deviation (SD). The datum was processed with Microsoft Excel 2019 edited by Microsoft (Seattle, WA, USA). The pharmacokinetics data was analyzed using Phoenix WinNon- Lin 6.4 (Pharsight, CA) by non-compartmental analysis. The image was processed by GraphPad 7.0. The peak plasma concentration (max) and time to reach maximum plasma concentration (max) were obtained directly from the plasma values. Half-life (1/2)–the time required for blood concentration to fall by 50%, is a way to express rate of drug elimination. Clearance (CL) is another pharmacokinetic parameter used to describe drug elimination. The AUC is quite literally the area under a concentration versus time graph. Apparent volume of distribution (d) refers to the ratio of drug doseto blood drug concentration after the drug has reached dynamic equilibrium. The bioavailability () of COS was the ratio ofig×ivtoiv×ig(iv, intravenous administration; ig, intragastrical administration).

    3 Results and Discussion

    3.1 Transport of COS Across Caco-2 Cells

    Caco-2 cell monolayer has been widely used to study the mechanism of drug absorption and transport (Volpe, 2011). The Caco-2 cell membrane resistance values had been more than 300Ωcm2during the experiment. In this study, theappvalue of propranolol and atenolol were (18.82±1.90)×10?6cms?1and (0.43±0.09)×10?6cms?1respectively, which was the same as previous studies (Madgula., 2008; Manda., 2013). These results showed that the Caco-2 cells model established in this study was complete and reliable. Thus, the Caco-2 cells model was successfully established, which could be applied to the next transport experiment. COS are non-toxic to Caco-2 cells at concentrations below 1000μmolL?1. Only concentrations below this limit were used in subsequent experiments.

    As shown inFigs.2A and 2B, regardless of the direction of transport, the amount of transported COS2-7 increased gradually with the increase of dosing concentration within 180min. The results show that COS transport was clearly concentration-dependent and time-dependent and there was no saturation below 400μmolL?1. In previous studies, model drugs exhibiting experimentalappvalues >3×10?6cms?1are highly permeable, whereasappvalues <3×10?6cms?1are characteristic of low permeability model drugs(Artursson., 1991; Lau., 2004; Fossati., 2008). Based on these values (Table 2), it can be concluded that COS were lowly permeable.

    The relationship between structure and permeability was analyzed by comparingapp (AP-BL)values of COS2-7. As shown in Table 2,there is a decrease in the value ofapp (AP-BL)with increasing DPs. These results showed that the DPs could affect the absorption and transport of COS. No significant difference inappvalues for COS2-7 were observed in both the apical-to-basolateral and the basolateral-to-apical directions and the values of ER (app (BL-AP)/app (AP-BL)) of COS2-7 were closed to 1.0 (Elendran., 2019), suggesting that COS appear to be transported across the monolayers at a low ratea direction-independent passive diffusion mechanism.

    Fig.2 Cumulative amount of COS2-7 in different concentration across Caco-2 monolayers (A) from AP to BL; and (B) from BL to AP (n=3).

    Table 2 Values of Papp and ER of COS2-7 (n=3)

    From Fig.3,the values ofapp(AP-BL)of COS decreased significantlyin the presence of quercetin indicated that GLUT2 might be involved in the transport of COS. After adding phloretin, only the value ofapp (AP-BL)of COS4 reduced significantly showed that GLUT1 played almost no role in the transport of COS. When sodium deoxycholate was added, the value ofapp(AP-BL)increased significantly showed that COS might be absorbed through the paracellular pathway. There were no significant differences between the values ofapp (AP-BL)for a single COS and the mixture indicating that six oligosaccharides did not inhibit or promote each other during the transport process.

    In contrast to our findings, Chen. (2019) reported that the transport of COS5 involved SGLTs mediated active transport in addition to passive diffusion, evidenced by a significantly increased transport in the presence of phlorizin. Their study, however, was carried out using FITC-COS. It is evident that the absorption between pure compounds and that of derives can be different.

    Fig.3 The values of Papp (AP-BL) in the absence and presence of phloretin, quercetin, sodium deoxycholate and the mixture of COS2-7.*P<0.05, ***P<0.001 compared with the control (the corresponding COS, 200μmolL?1) (n=3).

