• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of Chito-Oligosaccharide (COS) in Vitro and in Vivo: Permeability Characterization in Caco-2 Cells Monolayer and Pharmacokinetics Properties in Rats

    2022-06-14 06:18:24ZHANGPengpengZHANGMiaomiaoDONGKaiyuZHANGYicongYANGShuangWANGYuanhongJIANGTingfuYUMingmingandLVZhihua
    Journal of Ocean University of China 2022年3期

    ZHANGPengpeng,ZHANG Miaomiao, DONG Kaiyu, ZHANGYicong, YANGShuang, 2), 3), 4), WANGYuanhong, 2), 3), 4), JIANG Tingfu, 2), 3), 4), YU Mingming, 2), 3), 4), *, and LVZhihua, 2), 3), 4) , *

    Evaluation of Chito-Oligosaccharide (COS)and: Permeability Characterization in Caco-2 Cells Monolayer and Pharmacokinetics Properties in Rats

    ZHANGPengpeng1),ZHANG Miaomiao1), DONG Kaiyu1), ZHANGYicong1), YANGShuang1), 2), 3), 4), WANGYuanhong1), 2), 3), 4), JIANG Tingfu1), 2), 3), 4), YU Mingming1), 2), 3), 4), *, and LVZhihua1), 2), 3), 4) , *

    1)School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China 2) Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China 3) Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, China 4) Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, China

    Chito-oligosaccharide (COS) had shown a variety of biological activities and potential biomedical implications.The present study investigated the pharmacokinetics, bioavailability, andabsorption of COS with degrees of polymerization (DPs) 2-7 and explored the influence of DPs on them. From Caco-2 cell permeation studies, COS were low permeability compounds with no directional effects, suggesting a lowabsorption mediated by facilitation diffusion and paracellular absorption. After an intragastrical administration to rats, COS2 showed the highest systemic exposure in six oligosaccharides. The bioavailability of COS2-7 was 7.33%, 6.11%, 4.67%, 4.13%, 4.02%, 0.99%, respectively. Differences in bioavailability for each COS correlated to structural variations, with high DPs contributing to a decrease in bioavailability. In conclusion, COS could be absorbed by the intestinal tract bothand. The very low oral bioavailability of COS could be due to low permeability. DPs can affect absorption and bioavailability of COS2-7. This study provided evidence for the absorption characteristics of COS2-7 to help us better understanding the pharmacological actions.

    chito-oligosaccharide (COS); Caco-2; transport; pharmacokinetics; bioavailability

    1 Introduction

    Chito-oligosaccharide (COS) were the hydrolyzed pro- ducts of chitin or chitosan derived from abundant marine biological resource (shrimp and crab shells) and were an oligomer of β-(1-4)-linked D-glucosamine (Muanprasat and Chatsudthipong, 2017). Fig.1 shows the chemical structure of COS with complete deacetylation.Over the past decades, COS have been shown to exhibit remarka- ble antimicrobial (Rahman., 2014), anti-tumor (Park., 2014), antioxidant (Ngo., 2008), anti-inflammatory (Chung., 2012), immuno-stimulating (Zhang., 2014), anti-obesity (Huang., 2015), anti-diabetic (Zheng., 2018), anti-Alzheimer’s disease (Pan- gestuti., 2011) effect. Overall, COS had drawn significant interest among scholars and researchers as bioactive molecules.

    In contrast to the widely explored pharmacological ac- tions, studies on the absorption mechanisms and thefate of COS were limited and the influence of DPs was also unknown.Several researchers had indicated only COS2 and COS3 could be absorbed from the gastrointestinal tract (Chen., 2005). On the contrary, COS6 protected against acetaminophen-induced hepatotoxicity in mice (Barman., 2016). Therefore, the pharmacokinetics and bioavailability of COS with other DPs remain to be addressed due to challenging aspects of quantitative analysis. To have a better understanding of the pharmacokinetics behavior of COS, a transport study is necessary to clarify its absorption mechanism. COS had been shown to enter cells by facilitated passive diffusion for the first time (Li., 2014) in previous studies. On the other hand, concentration and active transporter were capable of mediating the absorption of COS2 and COS5 (Chen., 2019), which was against the previous results. Meanwhile, FITC-COS were used for transport experiments instead of COS in these studies, so these results might not reflect its transport mechanism cor-rectly. Thus, absorption mechanisms of COS should be further investigated. Caco-2 cells model is widely used as a stan-dard screening tool to evaluate the absorption me- chanism of transport of drug candidates (Hidalgo., 1989). Thus, the Caco-2 monolayer model was chosen in this study.

    Fig.1 The structure of the chito-oligosaccharide (COS).

    Therefore, the present study aims to investigate the pharmacokinetics and bioavailability of COS in rats and to monitor absorption properties in Caco-2 cell models.

    2 Materials and Methods

    2.1 Chemicals and Materials

    Caco-2 cell lines were purchased from the cell resource center of the Shanghai Institutes for Biological Sciences (Shanghai, China). COS standards (purity >95.0%) were provided by Qingdao BZ Oligo Biotech Co., Ltd (Qingdao, China). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl- tetra-zolium bromide (MTT), penicillin, streptomycin, propranolol, and atenolol were purchased from Sigma- Aldrich (St Louis, MO, USA). Phosphate buffer saline (PBS) and Hank’s balanced salt solution (HBSS) were bought from Solarbio Life Science (Beijing, China). Fetalbovine serum (FBS), trypsin, and Iscove’s Modified Dubecco’s Medium (IMDM) were obtained from Gibco (Grand Island, NY).HPLC-grade ammonium hydroxide, ammonium acetate, phloretin, quercetin, melibiose (internal standard, IS), and sodium deoxycholate were obtained from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). Transwell cell culture plate (0.4μm pore size) and 96-well cell culture plates were purchased from Corning Inc. (New York, USA). Acetonitrile and water (LC-MS grade) were obtained from Merck technologies Co., Ltd. (Darmstadt, Germany).

