• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variational Solution of Coral Reef Stability Due to Horizontal Wave Loading

    2022-06-14 04:04:14ZHANGQiyiLONGQuanandLIXiaowu
    Journal of Ocean University of China 2022年3期

    ZHANG Qiyi, LONG Quan, and LI Xiaowu

    Variational Solution of Coral Reef Stability Due to Horizontal Wave Loading

    ZHANG Qiyi1), 2), *, LONG Quan1), 2), and LI Xiaowu1), 2)

    1) Department of Ocean Engineering, College of Engineering, Ocean University of China, Qingdao 266100, China 2) Key Laboratory of Ocean Engineering of Shandong Province, Ocean University of China, Qingdao 266100, China

    This paper proposes a theoretical method that can be used in calculating the stability of coral reefs or artificial islands. In this work, we employ the variational limiting equilibrium procedure to theoretically determine the slope stability of coral reefs covered with hard reef shells as a result of horizontal wave loads. A reasonable functional is proposed and its extremum is calculated based on the conservation of energy. Then, we deduce the stability factorNof coral reefs under combined vertical self-gravity and horizontal wave loads, which is consistent with the published results. We compare some classic examples of homogeneous slopes without hard shells in order to analyze the accuracy of results generated by this variational procedure. The variational results are accurate and reliable according to the results of a series of detailed calculations and comparisons. Simultaneously, some other influence parameters on the reef stability, including the top-layer tensile strength of coral reef, the amplitude of wave loading, and the tensile crack, are calculated and discussed in detail. The analysis results reveal that the existence of a hard reef shell could enhance the stability of reef slope and that there is a nonlinear relationship between the stability factorN, the shear strength, and the thicknessDof the covered coral reef shell. Furthermore, the emergence of top-layer tensile cracks on the coral reefs reduces their stability, and the action of horizontal wave loads greatly decreases the stability of coral reefs. Thus, the hard shell strength and its thickness D, surface tensile crack, and wave loading require more careful attention in the field of practical engineering.

    coral reef stability; tensile crack; variational solution; horizontal wave loading

    1 Introduction

    Coral reefs are representative components of marine geomorphology, are widely distributed in the deep sea and shallow waters, and especially exist in warm waters onboth sides of the equator (Putnam., 2017). In particular, coral reef topography is widely distributed in Taiwan Island, the South China Sea, and Australian waters (Pirazzoli, 1993; Harris, 2004; Beaman, 2008;Woodroffe and Webster, 2014). In recent years, with the rapid expansion of marine resources and the ongoing construction of civil structures and military facilities on coral reefs, there is an urgent need to carefully study the stability of coral reef slopes. The regularity of horizontal distribution of coral reefs tends to form steep seaward slopes, hard reef flats and coral sand lagoons covered with hard reef shells depending on the hydrodynamic environment and geological conditions, as well as the long-term formation process of coral reefs in the South China Sea (Rogers, 2017). In this special marine environment and geological condition, a typical two-layer profile appears on the vertical cross-section, with incompact coral sand to a depth of 10–20m consisting of coral debris, gravel, and coarse sand; and a deep layer of hard coral reef with good integrity (Gong., 2012; Kordi and O’Leary, 2016). A typical profile of the geomorphic features of coralreef in the South China Sea is shown in Fig.1 (Zhang, 2017), wherein the coral reef is covered with a hard shell at the surface. As shown in Fig.1, the geological structure of the coral reef consists of the following parts:1) the upper seaward slope; 2) the outer reef flat; 3) the reef margin; 4) the inner reef flat; 5) the lagoon slope; 6) the lagoon basin. The first four parts (1–4) are strongly subjected to hydrodynamic action.

    Such projects as the construction of ports and military structures, along with shipping and tourism activities, tend to destroy the hard shell of coral reefs, which may significantly reduce their general stability; in turn, this can reduce the stability of structures established on the reefs (Chen, 2017). Therefore, the integrity of the reef shellhas a great influence on ensuring the stability of coral reefs. In order to investigate theoretically the influence of horizontal wave loads on the stability of coral reefs, and in light of energy conservation considerations, we propose an energy functional for coral reef stability resulting from the combined vertical self-gravity and horizontal wave loads. Then, we obtain a variational solution for the stability of coral reefs covered with a hard shell under horizontal wave loading, thereby demonstrating the influence of the horizontal wave loads and the original reef shell on the reef slope stability. We simplified the geomorphic features of the coral reef in order to reduce the difficulty of theoretical derivation and mathematical calculation, as shown in Fig.2. Table 1 presents data on the hydrodynamic and geological conditions related to the coral reef, obtained from the actual monitoring of the sea area and the coral reefs.