    3.2 Pharmacokinetics and Bioavailability of COS

    After a single oral gavage of 35mgkg?1and a single intravenous injection of 3.5mgkg?1of COS2-7, the concentrations of COS2-7 in plasma were monitored up to 24 h after intragastrical administration and 8h after intravenous injection.

    After intravenous administration of COS through the caudal vein, mean plasma concentration-time curves were presented in Fig.4A and the pharmacokinetics parameters were calculated and summarized in Table 3. These data showedmax(from 8.38±1.53 to 2.99±0.72μgmL?1) andof COS (from 2.96±0.07 to 1.31±0.18hμgmL?1) to decrease as DPs increased.(from 1.11±0.06 to 2.57 ±0.32Lh?1) anddof COS (from 0.95±0.21 to 1.61 ± 0.33Lh?1) increased when DPs increased.

    Fig.4 Mean plasma concentrations-time profiles of COS2-7 after intravenous administration at dose of 3.5mgkg?1(A) and oral administration at dose of 35mgkg?1(B) to rats (= 3).

    Table 3 Pharmacokinetic parameters of COS2-7 after intravenous administration to rats (n=3)

    Fig.4B presented the mean plasma concentration-time profiles of COS2-7 after intragastrical administration. The pharmacokinetics parameters of COS2-7 after intragastrical administration were summarized in Table 4. COS2- 6 were detected at 5min in plasma after intragastrical administration to rats, indicating their rapidabsorption. The changes ofmaxand AUC of COS after intragastrical administration were similar to changes after intravenous administration with the increase of DPs. After intragastrical administration, the absorption of drugs in the gastrointestinal tract was largely determined by permeability (Motty., 2018). The bioavailability (from 7.33% to 0.99%) of COS were inversely correlated with the DP, had a similar trend to that of previous study. Fig.5 showed the correlation analysis between bioavailability andapp (AP-BL). The correlation coefficient was 0.89, indicating that a certain correlation could be obtained to some extent between thepermeability andpharmacokinetics of COS.

    Table 4 Pharmacokinetic parameters of COS2-7 after oral administration to rats (n=3)

    Fig.5 Correlation between bioavailability and the values of Papp (AP-BL).

    4 Conclusions

    In this study, COS could be rapidly absorbed by the Caco-2 cell model and the gastrointestinal tract through facilitation diffusion and paracellular absorption. But poor permeability leads to low oral bioavailability of COS. In addition, the DPs of COS had an effect on the pharmacokinetics and transport of COS. The pharmacokinetics of COSwere a certain correlated with the permeability. These results provided meritorious information for the further investigate of COS absorption characteristics.

    Acknowledgements

    This work was supported by the Shandong Provincial Natural Science Foundation, China (No. ZR2019BC025), and the Fundamental Research Funds for the Central Uni- versities (Nos. 201912008, 201964019).

    Artursson, P., and Karlsson, J., 1991. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells., 175 (3): 880-885.

    Barman, P. K., Mukherjee, R., Prusty, B. K., Suklabaidya, S., Senapati, S., and Ravindran, B.,2016. Chitohexaose protects against acetaminophen-induced hepatotoxicity in mice., 7: e2224.

    Chen, A. S., Taguchi, T., Okamoto, H., Danjo, K., Sakai, K., Matahira, Y.,., 2005. Pharmacokinetics of chitobiose and chitotriose administered intravenously or orally to rats., 28 (3): 545-548.

    Chen, P., Zhao, M., Chen, Q., Fan, L., Gao, F., and Zhao, L., 2019. Absorption characteristics of chitobiose and chitopentaose in the human intestinal cell line Caco-2 and everted gut sacs., 67 (16): 4513-4523.

    Chen, Z., Tang, J., Wang, P., Zhu, J., and Liu, Y., 2019. GYY 4137 Attenuates sodium deoxycholate-induced intestinal barrier injury bothand., 2019: 5752323.

    Chung, M. J., Park, J. K., and Park, Y. I., 2012. Anti-inflam- matory effects of low-molecular weight chitosan oligosaccharides in IgE-antigen complex-stimulated RBL-2H3 cells and asthma model mice., 12 (2): 453-459.

    Elendran, S., Muniyandy, S., Lee, W. W., and Palanisamy, U. D., 2019. Permeability of the ellagitannin geraniin and its metabolites in a human colon adenocarcinoma Caco-2 cell culture model., 10 (2): 602-615.