    2.2 UPLC-MS/MS Apparatuses and Operation Conditions

    The chromatography separation was performed using the UPLC System (UltiMate 3000, Thermo Fisher Scientific, MA, USA). The collected samples were separated by theXBridge Amide column (3.5μm, 2.1mm×150mm). Optimized mobile phase A consisted of 10mmolL?1aque- ous ammonium acetate (pH=9) in water, whereas mobile phase B consisted of 10mmolL?1aqueous ammonium acetate (pH=9) in acetonitrile run at a flow rate of 0.20mLmin?1and the column temperature was 60℃. The pro- portion of organic phase used for elution of plasma samples and cell samples were 50% and 40%, respectively.

    Quantitative analysis was conducted on TSQ QuantivaTM triple quadruple mass spectrometer (Thermo Fisher Scientific, MA, USA). The data were collected in the MRM mode, and the parameters were listed in Table 1.

    Table 1 Optimized MS/MS parameters of analytes and internal standards in MRM mode

    2.3 Transport of COS Across Caco-2 Cells

    The cells were grown in IMDM containing 20% FBS, 100UmL?1penicillin, and 100μgmL?1streptomycin and inoculated in polycarbonate at a density of 5×104cells per well and cultured for 21 days. Caco-2 cells were cultured in an incubator at 37℃in humidified air containing 5% CO2. The integrity of the cells monolayer was examined by calculating the apparent permeability coefficients (app) values of the markers atenolol and propranolol and measuring the transepithelial electrical resistance (TEER) across each well before and after transport experiments. When the TEER values of a consistent monolayer were no lower than 300Ωcm2during the experiment (Li., 2016) and atenolol (around 10?7cms?1) and propranolol (around 10?5cms?1) had appropriateappvalues,the Caco-2 monolayer cells can be used for transport experiments.

    Before the study, the consistent cell monolayer was washed with HBSS (pH7.4) twice times to remove the interfering substances on the cell surface and incubated in HBSS alone or HBSS containing phloretin (100μmolL?1) or quercetin (50μmolL?1) or sodium deoxycholate (1mmolL?1). Following a 30min incubation, for transfer in the AP-BL direction, 0.2mL drug solution was added to the AP side as the supply pool, and 0.6mL HBSS solution was added to the BL side as the receiving pool. In the BL-AP direction, 0.6mL compound solution was added to the BL side as the supply pool, and 0.2mL HBSS solution was added to the AP side as the receiving pool. To see whether transporters were involved in the absorption of COS2-7, the bidirectional transport assays with or without phloretin (Granchi., 2016) (100μmolL?1, the inhibitor of GLUT1) or quercetin (Kwon., 2007) (50 μmolL?1, the inhibitor of GLUT2) were performed.Meanwhile, sodium deoxycholate (Chen., 2019) (1mmolL?1) was used to explore whether the transport of COS wasthe paracellular pathway. Samples (50μL) were collected from the receiver chamber every half hour for three hours and replaced with an equal volume of HBSS alone or in HBSS containing phloretin (100μmolL?1) or quercetin (50μmolL?1) or sodium deoxycholate (1mmolL?1). All samples were stored at ?40℃ prior to tes- ting. The absorption and transport characteristics of COS in the Caco-2 cell model were evaluated with theapp(Grès., 1998), Efflux ratio (ER) (Ma., 2019).

    2.4 Pharmacokinetics Study of COS

    The male SD rats were purchased from Qingdao Daren Fortune Animal Technology Co., Ltd. (Qingdao, China, SCXK 20190003). The relevant animal experiment design was carried out in accordance with the guidelines of the Institutional Animal Care and Use Committee of Qingdao. Animals were housed under controlled environmental conditions (12 h dark-light cycle, the temperature was 23±2℃, and the humidity was 55±5%). Male rats (body weight 200±20g) were fasted overnight with free access to water in preparation for the experiments. COS were dissolved in sterile saline and administered to rats via the caudal vein at doses of 3.5mgkg?1. Blood samples (0.30mL) were collected from the orbital cavity at 0, 0.083, 0.167, 0.25, 0.50, 0.75, 1.0, 1.5, 2.0, 4.0 and 8.0h after drug administration. COS were dissolved in sterile saline and administered to rats by oral gavage at doses of 35mgkg?1(Chen., 2005). Blood samples were collected from the orbital cavity at 0, 0.083, 0.167, 0.25, 0.50, 1.0, 1.5, 2.0, 4.0, 8.0, 12.0, 24.0h after intragastrical administration. All samples were stored in tubes moistened with heparin. After each sampling, an equal volume of heparinized normal saline was given to rats immediately for compensation of blood withdrawal. Plasma was obtained by centrifugation at 4000rmin?1for 10min. Rat plasma (100μL) was extracted with 200μL acetonitrile containing internal standard (IS, melibiose). Then the mixtures were vortexed and centrifuged at 14000rmin?1for 10min. The supernatant was evaporated and the residue was reconstituted in 50μL of acetonitrile-water1:1, v/v). The supernatant after vortex and centrifuged was used for LC-MS/MS detection (Elendran., 2019).