    Fig.1 Typical coral reef profile.

    Fig.2 Simplified model of a coral reef covered with hard shell.

    Table 1 Water depth and wave condition in front of the coral reef

    According to a previous study, the variational limiting equilibrium (LE) solutions are identical to the upper plastic limit analysis solutions; thus, the top hard shell can obviously improve reef stability; however, this study ignored the horizontal action due to the wave loads (Zhang., 2018). The main advantage of this variational approach is that it is free from any artificial kinematical or static admissible assumptions, which is the case for many existing methods mentioned in the literature. In order to assess the stability of coral reefs under horizontal wave loading, the concept of safety factor is adopted in the current paper, which is usually defined as the ratio of the total shear strength available on the slip surface to the total shear strength required for equilibriums.

    2 Variational Analyses

    Here, we theoretically derive the stability factor of the coral reef using the variational LE in order to determine the reef stability covered with hard reef shells and undergoing the horizontal wave loads. The analysis process is as follows.

    2.1 Mathematical Formulation of the Basic Problem

    A typical reef slopeinclined in the horizontal direction is shown in Fig.3. The coral reef profile is identified by the unit weight, cohesion, and internal friction angle. Here,is an assumed height of coral reef described in this paper. The horizontal wave load(), the vertical load on top of the reef(), and the tension crackon the reef roof are introduced, assuming that the collapse of the coral reef is due to the combined vertical self-gravity load and horizontal wave loads. The LE method is based on the following equations:

    1) Satisfaction of the plastic yielding criterion=()along the shear slip surface(). We adopt the Mohr-Coulomb’s failure condition as:

    where=()and=()are the distributions of the tangential and normal stress along the assumed slip surface(), respectively, andDrefers to the thickness of the surface reef shell. To facilitate easy calculation in this paper, we set=tan().

    3) Here, the horizontal wave load() is applied on the coral reef, and the wave shape adopted before wave breakage is calculated as in Fig.4. Considering the complexity of wave force calculation theory on slope, and in order to simplify the theoretical derivation of horizontal wave pressure, it is assumed that the reef shell is inclined at a fixed angleto the horizontal plane; besides, the surface roughness of the reef shell and the wave reflection effect are ignored.

    Fig.3 Basic geometric parameters and definitions.

    Fig.4 Calculation of wave pressure p(x).

    The wave pressure(kPa) acting on the coral reef is calculated as follows:

    where1=1.35 and

    The vertical coordinates2and3of point 2 and point 3 are respectively determined by the following equations:

    whereandare the formula parameters, which can be found in the Soviet architecture standard.

    Based on the coral reef mass being in a state of LE, as shown in Fig.3, the equilibrium equations of horizontal and vertical forces and the moment are respectively satisfied as follows (Zhang, 2008):

    whereis the arc length along the shear sliding surface(), andis the slope inclination of(). Eqs. (3a) and (3b) are the horizontal and vertical force equilibrium equations in the two-dimensional (2D) plane strain state, respectively, and Eq. (3c) is the moment equilibrium equation of the rigid-plastic sliding coral reef. We then introduce Mohr-Coulomb’s failure criteria into the above equations and combine the geometrical relations along the continuous boundaries shown in Fig.3, cos=d/d; sin=d/d. Under these simplifications, we can obtain the following equilibrium equations which can indicate the overall stability equations of this layered slope:

    2.2 Safety Factor and Critical Height of Reef Slope

    To quantify the margin of reef safety relative to an LE state under combined horizontal and vertical loads, we replace the real shear strength parameters of coral reefs with an artificially reduced factor. This is also known as safety factor and is expressed as:

    The critical heighthof the coral reef under combined vertical and horizontal wave loads, for which we can obtain the reef stability when it reaches a state of LE, is decided by the normal stress functions and kinematical shape() and() along the shear sliding surface, respectively. Thus, the reduced factorand slope heightcan be described as a variational functional of the mentioned shape and stress functions. Consequently, the safety factorFand the critical heighthare respectively considered the extreme values, as follows:

    wherey() andσ() are the shear sliding surface and normal stress distribution along the optimal failure slip surface, respectively.