    Fossati, L., Dechaume, R., Hardillier, E., Chevillon, D., Prevost, C., Bolze, S.,., 2008. Use of simulated intestinal fluid for Caco-2 permeability assay of lipophilic drugs., 360 (1-2): 148-55.

    Granchi, C., Fortunato, S., and Minutolo, F., 2016. Anticancer agents interacting with membrane glucose transporters., 7 (9): 1716-1729.

    Grès, M. C., Julian, B., Bourrié, M., Meunier, V., Roques, C., Berger, M.,., 1998. Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: Comparison with the parental Caco-2 cell line.,15 (5): 726-733.

    Hidalgo, I. J., Raub, T. J., and Borchardt, R. T., 1989. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability., 96 (3): 736-749.

    Huang, L., Chen, J., Cao, P., Pan, H., Ding, C., Xiao, T.,., 2015. Anti-obese effect of glucosamine and chitosan oligosaccharide in high-fat diet-induced obese rats.,13 (5): 2732-2756.

    Kwon, O., Eck, P., Chen, S., Corpe, C. P., Lee, J. H., Kruhlak, M.,., 2007. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids., 21 (2): 366- 377.

    Lau, Y. Y., Chen, Y. H., Liu, T. T., Li, C., and Cheng, K. C., 2004. Evaluation of a novelCaco-2 hepatocyte hybrid system for predictingoral bioavailability., 32 (9): 937-942.

    Li, S., Wang, Y., Jiang, T., Wang, H., Yang, S., and Lv, Z., 2016. Absorption and transport of sea cucumber saponins from., 14 (6): 114-121.

    Li, X., Zhou, C., Chen, X., and Zhao, M., 2014. Subcellular localization of chitosan oligosaccharides in living cells., 59 (20): 2449-2454.

    Ma, Z., Guo, R., Elango, J., Bao, B., and Wu, W., 2019. Evaluation of marine diindolinonepyraneand: Permeability characterization in Caco-2 cells monolayer and pharmacokinetic properties in beagle dogs.,17 (12): 651-665.

    Madgula, V. L., Avula, B., Choi, Y. W., Pullela, S. V., Khan, I. A., Walker, L. A.,., 2008. Transport ofextract and its biologically-active constituents across Caco-2 cell monolayers–Anmodel of intestinal transport.,60 (3): 363-370.

    Manda, V. K., Avula, B., Ali, Z., Wong, Y. H., Smillie, T. J., Khan, I. A.,., 2013. Characterization ofADME properties of diosgenin and dioscin from., 79 (15): 1421-1428.

    Motty, S., 2018. Drug-like properties: Concepts, structure de- sign and methods from ADME to toxicity optimization., 7: 28-29.

    Muanprasat, C., and Chatsudthipong, V., 2017. Chitosan oligosaccharide: Biological activities and potential therapeutic applications.,170: 80-97.

    Ngo, D. N., Kim, M. M., and Kim, S. K., 2008. Chitin oligosaccharides inhibit oxidative stress in live cells.,74 (2): 228-234.

    Pangestuti, R., Bak, S. S., and Kim, S. K., 2011. Attenuation of pro-inflammatory mediators in LPS-stimulated BV2 microglia by chitooligosaccharidesthe MAPK signaling pathway.,49 (4): 599-606.

    Park, J. K., Chung, M. J., Choi, H. N., and Park, Y. I., 2011. Effects of the molecular weight and the degree of deacetylation of chitosan oligosaccharides on antitumor activity., 12 (1): 266-277.

    Rahman, M. H., Hjeljord, L. G., Aam, B. B., S?rlie, M., and Tronsmo, A., 2014. Antifungal effect of chito-oligosaccha- rides with different degrees of polymerization.,141 (1): 147-158.

    Volpe, D. A., 2011. Drug-permeability and transporter assays in Caco-2 and MDCK cell lines., 3 (16): 2063-2077.

    Zhang, P., Liu, W., Peng, Y., Han, B., and Yang, Y., 2014. Toll like receptor 4 (TLR4) mediates the stimulating activities of chitosan oligosaccharide on macrophages., 23 (1): 254-261.

    Zheng, J., Yuan, X., Cheng, G., Jiao, S., Feng, C., Zhao, X.,., 2018. Chitosan oligosaccharides improve the disturbance in glucose metabolism and reverse the dysbiosis of gut microbiota in diabetic mice., 190: 77-86.