    2.5 Statistical Analysis

    All data were expressed as the mean ± standard deviation (SD). The datum was processed with Microsoft Excel 2019 edited by Microsoft (Seattle, WA, USA). The pharmacokinetics data was analyzed using Phoenix WinNon- Lin 6.4 (Pharsight, CA) by non-compartmental analysis. The image was processed by GraphPad 7.0. The peak plasma concentration (max) and time to reach maximum plasma concentration (max) were obtained directly from the plasma values. Half-life (1/2)–the time required for blood concentration to fall by 50%, is a way to express rate of drug elimination. Clearance (CL) is another pharmacokinetic parameter used to describe drug elimination. The AUC is quite literally the area under a concentration versus time graph. Apparent volume of distribution (d) refers to the ratio of drug doseto blood drug concentration after the drug has reached dynamic equilibrium. The bioavailability () of COS was the ratio ofig×ivtoiv×ig(iv, intravenous administration; ig, intragastrical administration).

    3 Results and Discussion

    3.1 Transport of COS Across Caco-2 Cells

    Caco-2 cell monolayer has been widely used to study the mechanism of drug absorption and transport (Volpe, 2011). The Caco-2 cell membrane resistance values had been more than 300Ωcm2during the experiment. In this study, theappvalue of propranolol and atenolol were (18.82±1.90)×10?6cms?1and (0.43±0.09)×10?6cms?1respectively, which was the same as previous studies (Madgula., 2008; Manda., 2013). These results showed that the Caco-2 cells model established in this study was complete and reliable. Thus, the Caco-2 cells model was successfully established, which could be applied to the next transport experiment. COS are non-toxic to Caco-2 cells at concentrations below 1000μmolL?1. Only concentrations below this limit were used in subsequent experiments.

    As shown inFigs.2A and 2B, regardless of the direction of transport, the amount of transported COS2-7 increased gradually with the increase of dosing concentration within 180min. The results show that COS transport was clearly concentration-dependent and time-dependent and there was no saturation below 400μmolL?1. In previous studies, model drugs exhibiting experimentalappvalues >3×10?6cms?1are highly permeable, whereasappvalues <3×10?6cms?1are characteristic of low permeability model drugs(Artursson., 1991; Lau., 2004; Fossati., 2008). Based on these values (Table 2), it can be concluded that COS were lowly permeable.

    The relationship between structure and permeability was analyzed by comparingapp (AP-BL)values of COS2-7. As shown in Table 2,there is a decrease in the value ofapp (AP-BL)with increasing DPs. These results showed that the DPs could affect the absorption and transport of COS. No significant difference inappvalues for COS2-7 were observed in both the apical-to-basolateral and the basolateral-to-apical directions and the values of ER (app (BL-AP)/app (AP-BL)) of COS2-7 were closed to 1.0 (Elendran., 2019), suggesting that COS appear to be transported across the monolayers at a low ratea direction-independent passive diffusion mechanism.

    Fig.2 Cumulative amount of COS2-7 in different concentration across Caco-2 monolayers (A) from AP to BL; and (B) from BL to AP (n=3).

    Table 2 Values of Papp and ER of COS2-7 (n=3)

    From Fig.3,the values ofapp(AP-BL)of COS decreased significantlyin the presence of quercetin indicated that GLUT2 might be involved in the transport of COS. After adding phloretin, only the value ofapp (AP-BL)of COS4 reduced significantly showed that GLUT1 played almost no role in the transport of COS. When sodium deoxycholate was added, the value ofapp(AP-BL)increased significantly showed that COS might be absorbed through the paracellular pathway. There were no significant differences between the values ofapp (AP-BL)for a single COS and the mixture indicating that six oligosaccharides did not inhibit or promote each other during the transport process.

    In contrast to our findings, Chen. (2019) reported that the transport of COS5 involved SGLTs mediated active transport in addition to passive diffusion, evidenced by a significantly increased transport in the presence of phlorizin. Their study, however, was carried out using FITC-COS. It is evident that the absorption between pure compounds and that of derives can be different.

    Fig.3 The values of Papp (AP-BL) in the absence and presence of phloretin, quercetin, sodium deoxycholate and the mixture of COS2-7.*P<0.05, ***P<0.001 compared with the control (the corresponding COS, 200μmolL?1) (n=3).

    3.2 Pharmacokinetics and Bioavailability of COS

    After a single oral gavage of 35mgkg?1and a single intravenous injection of 3.5mgkg?1of COS2-7, the concentrations of COS2-7 in plasma were monitored up to 24 h after intragastrical administration and 8h after intravenous injection.

    After intravenous administration of COS through the caudal vein, mean plasma concentration-time curves were presented in Fig.4A and the pharmacokinetics parameters were calculated and summarized in Table 3. These data showedmax(from 8.38±1.53 to 2.99±0.72μgmL?1) andof COS (from 2.96±0.07 to 1.31±0.18hμgmL?1) to decrease as DPs increased.(from 1.11±0.06 to 2.57 ±0.32Lh?1) anddof COS (from 0.95±0.21 to 1.61 ± 0.33Lh?1) increased when DPs increased.

    Fig.4 Mean plasma concentrations-time profiles of COS2-7 after intravenous administration at dose of 3.5mgkg?1(A) and oral administration at dose of 35mgkg?1(B) to rats (= 3).

    Table 3 Pharmacokinetic parameters of COS2-7 after intravenous administration to rats (n=3)

    Fig.4B presented the mean plasma concentration-time profiles of COS2-7 after intragastrical administration. The pharmacokinetics parameters of COS2-7 after intragastrical administration were summarized in Table 4. COS2- 6 were detected at 5min in plasma after intragastrical administration to rats, indicating their rapidabsorption. The changes ofmaxand AUC of COS after intragastrical administration were similar to changes after intravenous administration with the increase of DPs. After intragastrical administration, the absorption of drugs in the gastrointestinal tract was largely determined by permeability (Motty., 2018). The bioavailability (from 7.33% to 0.99%) of COS were inversely correlated with the DP, had a similar trend to that of previous study. Fig.5 showed the correlation analysis between bioavailability andapp (AP-BL). The correlation coefficient was 0.89, indicating that a certain correlation could be obtained to some extent between thepermeability andpharmacokinetics of COS.