    In the process of solving the functional extremum shownin Eq. (6), we set the safety factorFto 1 and use the critical heighthto estimate the stability of the coral reef. Thus, the LE issue can be stated as solving two sets of mathematical functions() and(), which can obtain the extreme valuehof the functional and simultaneously satisfy the coral reef equilibrium equations (Eq. (4)) mentioned above.

    We can transform the basic equilibrium issues into the standard isoperimetric problem of the variational method using the derivation process previously introduced by Baker (1981, 2003). We select the force equilibrium equation in the vertical direction as the integral object, using the horizontal force and moment equilibrium equation as the integral constraints. The parameters1and2are Lagrange’s undetermined multipliers, respectively, which are constants in the process of variational derivation. Then, by introducing the two integral constraints (Eqs. (4a) and (4c), respectively), we can obtain the following expression[(),()] given by

    We have to obtain the optimal sliding surface and its corresponding normal stress distribution in order to solve the extremum of the above auxiliary functional shown in Eq. (7b).

    2.3 Functional Variational Solution

    In order to solve the safety factorFand critical heighthof the coral reef, the mentioned functional must satisfy the Euler partial differential equations,, the necessary conditions for the existence of an extreme, namely,

    According to Baker and Garber (1977, 1978), we can derive the family of the potential shear sliding surface by solving the first Euler partial differential equation, whereas the second Euler equation could yield the normal stress acting along the shear sliding surface. In this paper, the shear slip surface equation and the normal stress equation are derived easily by solving the Euler partial differential equations (Eqs. (8a) and (8b)), which could be expressed as Eqs. (9a) and (9b). The derivation process is consistent with that followed by Baker. The final theoretical formulas of the slip surface and its corresponding normal stress are as follows:

    whereρ, Ω,1, and2are the integration constants. Note that Eqs. (9a) and (9b) are formulations of the family of the potential sliding surface and its corresponding normal stress in a polar coordinate system, respectively. We utilized the following coordinate transformation, which can convert the coordinate values from polar to rectangular coordinates:

    where (,) is the polar coordinate system with a center (x,y), as shown in Fig.3.

    Next, we can integrate the force and moment equilibrium equation explicitly once the form of the potential sliding surface and its corresponding normal stress distribution are obtained. The final form of this equilibrium equation is described as

    (11)

    It is important to note that we must still consider the constraints listed below in order to obtain a specific theoretical solution of the above Euler partial differential equation.

    1) Geometrical boundary conditions

    Note that the two endpoints, 0 and 2, of the sliding surface are not fixed,, they are separately variable along the slope surface. The tensile crack depthcan be obtained using the tensile strength of the coral reef. The longitudinal coordinates are already given.

    2) Transversality condition among layers

    In the process of searching for the optimal sliding surface, the coordinates of the two endpoints, 0 and 2, cannot ascertain which are related to the loading and the geological properties, so it is necessary to apply the transversality conditions among the layers, whose general form is given below:

    wherexmay be either0,1, and2. The Θis a particular curve passing through the two endpoints. By substituting relevant expressions into Eq. (14), utilizing the coordinate transformations in Eq. (10), and then making a detailed calculation, the following expression is obtained:

    By applying the above Eq. (15) to the endpoint 0, we obtain the following expression:

    where the parametercindicates the cohesion of the coral reef shell.

    On the other hand, if the ultimate tensile strengthof the hard reef roof is known, we can obtain the depth of tension crack, as follows:

    3) Stress boundary condition

    Let us substitute the stress boundary condition2=(=2) into Eq. (9). In doing so, we can solve the integral constants Ω and2, after which the following expressions are obtained as shown in Eq. (18):

    Hence, we can statically determine the basic variational problem by simultaneously solving the equilibrium equations as well as the geometrical boundary, stress boundary, and transversality conditions. The following two calculation results, which consider different slope inclinations and reef tensile strengths shown in Fig.5, give the typical shear sliding surfaces and their corresponding normal stress distributions with slope angles π/4 and π/2, respectively.