    (Oceanic and Coastal Sea Research)

    https://doi.org/10.1007/s11802-022-5088-x

    ISSN 1672-5182, 2022 21 (3): 782-788

    (May 26, 2021;

    October 25, 2021;

    December 13, 2021)

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2022

    Corresponding authors. E-mail: yumingming@ouc.edu.cnE-mail: lvzhihua@ouc.edu.cn

    (Edited by Ji Dechun)

    男女啪啪激烈高潮av片| 亚洲色图综合在线观看| 国产av精品麻豆| 欧美97在线视频| 99久久人妻综合| 久久久久久久大尺度免费视频| 午夜福利影视在线免费观看| 一区二区三区免费毛片| 久久 成人 亚洲| 国产综合精华液| 亚洲国产精品一区三区| 日韩av免费高清视频| 国内揄拍国产精品人妻在线| 欧美精品一区二区免费开放| 亚洲精品日韩在线中文字幕| 成年美女黄网站色视频大全免费 | 国产精品国产av在线观看| 人人妻人人看人人澡| 麻豆成人av视频| 久久久欧美国产精品| 中文字幕精品免费在线观看视频 | 99国产精品免费福利视频| 日本欧美视频一区| 亚洲美女搞黄在线观看| 欧美成人午夜免费资源| av在线app专区| 欧美精品高潮呻吟av久久| 精品亚洲乱码少妇综合久久| 亚洲精品第二区| 热re99久久国产66热| 人妻人人澡人人爽人人| 亚洲国产色片| 国内精品宾馆在线| 男人和女人高潮做爰伦理| 在现免费观看毛片| 国产 精品1| 最近手机中文字幕大全| 老司机影院成人| 久久国内精品自在自线图片| 老司机亚洲免费影院| 曰老女人黄片| 熟女人妻精品中文字幕| a 毛片基地| 少妇熟女欧美另类| 国产精品久久久久久精品古装| 国产一级毛片在线| 在线亚洲精品国产二区图片欧美 | 纯流量卡能插随身wifi吗| 另类精品久久| 国产亚洲一区二区精品| 亚洲国产欧美日韩在线播放 | 亚洲一区二区三区欧美精品| 精品人妻偷拍中文字幕| 男女边摸边吃奶| 亚洲欧美精品专区久久| 日本色播在线视频| 久久精品国产自在天天线| 日韩不卡一区二区三区视频在线| 草草在线视频免费看| 国产成人免费观看mmmm| 97超视频在线观看视频| 最近最新中文字幕免费大全7| 亚州av有码| 有码 亚洲区| 免费av中文字幕在线| 亚洲av电影在线观看一区二区三区| 亚洲av电影在线观看一区二区三区| 91在线精品国自产拍蜜月| 91久久精品国产一区二区成人| 高清视频免费观看一区二区| 国产成人精品一,二区| 精品久久久噜噜| 国产午夜精品一二区理论片| 亚洲,欧美,日韩| 国产探花极品一区二区| 国产精品.久久久| 精品国产一区二区三区久久久樱花| 久久人妻熟女aⅴ| 国产成人精品无人区| 国产极品天堂在线| 哪个播放器可以免费观看大片| 国产熟女午夜一区二区三区 | 两个人的视频大全免费| 国产av码专区亚洲av| 我的老师免费观看完整版| 亚洲精品自拍成人| 观看av在线不卡| 七月丁香在线播放| 国产亚洲欧美精品永久| 欧美少妇被猛烈插入视频| 9色porny在线观看| 热re99久久国产66热| 五月天丁香电影| 午夜激情福利司机影院| 色视频www国产| 又爽又黄a免费视频| 久久99热6这里只有精品| av在线播放精品| 国产视频首页在线观看| 卡戴珊不雅视频在线播放| 国语对白做爰xxxⅹ性视频网站| 大香蕉97超碰在线| 秋霞在线观看毛片| 久久久国产欧美日韩av| 亚洲精品乱码久久久v下载方式| 久久婷婷青草| 丝袜喷水一区| 亚洲三级黄色毛片| 国产精品不卡视频一区二区| 日韩电影二区| 日韩精品免费视频一区二区三区 | 3wmmmm亚洲av在线观看| 日韩精品有码人妻一区| 大片电影免费在线观看免费| 日本爱情动作片www.