    Table 4 Pharmacokinetic parameters of COS2-7 after oral administration to rats (n=3)

    Fig.5 Correlation between bioavailability and the values of Papp (AP-BL).

    4 Conclusions

    In this study, COS could be rapidly absorbed by the Caco-2 cell model and the gastrointestinal tract through facilitation diffusion and paracellular absorption. But poor permeability leads to low oral bioavailability of COS. In addition, the DPs of COS had an effect on the pharmacokinetics and transport of COS. The pharmacokinetics of COSwere a certain correlated with the permeability. These results provided meritorious information for the further investigate of COS absorption characteristics.

    Acknowledgements

    This work was supported by the Shandong Provincial Natural Science Foundation, China (No. ZR2019BC025), and the Fundamental Research Funds for the Central Uni- versities (Nos. 201912008, 201964019).

    Artursson, P., and Karlsson, J., 1991. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells., 175 (3): 880-885.

    Barman, P. K., Mukherjee, R., Prusty, B. K., Suklabaidya, S., Senapati, S., and Ravindran, B.,2016. Chitohexaose protects against acetaminophen-induced hepatotoxicity in mice., 7: e2224.

    Chen, A. S., Taguchi, T., Okamoto, H., Danjo, K., Sakai, K., Matahira, Y.,., 2005. Pharmacokinetics of chitobiose and chitotriose administered intravenously or orally to rats., 28 (3): 545-548.

    Chen, P., Zhao, M., Chen, Q., Fan, L., Gao, F., and Zhao, L., 2019. Absorption characteristics of chitobiose and chitopentaose in the human intestinal cell line Caco-2 and everted gut sacs., 67 (16): 4513-4523.

    Chen, Z., Tang, J., Wang, P., Zhu, J., and Liu, Y., 2019. GYY 4137 Attenuates sodium deoxycholate-induced intestinal barrier injury bothand., 2019: 5752323.

    Chung, M. J., Park, J. K., and Park, Y. I., 2012. Anti-inflam- matory effects of low-molecular weight chitosan oligosaccharides in IgE-antigen complex-stimulated RBL-2H3 cells and asthma model mice., 12 (2): 453-459.

    Elendran, S., Muniyandy, S., Lee, W. W., and Palanisamy, U. D., 2019. Permeability of the ellagitannin geraniin and its metabolites in a human colon adenocarcinoma Caco-2 cell culture model., 10 (2): 602-615.

    Fossati, L., Dechaume, R., Hardillier, E., Chevillon, D., Prevost, C., Bolze, S.,., 2008. Use of simulated intestinal fluid for Caco-2 permeability assay of lipophilic drugs., 360 (1-2): 148-55.

    Granchi, C., Fortunato, S., and Minutolo, F., 2016. Anticancer agents interacting with membrane glucose transporters., 7 (9): 1716-1729.

    Grès, M. C., Julian, B., Bourrié, M., Meunier, V., Roques, C., Berger, M.,., 1998. Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: Comparison with the parental Caco-2 cell line.,15 (5): 726-733.

    Hidalgo, I. J., Raub, T. J., and Borchardt, R. T., 1989. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability., 96 (3): 736-749.

    Huang, L., Chen, J., Cao, P., Pan, H., Ding, C., Xiao, T.,., 2015. Anti-obese effect of glucosamine and chitosan oligosaccharide in high-fat diet-induced obese rats.,13 (5): 2732-2756.

    Kwon, O., Eck, P., Chen, S., Corpe, C. P., Lee, J. H., Kruhlak, M.,., 2007. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids., 21 (2): 366- 377.

    Lau, Y. Y., Chen, Y. H., Liu, T. T., Li, C., and Cheng, K. C., 2004. Evaluation of a novelCaco-2 hepatocyte hybrid system for predictingoral bioavailability., 32 (9): 937-942.

    Li, S., Wang, Y., Jiang, T., Wang, H., Yang, S., and Lv, Z., 2016. Absorption and transport of sea cucumber saponins from., 14 (6): 114-121.

    Li, X., Zhou, C., Chen, X., and Zhao, M., 2014. Subcellular localization of chitosan oligosaccharides in living cells., 59 (20): 2449-2454.

    Ma, Z., Guo, R., Elango, J., Bao, B., and Wu, W., 2019. Evaluation of marine diindolinonepyraneand: Permeability characterization in Caco-2 cells monolayer and pharmacokinetic properties in beagle dogs.,17 (12): 651-665.

    Madgula, V. L., Avula, B., Choi, Y. W., Pullela, S. V., Khan, I. A., Walker, L. A.,., 2008. Transport ofextract and its biologically-active constituents across Caco-2 cell monolayers–Anmodel of intestinal transport.,60 (3): 363-370.

    Manda, V. K., Avula, B., Ali, Z., Wong, Y. H., Smillie, T. J., Khan, I. A.,., 2013. Characterization ofADME properties of diosgenin and dioscin from., 79 (15): 1421-1428.

    Motty, S., 2018. Drug-like properties: Concepts, structure de- sign and methods from ADME to toxicity optimization., 7: 28-29.

    Muanprasat, C., and Chatsudthipong, V., 2017. Chitosan oligosaccharide: Biological activities and potential therapeutic applications.,170: 80-97.

    Ngo, D. N., Kim, M. M., and Kim, S. K., 2008. Chitin oligosaccharides inhibit oxidative stress in live cells.,74 (2): 228-234.

    Pangestuti, R., Bak, S. S., and Kim, S. K., 2011. Attenuation of pro-inflammatory mediators in LPS-stimulated BV2 microglia by chitooligosaccharidesthe MAPK signaling pathway.,49 (4): 599-606.

    Park, J. K., Chung, M. J., Choi, H. N., and Park, Y. I., 2011. Effects of the molecular weight and the degree of deacetylation of chitosan oligosaccharides on antitumor activity., 12 (1): 266-277.

    Rahman, M. H., Hjeljord, L. G., Aam, B. B., S?rlie, M., and Tronsmo, A., 2014. Antifungal effect of chito-oligosaccha- rides with different degrees of polymerization.,141 (1): 147-158.

    Volpe, D. A., 2011. Drug-permeability and transporter assays in Caco-2 and MDCK cell lines., 3 (16): 2063-2077.

    Zhang, P., Liu, W., Peng, Y., Han, B., and Yang, Y., 2014. Toll like receptor 4 (TLR4) mediates the stimulating activities of chitosan oligosaccharide on macrophages., 23 (1): 254-261.

    Zheng, J., Yuan, X., Cheng, G., Jiao, S., Feng, C., Zhao, X.,., 2018. Chitosan oligosaccharides improve the disturbance in glucose metabolism and reverse the dysbiosis of gut microbiota in diabetic mice., 190: 77-86.

    (Oceanic and Coastal Sea Research)

    https://doi.org/10.1007/s11802-022-5088-x

    ISSN 1672-5182, 2022 21 (3): 782-788

    (May 26, 2021;

    October 25, 2021;

    December 13, 2021)

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2022

    Corresponding authors. E-mail: yumingming@ouc.edu.cnE-mail: lvzhihua@ouc.edu.cn

    (Edited by Ji Dechun)