在线观看| 老司机影院成人| 如何舔出高潮| 亚洲第一av免费看| 欧美人与善性xxx| 波野结衣二区三区在线| 午夜日本视频在线| 亚洲国产av新网站| 亚洲,欧美,日韩| 免费人成在线观看视频色| 国产成人午夜福利电影在线观看| 久久久久久久久久久免费av| 人妻一区二区av| 亚洲一级一片aⅴ在线观看| 我的老师免费观看完整版| 亚洲av欧美aⅴ国产| 人人妻人人澡人人爽人人夜夜| tube8黄色片| 国产69精品久久久久777片| 国产深夜福利视频在线观看| 国产av一区二区精品久久| 精品视频人人做人人爽| 国产毛片在线视频| 99精国产麻豆久久婷婷| 在线观看av片永久免费下载| 欧美亚洲 丝袜 人妻 在线| 又大又黄又爽视频免费| 亚洲国产欧美在线一区| 精品午夜福利在线看| 9色porny在线观看| 男人和女人高潮做爰伦理| 中文字幕亚洲精品专区| tube8黄色片| 日韩,欧美,国产一区二区三区| 欧美区成人在线视频| 天堂中文最新版在线下载| 这个男人来自地球电影免费观看 | 国产精品嫩草影院av在线观看| 一区二区三区免费毛片| 春色校园在线视频观看| 欧美性感艳星| 国精品久久久久久国模美| 色哟哟·www| 日韩成人av中文字幕在线观看| 性色avwww在线观看| 久久久久精品性色| 在线免费观看不下载黄p国产| 内地一区二区视频在线| 亚洲欧美一区二区三区黑人 | 99re6热这里在线精品视频| 免费大片黄手机在线观看| 欧美三级亚洲精品| 哪个播放器可以免费观看大片| 我的女老师完整版在线观看| 国产日韩一区二区三区精品不卡 | 2018国产大陆天天弄谢| 亚洲情色 制服丝袜| 国产精品99久久99久久久不卡 | 国产精品人妻久久久影院| 校园人妻丝袜中文字幕| 简卡轻食公司| 伊人久久国产一区二区| 欧美激情国产日韩精品一区| 亚洲国产精品一区二区三区在线| 久久精品久久久久久噜噜老黄| 一级毛片电影观看| av国产久精品久网站免费入址| 妹子高潮喷水视频| 免费少妇av软件| 岛国毛片在线播放| 久久久午夜欧美精品| 一本—道久久a久久精品蜜桃钙片| 青青草视频在线视频观看| av女优亚洲男人天堂| 久久久久久久久久久丰满| 91精品一卡2卡3卡4卡| 你懂的网址亚洲精品在线观看| 国产真实伦视频高清在线观看| 国产精品欧美亚洲77777| 中文乱码字字幕精品一区二区三区| 成人二区视频| 日韩一区二区视频免费看| 亚洲成色77777| 黄片无遮挡物在线观看| 久久久精品94久久精品| 美女内射精品一级片tv| 成人二区视频| 久热这里只有精品99| 最近中文字幕2019免费版| 欧美日韩在线观看h| 自拍欧美九色日韩亚洲蝌蚪91 | 久久av网站| 亚洲av欧美aⅴ国产| 久久久久视频综合| 色视频在线一区二区三区| 熟女人妻精品中文字幕| 免费黄频网站在线观看国产| 五月开心婷婷网| 欧美日韩视频精品一区| 在线观看国产h片| 亚洲欧美中文字幕日韩二区| 涩涩av久久男人的天堂| 五月开心婷婷网| 如日韩欧美国产精品一区二区三区 | 日本av手机在线免费观看| 下体分泌物呈黄色| 十八禁高潮呻吟视频 | 国产视频首页在线观看| 亚洲va在线va天堂va国产| 亚洲精品国产成人久久av| 五月天丁香电影| 91成人精品电影| 亚洲中文av在线| 免费观看a级毛片全部| 精品一区在线观看国产| 亚洲av免费高清在线观看| 老熟女久久久| 国产精品99久久久久久久久| 在线观看av片永久免费下载| 亚洲内射少妇av| 大香蕉97超碰在线| 最近中文字幕2019免费版| 五月伊人婷婷丁香| 免费大片18禁| 在线观看www视频免费| 亚洲欧美成人精品一区二区| 成年美女黄网站色视频大全免费 | 少妇被粗大猛烈的视频| 男女国产视频网站| 99久久精品国产国产毛片| 成年av动漫网址| 亚洲欧美日韩东京热| 国产黄频视频在线观看| 亚洲欧洲精品一区二区精品久久久 | 亚洲色图综合在线观看| 色视频www国产| 国产午夜精品一二区理论片| 日韩人妻高清精品专区| 一级a做视频免费观看| 亚洲欧美中文字幕日韩二区| 久久久久久久久久久丰满| av福利片在线观看| 久久久久精品久久久久真实原创| 丰满迷人的少妇在线观看| a级毛色黄片| 亚洲国产精品999| 国产黄频视频在线观看| 亚洲情色 制服丝袜| 韩国av在线不卡| 国产精品人妻久久久久久| 在线看a的网站| 啦啦啦在线观看免费高清www| 国产色爽女视频免费观看| 亚洲丝袜综合中文字幕| 最近中文字幕2019免费版| 久久久久久伊人网av| videossex国产| 欧美精品高潮呻吟av久久| 九九在线视频观看精品| 777米奇影视久久| 曰老女人黄片| 一级毛片aaaaaa免费看小| 欧美区成人在线视频| 国产亚洲欧美精品永久| 日韩 亚洲 欧美在线| 欧美高清成人免费视频www| 少妇人妻一区二区三区视频| av国产精品久久久久影院| 18禁动态无遮挡网站| 三级经典国产精品| av免费在线看不卡| 一本大道久久a久久精品| 精品一区二区三卡| av网站免费在线观看视频| 亚洲欧洲精品一区二区精品久久久 | 麻豆精品久久久久久蜜桃| 80岁老熟妇乱子伦牲交| 只有这里有精品99| 国产av国产精品国产| 亚洲图色成人| 国产av精品麻豆| 啦啦啦在线观看免费高清www| 水蜜桃什么品种好| 97超碰精品成人国产| 如日韩欧美国产精品一区二区三区 | 在线观看免费视频网站a站| 欧美精品一区二区大全| 噜噜噜噜噜久久久久久91| 性色avwww在线观看| 国产黄片视频在线免费观看| 最近手机中文字幕大全| 91精品国产九色| 亚洲在久久综合| 日韩精品有码人妻一区| 亚洲精品国产av成人精品| 大又大粗又爽又黄少妇毛片口| 亚洲国产精品一区二区三区在线| 一级片'在线观看视频| 亚洲人与动物交配视频| 欧美激情国产日韩精品一区| 26uuu在线亚洲综合色| 丰满少妇做爰视频| 日本欧美视频一区| 两个人的视频大全免费| 亚洲精品国产色婷婷电影| 国产精品久久久久久精品古装| 黄色日韩在线| 99久久精品热视频| 欧美日韩国产mv在线观看视频| 又爽又黄a免费视频| 欧美xxⅹ黑人| 搡老乐熟女国产| 特大巨黑吊av在线直播| 五月开心婷婷网| 亚洲精品乱久久久久久| 欧美精品亚洲一区二区| a级片在线免费高清观看视频| 一区在线观看完整版| 国产免费视频播放在线视频| 高清在线视频一区二区三区| 欧美三级亚洲精品| 男女国产视频网站| 色视频www国产| 色94色欧美一区二区| 日韩中文字幕视频在线看片| 亚洲欧美日韩另类电影网站| 国产在线视频一区二区| 一本色道久久久久久精品综合| 免费黄色在线免费观看| 国产探花极品一区二区| 日韩制服骚丝袜av| 最近的中文字幕免费完整| 日本黄色日本黄色录像| 777米奇影视久久| 亚洲精品日本国产第一区| 欧美老熟妇乱子伦牲交| 草草在线视频免费看| 在现免费观看毛片| 国产精品人妻久久久久久| 亚洲天堂av无毛| 啦啦啦视频在线资源免费观看| 91成人精品电影| 一级,二级,三级黄色视频| 久久 成人 亚洲| 欧美一级a爱片免费观看看| 街头女战士在线观看网站| 午夜91福利影院| 久久久欧美国产精品| 国内揄拍国产精品人妻在线| 大香蕉97超碰在线| 