    国产黄色小视频在线观看| 国产综合懂色| 可以在线观看的亚洲视频| 国产黄色小视频在线观看| 嫩草影院精品99| 国产一区二区在线观看日韩| 男女啪啪激烈高潮av片| 日本黄色视频三级网站网址| 天天一区二区日本电影三级| 国内精品久久久久精免费| 又爽又黄a免费视频| 日本撒尿小便嘘嘘汇集6| 插阴视频在线观看视频| 欧美zozozo另类| 一级毛片久久久久久久久女| 国产国拍精品亚洲av在线观看| 日本色播在线视频| 日韩一本色道免费dvd| 亚洲精品亚洲一区二区| 国内精品美女久久久久久| 波野结衣二区三区在线| 欧美人与善性xxx| 可以在线观看毛片的网站| 丝袜喷水一区| 国产在线精品亚洲第一网站| 亚洲国产精品久久男人天堂| 欧美3d第一页| 亚洲精品影视一区二区三区av| 国产精品一及| 夫妻性生交免费视频一级片| 日韩国内少妇激情av| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产日韩欧美精品在线观看| 国产精品电影一区二区三区| 亚洲久久久久久中文字幕| 欧美极品一区二区三区四区| 国产亚洲欧美98| 亚洲国产色片| 男人和女人高潮做爰伦理| 日本欧美国产在线视频| 国产亚洲av嫩草精品影院| 高清毛片免费观看视频网站| 禁无遮挡网站| 亚洲va在线va天堂va国产| 插阴视频在线观看视频| 好男人视频免费观看在线| 男女视频在线观看网站免费| 最近手机中文字幕大全| 一级毛片我不卡| 国产黄色小视频在线观看| 偷拍熟女少妇极品色| 国产精品女同一区二区软件| 在线观看美女被高潮喷水网站| 中国国产av一级| 美女xxoo啪啪120秒动态图| 精品免费久久久久久久清纯| 91久久精品国产一区二区成人| 性插视频无遮挡在线免费观看| 国产成人影院久久av| 日韩亚洲欧美综合| 一本一本综合久久| 久久精品夜色国产| 性欧美人与动物交配| 亚洲国产精品久久男人天堂| 91精品国产九色| 欧美色欧美亚洲另类二区| 人妻久久中文字幕网| 直男gayav资源| 国产色爽女视频免费观看| 成人午夜精彩视频在线观看| 国产伦在线观看视频一区| 国产白丝娇喘喷水9色精品| 欧美区成人在线视频| 成人毛片a级毛片在线播放| 国产乱人视频| 久久精品夜夜夜夜夜久久蜜豆| 国产精品一及| 国产一区二区在线av高清观看| 有码 亚洲区| 嫩草影院精品99| 亚洲五月天丁香| 亚洲欧美清纯卡通| 欧美xxxx性猛交bbbb| 国产单亲对白刺激| 日韩欧美国产在线观看| 免费人成在线观看视频色| 欧美人与善性xxx| 亚洲av二区三区四区| 天堂中文最新版在线下载 | 国产精品久久久久久av不卡| 久久午夜福利片| 好男人在线观看高清免费视频| 久久精品国产亚洲网站| 女的被弄到高潮叫床怎么办| 99久久成人亚洲精品观看| 亚洲欧美日韩高清在线视频| av专区在线播放| 久久鲁丝午夜福利片| 欧美三级亚洲精品| 最好的美女福利视频网| 99久久精品热视频| 亚洲av成人av| 国国产精品蜜臀av免费| av在线播放精品| 麻豆国产av国片精品| 久久精品久久久久久久性| 直男gayav资源| 小蜜桃在线观看免费完整版高清| 免费看光身美女| 寂寞人妻少妇视频99o| 国内少妇人妻偷人精品xxx网站| 国产午夜精品久久久久久一区二区三区| 最新中文字幕久久久久| 哪里可以看免费的av片| 我要搜黄色片| 插阴视频在线观看视频| 麻豆乱淫一区二区| 亚洲国产精品久久男人天堂| 99热精品在线国产| av在线亚洲专区| 欧美日韩一区二区视频在线观看视频在线 | 超碰av人人做人人爽久久| 久久午夜福利片| 国产中年淑女户外野战色| 国产久久久一区二区三区| 国产成人a区在线观看| 久久鲁丝午夜福利片| 高清午夜精品一区二区三区 | 欧美xxxx黑人xx丫x性爽| 成人av在线播放网站| 亚洲av不卡在线观看| 日韩大尺度精品在线看网址| 国产午夜精品论理片| 熟女电影av网| 久久99精品国语久久久| 99热网站在线观看| 中文字幕熟女人妻在线| 18禁在线无遮挡免费观看视频| 亚洲人与动物交配视频| 直男gayav资源| 国产 一区 欧美 日韩| 欧美日韩国产亚洲二区| 亚洲国产高清在线一区二区三| 国产一区二区三区av在线 | 亚洲天堂国产精品一区在线| 久久久欧美国产精品| 啦啦啦韩国在线观看视频| 精品久久国产蜜桃| 日韩 亚洲 欧美在线| 亚洲婷婷狠狠爱综合网| 国产欧美日韩精品一区二区| 欧美成人a在线观看| 日日干狠狠操夜夜爽| 在线免费十八禁| 亚洲美女搞黄在线观看| 国产精品野战在线观看| 欧美激情久久久久久爽电影| av在线蜜桃| 免费观看a级毛片全部| 国产一区二区激情短视频| 六月丁香七月| 啦啦啦啦在线视频资源| 99热这里只有是精品50| 久久久久久久久中文| 亚洲av二区三区四区| 99久久久亚洲精品蜜臀av| 亚洲自拍偷在线| 又粗又硬又长又爽又黄的视频 | 99热全是精品| 中文字幕人妻熟人妻熟丝袜美| 亚洲无线观看免费| 高清午夜精品一区二区三区 | 99热这里只有是精品在线观看| 精品久久久久久成人av| 99久久精品一区二区三区| 三级经典国产精品| ponron亚洲| 国产精品一及| 天美传媒精品一区二区| 国产精品一区www在线观看| 99久久人妻综合| 欧美+日韩+精品| 天堂中文最新版在线下载 | 成人亚洲欧美一区二区av| 日日啪夜夜撸| 日韩三级伦理在线观看| 日本爱情动作片www.