午夜福利,免费看| 人人妻人人澡人人看| 欧美 亚洲 国产 日韩一| 熟女av电影| 亚洲国产av新网站| 乱系列少妇在线播放| 十八禁网站网址无遮挡 | 嘟嘟电影网在线观看| 成人免费观看视频高清| 亚洲内射少妇av| 国产欧美日韩一区二区三区在线 | 天天躁夜夜躁狠狠久久av| 国产免费视频播放在线视频| h视频一区二区三区| 69精品国产乱码久久久| 中文字幕精品免费在线观看视频 | 在线观看免费高清a一片| 免费人成在线观看视频色| 午夜av观看不卡| av国产久精品久网站免费入址| 亚洲人成网站在线观看播放| 又大又黄又爽视频免费| 中文乱码字字幕精品一区二区三区| 日韩,欧美,国产一区二区三区| 又粗又硬又长又爽又黄的视频| 亚洲国产精品专区欧美| 99热这里只有是精品在线观看| 亚洲经典国产精华液单| 亚洲自偷自拍三级| 香蕉精品网在线| 国产免费福利视频在线观看| 久久久精品94久久精品| 中文字幕免费在线视频6| 日韩人妻高清精品专区| 99久久综合免费| 亚洲欧美成人精品一区二区| 美女国产视频在线观看| 国产日韩欧美视频二区| 成人亚洲欧美一区二区av| 狂野欧美激情性xxxx在线观看| 涩涩av久久男人的天堂| 婷婷色麻豆天堂久久| 欧美日韩国产mv在线观看视频| 国产毛片在线视频| 国产欧美另类精品又又久久亚洲欧美| 亚洲成人一二三区av| 纵有疾风起免费观看全集完整版| av在线播放精品| 精品一品国产午夜福利视频| 国产极品粉嫩免费观看在线 | 国产高清国产精品国产三级| 亚洲av不卡在线观看| 寂寞人妻少妇视频99o| 久久6这里有精品| 久久毛片免费看一区二区三区| 亚洲国产精品专区欧美| 麻豆乱淫一区二区| 色网站视频免费| 久久综合国产亚洲精品| tube8黄色片| 成人黄色视频免费在线看| av女优亚洲男人天堂| 国产在线免费精品| 有码 亚洲区| 中文字幕人妻熟人妻熟丝袜美| 街头女战士在线观看网站| 麻豆成人午夜福利视频| h日本视频在线播放| 丰满迷人的少妇在线观看| 亚洲第一av免费看| 视频区图区小说| 夜夜骑夜夜射夜夜干| 亚洲无线观看免费| 最近最新中文字幕免费大全7| 秋霞在线观看毛片| 中文字幕人妻丝袜制服| 亚洲色图综合在线观看| 午夜视频国产福利| 九九久久精品国产亚洲av麻豆| 啦啦啦啦在线视频资源| 纵有疾风起免费观看全集完整版| 人人妻人人添人人爽欧美一区卜| 国产欧美日韩精品一区二区| 国产精品国产三级国产av玫瑰| 一级毛片 在线播放| 日日爽夜夜爽网站| 国产精品国产av在线观看| 亚洲一级一片aⅴ在线观看| 狠狠精品人妻久久久久久综合| freevideosex欧美| 欧美 亚洲 国产 日韩一| 夫妻性生交免费视频一级片| 91在线精品国自产拍蜜月| 国产av一区二区精品久久| 亚洲精品色激情综合| 内地一区二区视频在线| 国产精品无大码| 国产中年淑女户外野战色| 边亲边吃奶的免费视频| 亚洲精品国产av成人精品| 久久女婷五月综合色啪小说| 校园人妻丝袜中文字幕| 午夜免费男女啪啪视频观看| 国产成人精品婷婷| 免费黄频网站在线观看国产| 九九久久精品国产亚洲av麻豆| 在线亚洲精品国产二区图片欧美 | 国产真实伦视频高清在线观看| 国产美女午夜福利| 制服丝袜香蕉在线| 王馨瑶露胸无遮挡在线观看| 久久鲁丝午夜福利片| 国产日韩一区二区三区精品不卡 | 免费看日本二区| 午夜日本视频在线| 国产淫片久久久久久久久| 久久女婷五月综合色啪小说| 亚洲色图综合在线观看| 亚洲,欧美,日韩| 国产视频首页在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲精品乱久久久久久| 丁香六月天网| 日韩制服骚丝袜av| 免费黄网站久久成人精品| 婷婷色综合大香蕉| 