在线观看| 变态另类丝袜制服| 国产黄片视频在线免费观看| 精品人妻熟女av久视频| 国产v大片淫在线免费观看| 啦啦啦观看免费观看视频高清| 九九在线视频观看精品| 久久这里只有精品中国| 免费观看人在逋| 麻豆精品久久久久久蜜桃| 高清在线视频一区二区三区 | 99热精品在线国产| 在线a可以看的网站| 国产精品av视频在线免费观看| 美女xxoo啪啪120秒动态图| 亚洲人与动物交配视频| 中文字幕久久专区| av福利片在线观看| 热99在线观看视频| 噜噜噜噜噜久久久久久91| 亚洲国产色片| 日本在线视频免费播放| 国产成人一区二区在线| 久久久久久九九精品二区国产| 久久这里只有精品中国| а√天堂www在线а√下载| 久久精品夜色国产| 联通29元200g的流量卡| 在线观看66精品国产| 黄片wwwwww| 69人妻影院| 久久精品久久久久久久性| 国产精品电影一区二区三区| 高清午夜精品一区二区三区 | 国产v大片淫在线免费观看| 看片在线看免费视频| 日本成人三级电影网站| 免费观看a级毛片全部| 黄色视频,在线免费观看| 午夜爱爱视频在线播放| 国产大屁股一区二区在线视频| 亚洲av二区三区四区| 日韩中字成人| 日韩强制内射视频| 简卡轻食公司| 黄色欧美视频在线观看| 亚洲国产高清在线一区二区三| 91麻豆精品激情在线观看国产| 欧美激情在线99| 国产精品蜜桃在线观看 | 国产乱人视频| 亚洲熟妇中文字幕五十中出| 高清毛片免费观看视频网站| 级片在线观看| 国产精品1区2区在线观看.| 3wmmmm亚洲av在线观看| 亚洲七黄色美女视频| 亚洲va在线va天堂va国产| 99热这里只有是精品在线观看| 男女那种视频在线观看| 日韩大尺度精品在线看网址| 亚洲欧美精品自产自拍| 丰满的人妻完整版| 色播亚洲综合网| 亚洲人成网站在线播| 国产精品99久久久久久久久| 欧美又色又爽又黄视频| 亚洲精品粉嫩美女一区| 国产精品嫩草影院av在线观看| 天堂影院成人在线观看| 少妇高潮的动态图| 日本五十路高清| 最近视频中文字幕2019在线8| 欧美色欧美亚洲另类二区| 在线播放无遮挡| 久久人人精品亚洲av| 18禁在线播放成人免费| 久久99热6这里只有精品| 国产午夜精品论理片| 91aial.com中文字幕在线观看| 狂野欧美激情性xxxx在线观看| 国产成人aa在线观看| 亚洲av中文字字幕乱码综合| 成人毛片60女人毛片免费| 深夜精品福利| 男人的好看免费观看在线视频| 国产在视频线在精品| 亚洲中文字幕日韩| 国产黄a三级三级三级人| 久久九九热精品免费| 久久人妻av系列| 寂寞人妻少妇视频99o| 精品久久国产蜜桃| 午夜激情欧美在线| 91狼人影院| 国产三级中文精品| 噜噜噜噜噜久久久久久91| 免费在线观看成人毛片| 午夜视频国产福利| 1000部很黄的大片| 免费电影在线观看免费观看| 欧美zozozo另类| 国产av一区在线观看免费| 99视频精品全部免费 在线| 国产私拍福利视频在线观看| 国产精品嫩草影院av在线观看| 国产在线男女| 国产爱豆传媒在线观看| 欧美性猛交黑人性爽| a级毛色黄片| 麻豆成人av视频| 深夜a级毛片| 免费人成视频x8x8入口观看| 欧洲精品卡2卡3卡4卡5卡区| 变态另类成人亚洲欧美熟女| 99久久精品热视频| 久久午夜亚洲精品久久| 亚洲丝袜综合中文字幕| 亚洲精品自拍成人| 国产精品爽爽va在线观看网站| 欧美色欧美亚洲另类二区| 精品少妇黑人巨大在线播放 | av国产免费在线观看| 免费搜索国产男女视频| 久久久久久久久久久丰满| 亚洲精品影视一区二区三区av| 人妻系列 视频| 伊人久久精品亚洲午夜| avwww免费| 亚洲婷婷狠狠爱综合网| 亚洲av成人精品一区久久| 男的添女的下面高潮视频| 淫秽高清视频在线观看| 成人鲁丝片一二三区免费| 大香蕉久久网| 国产精品免费一区二区三区在线| 简卡轻食公司| 日韩成人伦理影院| 26uuu在线亚洲综合色| 亚洲婷婷狠狠爱综合网| 亚洲在线观看片| 久久精品人妻少妇| 日本免费a在线| 国产乱人偷精品视频| 久久久久久九九精品二区国产| 深爱激情五月婷婷| 内地一区二区视频在线| 久久精品91蜜桃| 色哟哟·www| 亚洲一区高清亚洲精品| 色综合色国产| 国产精品免费一区二区三区在线| 能在线免费看毛片的网站| 精品久久久噜噜| 久久人人精品亚洲av| 91久久精品国产一区二区成人| 中文在线观看免费www的网站| 欧美精品一区二区大全| 免费观看人在逋| 亚洲天堂国产精品一区在线| 国产一级毛片七仙女欲春2| 亚洲无线在线观看| 成年免费大片在线观看| 欧美最新免费一区二区三区| 亚洲国产欧美在线一区| 一级黄片播放器| 国产精品.久久久| 亚洲一级一片aⅴ在线观看| 国产真实乱freesex| 国产精品99久久久久久久久| 国产高清激情床上av| 亚洲最大成人手机在线| 天堂网av新在线| 国产真实伦视频高清在线观看| 一级毛片我不卡| 亚洲av中文字字幕乱码综合| 日韩欧美精品v在线| 毛片女人毛片| 18+在线观看网站| 一区福利在线观看| 给我免费播放毛片高清在线观看| 国产伦精品一区二区三区四那| 亚洲精品日韩av片在线观看| 亚洲精品影视一区二区三区av| a级一级毛片免费在线观看| 亚洲成人中文字幕在线播放| 能在线免费看毛片的网站| 免费av观看视频| 国内揄拍国产精品人妻在线| 老司机影院成人| 免费看光身美女| 国产亚洲91精品色在线| 亚洲久久久久久中文字幕| ponron亚洲| 欧美zozozo另类| 精品久久久久久久人妻蜜臀av| 亚洲精品成人久久久久久| 美女cb高潮喷水在线观看| 波多野结衣巨乳人妻| 精品国产三级普通话版| 国产精品一区www在线观看| 国产精品一区二区三区四区免费观看| 五月玫瑰六月丁香| 日韩一区二区三区影片| 熟女电影av网| 美女xxoo啪啪120秒动态图| 国产精品永久免费网站| 欧美+亚洲+日韩+国产| 男女视频在线观看网站免费| 一级毛片aaaaaa免费看小| 精品久久久久久久久亚洲| 老司机影院成人| 亚洲欧美日韩东京热| 长腿黑丝高跟| 亚洲av不卡在线观看| 欧美一区二区精品小视频在线| 91久久精品国产一区二区成人| 亚洲三级黄色毛片| 少妇被粗大猛烈的视频| 精品欧美国产一区二区三| 国产伦理片在线播放av一区 | 一级毛片我不卡| 国产探花极品一区二区| 亚洲18禁久久av| 欧美另类亚洲清纯唯美| 日韩一本色道免费dvd| 日韩欧美精品免费久久| 日韩成人伦理影院| 高清日韩中文字幕在线| 