国产无遮挡羞羞视频在线观看| 蜜臀久久99精品久久宅男| 亚洲欧美一区二区三区国产| 纵有疾风起免费观看全集完整版| 我要看黄色一级片免费的| 99视频精品全部免费 在线| 大片免费播放器 马上看| 亚洲欧美日韩东京热| 黄色怎么调成土黄色| 伦精品一区二区三区| 一级二级三级毛片免费看| 少妇被粗大的猛进出69影院 | 99热这里只有精品一区| 少妇人妻一区二区三区视频| 丰满饥渴人妻一区二区三| 亚洲精品亚洲一区二区| 国产精品99久久99久久久不卡 | 国产日韩欧美亚洲二区| 成人国产麻豆网| 精品99又大又爽又粗少妇毛片| 看非洲黑人一级黄片| 日本黄色片子视频| 亚洲精品久久久久久婷婷小说| 久久精品夜色国产| 22中文网久久字幕| 一本一本综合久久| 夜夜看夜夜爽夜夜摸| 能在线免费看毛片的网站| 99精国产麻豆久久婷婷| 王馨瑶露胸无遮挡在线观看| 国产精品一区二区在线观看99| 亚洲色图综合在线观看| 欧美人与善性xxx| 99九九线精品视频在线观看视频| 99热这里只有是精品50| 国产欧美另类精品又又久久亚洲欧美| 涩涩av久久男人的天堂| 丰满人妻一区二区三区视频av| 中文字幕av电影在线播放| 黄色一级大片看看| 一区二区三区四区激情视频| 久久久久国产网址| 一二三四中文在线观看免费高清| 亚洲成色77777| 精品久久久精品久久久| 日本免费在线观看一区| 亚洲欧美清纯卡通| av.在线天堂| 女性被躁到高潮视频| 伊人亚洲综合成人网| 乱系列少妇在线播放| 久久久亚洲精品成人影院| 一级黄片播放器| 亚洲欧美精品专区久久| 成人二区视频| 欧美日韩视频精品一区| 久久久久久人妻| 亚洲欧洲国产日韩| 久久精品国产a三级三级三级| 精品一区二区免费观看| 高清在线视频一区二区三区| 国产成人免费观看mmmm| 久久久国产欧美日韩av| 最近最新中文字幕免费大全7| 精品亚洲成国产av| 国产精品国产三级国产av玫瑰| 亚洲国产毛片av蜜桃av| 大片电影免费在线观看免费| 99久久精品一区二区三区| 国产精品一区二区在线不卡| 尾随美女入室| 中文字幕av电影在线播放| .国产精品久久| 2021少妇久久久久久久久久久| 高清黄色对白视频在线免费看 | 日本-黄色视频高清免费观看| 五月天丁香电影| 男人舔奶头视频| 亚洲精品中文字幕在线视频 | 国产免费一区二区三区四区乱码| 黄色日韩在线| 午夜福利影视在线免费观看| 国产精品一区二区性色av| 国产精品99久久99久久久不卡 | 国产又色又爽无遮挡免| 一级二级三级毛片免费看| 熟女av电影| 啦啦啦中文免费视频观看日本| 亚洲av二区三区四区| 性色avwww在线观看| 成人毛片60女人毛片免费| 午夜激情福利司机影院| 亚洲熟女精品中文字幕| 亚洲av综合色区一区| 69精品国产乱码久久久| 亚洲精品国产av蜜桃| 国内揄拍国产精品人妻在线| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品色激情综合| 蜜桃在线观看..| 国产综合精华液| 色网站视频免费| 精品一区二区三区视频在线| 2022亚洲国产成人精品| 极品教师在线视频| 亚洲国产精品专区欧美| 成人综合一区亚洲| av天堂久久9| 99国产精品免费福利视频| 毛片一级片免费看久久久久| 亚洲欧美一区二区三区黑人 | 午夜激情久久久久久久| 亚洲av在线观看美女高潮| 久久国产乱子免费精品| 亚洲精品成人av观看孕妇| 国产女主播在线喷水免费视频网站| 高清不卡的av网站| 久久久久久久久久成人| 成人特级av手机在线观看| 久久久a久久爽久久v久久| 最新中文字幕久久久久| 亚洲av综合色区一区| 亚洲精品视频女| 午夜福利影视在线免费观看| 人妻制服诱惑在线中文字幕|