亚洲成a人片在线一区二区| 欧美日韩综合久久久久久| 舔av片在线| 久久久久久久亚洲中文字幕| 精华霜和精华液先用哪个| 国产美女午夜福利| 变态另类成人亚洲欧美熟女| 噜噜噜噜噜久久久久久91| 久久久精品大字幕| 午夜a级毛片| 欧美丝袜亚洲另类| 麻豆久久精品国产亚洲av| 久久人人爽人人爽人人片va| 99久国产av精品| 边亲边吃奶的免费视频| 六月丁香七月| a级一级毛片免费在线观看| 国产高清视频在线观看网站| 精品99又大又爽又粗少妇毛片| 91午夜精品亚洲一区二区三区| 国产亚洲av嫩草精品影院| www.av在线官网国产| 亚洲最大成人av| 免费观看精品视频网站| 久久这里只有精品中国| 亚洲一区高清亚洲精品| ponron亚洲| 男人的好看免费观看在线视频| 九草在线视频观看| 欧美性猛交╳xxx乱大交人| 国产激情偷乱视频一区二区| 高清日韩中文字幕在线| 亚洲av不卡在线观看| 蜜臀久久99精品久久宅男| 亚洲精品国产av成人精品| 在线播放无遮挡| 国产高清视频在线观看网站| 国产精品久久电影中文字幕| 神马国产精品三级电影在线观看| 久久国内精品自在自线图片| 国产黄片美女视频| 少妇裸体淫交视频免费看高清| 精品久久久久久久人妻蜜臀av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品国产av成人精品| 国产精品久久电影中文字幕| 国语自产精品视频在线第100页| 嫩草影院新地址| 亚洲人成网站在线观看播放| 亚洲自偷自拍三级| 精品99又大又爽又粗少妇毛片| 久久人人精品亚洲av| 51国产日韩欧美| 精品熟女少妇av免费看| 欧美成人a在线观看| 不卡视频在线观看欧美| 狂野欧美激情性xxxx在线观看| 99热精品在线国产| 亚洲一级一片aⅴ在线观看| 亚洲国产精品国产精品| 亚洲国产精品sss在线观看| 秋霞在线观看毛片| 一进一出抽搐gif免费好疼| 日韩欧美精品免费久久| 看十八女毛片水多多多| 我要搜黄色片| 色5月婷婷丁香| 亚洲国产欧美人成| 国产探花在线观看一区二区| 色吧在线观看| 中文字幕免费在线视频6| 久久99精品国语久久久| 国产人妻一区二区三区在| 成年女人看的毛片在线观看| 在线观看午夜福利视频| 免费无遮挡裸体视频| 精品免费久久久久久久清纯| 国产精品99久久久久久久久| 黄色视频,在线免费观看| 日韩一区二区视频免费看| 久久中文看片网| av黄色大香蕉| 91av网一区二区| 久久精品国产99精品国产亚洲性色| 亚洲精品日韩在线中文字幕 | 成人特级黄色片久久久久久久| 99久久无色码亚洲精品果冻| 不卡视频在线观看欧美| 国产黄色小视频在线观看| 伦精品一区二区三区| 在线观看美女被高潮喷水网站| 国产精品人妻久久久久久| 97在线视频观看| av专区在线播放| 亚洲18禁久久av| 国产在线精品亚洲第一网站| 日韩欧美一区二区三区在线观看| 91精品国产九色| 国产一区二区在线观看日韩| 女的被弄到高潮叫床怎么办| 成人三级黄色视频| 久久精品国产99精品国产亚洲性色| 亚洲精品久久久久久婷婷小说 | 免费大片18禁| 国产成人一区二区在线| av在线天堂中文字幕| 亚洲国产日韩欧美精品在线观看| 国产一区二区激情短视频| 亚洲av成人精品一区久久| 久久中文看片网| 久久久a久久爽久久v久久| 久久精品国产清高在天天线| 女的被弄到高潮叫床怎么办| 国产一区二区三区av在线 | 22中文网久久字幕| 给我免费播放毛片高清在线观看| 中文亚洲av片在线观看爽| 在线观看午夜福利视频| 成人亚洲欧美一区二区av| 能在线免费看毛片的网站| 夫妻性生交免费视频一级片| 国产成人a∨麻豆精品| .国产精品久久| 最后的刺客免费高清国语| 精品不卡国产一区二区三区| 日韩欧美精品免费久久| 欧美区成人在线视频| 日韩欧美精品免费久久| av福利片在线观看| 一本久久中文字幕| 免费观看在线日韩| 给我免费播放毛片高清在线观看| 全区人妻精品视频| 精品欧美国产一区二区三| 亚洲第一区二区三区不卡| 毛片女人毛片| 男的添女的下面高潮视频| 少妇人妻精品综合一区二区 | 亚洲最大成人av| 亚洲性久久影院| 亚洲av第一区精品v没综合| 国内精品一区二区在线观看| 69av精品久久久久久| 国产黄片美女视频| 97热精品久久久久久| 亚洲中文字幕日韩| 99在线视频只有这里精品首页| 日本免费一区二区三区高清不卡| 成人av在线播放网站| 久久精品人妻少妇| 国产视频内射| 亚洲精品日韩av片在线观看| 精品99又大又爽又粗少妇毛片| 婷婷六月久久综合丁香| 日本三级黄在线观看| 免费电影在线观看免费观看| 黄色欧美视频在线观看| 少妇的逼好多水| 午夜免费男女啪啪视频观看| 99九九线精品视频在线观看视频| 欧美日韩国产亚洲二区| 两个人视频免费观看高清| 伦理电影大哥的女人| 一个人观看的视频www高清免费观看| 99久久九九国产精品国产免费| 一级毛片我不卡| 夜夜看夜夜爽夜夜摸| 麻豆成人午夜福利视频| 国内少妇人妻偷人精品xxx网站| 少妇熟女欧美另类| 精品人妻视频免费看| 女的被弄到高潮叫床怎么办| 国内揄拍国产精品人妻在线| 级片在线观看| 亚洲国产欧美在线一区| 国产精品人妻久久久久久| 在线观看美女被高潮喷水网站| 久久鲁丝午夜福利片| videossex国产| 午夜福利高清视频| 桃色一区二区三区在线观看| 国产极品精品免费视频能看的| 一区二区三区免费毛片| 久久精品91蜜桃| 国产精品久久久久久精品电影小说 | 日韩欧美精品免费久久| 国产一级毛片七仙女欲春2| 非洲黑人性xxxx精品又粗又长| 国产 一区精品| 色尼玛亚洲综合影院| 国产成年人精品一区二区| 99热精品在线国产| 最近视频中文字幕2019在线8| 天天一区二区日本电影三级| 精品久久久久久久末码| 日本-黄色视频高清免费观看| 少妇人妻精品综合一区二区 | av在线播放精品| 你懂的网址亚洲精品在线观看 | 啦啦啦啦在线视频资源|