    2.4 Numerical Verification of Theoretical Solutions

    As shown in Fig.5, the general finite element software Plaxis is used to simulate the engineering example. This is done in order to verify the rationality of the variational results derived theoretically in this paper and to check the shape of the sliding surface and the normal stress distribution law along the sliding surface. The numerical calculation results are shown below.

    The shear sliding surfaces shown in Figs.6(a) and (c) indicate that the hard surface shell constrains the shallow sliding of the coral reef and increases the general stability of the coral reef. The safety factorNof the coral reef withfour differential potential critical sliding surfaces is shownin Fig.6(a), which indicates that the sliding surface gradually transits from shallow failure to deep failure, increases from 16.6 to 28.6. In addition, Fig.6(c) shows that the safety factor increases from 4.16 to 10.3. Furthermore, the failure modes shown in Figs.6(b) and (d) indicate that the appearance of tensile cracks at the top surface of the coral reef accelerates the appearance of shear sliding surface and reduces the general stability of the coral reef. Furthermore, the failure modes of the numerical calculation are consistent with those of the variational solution derived in this paper. Therefore, protecting the integrity of the coral reef shell is very important in ensuring the overall stability of the coral reef.

    Fig.5 Typical slip surfaces and normal stress distributions of variational solutions.

    Fig.6 Numerical results of coral reef failure modes.

    3 Comparison and Discussion of Results

    3.1 Variational Solution of the Stability FactorNs

    Actually, it is difficult to obtain the analytical results of the nonlinear simultaneous equations derived theoretically in this paper. For this reason, a trial-and-error process is utilized to generate the numerical solutions. To facilitate easier calculation, we express all the quantities in their non-dimensional forms. For example, the length-type parameters take the expression of=/, and the stress-type parameters are expressed as=/. Furthermore, we use a non-dimensional parameter, which has been defined as N=h/by Taylor (1948). By doing so, we obtained some theoretical results indicating the critical safety factors for various conditions with the different slope inclinations as well as the internal friction angle of the coral reef, as illustrated in Fig.7. By comparison, we find that the safety factor derived using the variational LE procedure is similar to that obtained by the upper bound analysis method.

    Fig.7 shows that the safety factorNis a function ofand(internal friction angle and reef inclination, respectively) for the case of no reef shell covered. Comparing the results with the upper bound analysis results published by Chen (1975), we can expect the variational approach to obtain the exact theoretical values ofN, and to derive a set of theoretical calculation fourmulas.

    Fig.7 Safety factor without reef shell. (a), effect of internal friction angle on Ns; (b), effect of reef inclination on Ns.

    3.2 Safety Factor with Hard Reef Shell

    Some investigators have concluded that the influence of shell thicknessDon the coral reef stability (, to cover the surface of a coral reef) is not negligible. Fig.8 presentsNas a function of internal friction angleand reef inclinationfor the case of a coral reef with a hard shell (D). On the one hand, the dotted lines in Fig.8 represent the reef safety factor without the reef shell being covered. On the other hand, the straight lines mean that with a hard reef shell, the existence of a continuous covered reef shell significantly increases the stability of the coral reef.

    3.3 Safety Factor with Tensile Crack

    Fig.9 shows the effect of surface tensile strengthon the safety factorNwith the emergence of the tensile crack. We can see that there exists a linear growth relationship between the safety factorNand the tensile strength. Furthermore, the figure shows that the safety factorNof the coral reef is approximately linearly related to the surface tensile strength, and the line slopes are basically the same under different reef inclination angles. 3.4 Safety Factor Due to Horizontal Wave Loads

    Two sets of typical wave data (Figs.10 and 11), which include water depth in front of the coral reef 40m, wave period 4s, wave length 24.98m, and wave heights 1 and 5m, respectively. The wave loads() acting on the reef are solved, and the safety factorNof coral reefs is analyzed under wave loads and self-gravity. Based on the variational calculation results, we determine that the safety factorNof the coral reef decreases with the increase of wave load.

    Fig.8 Safety factor with hard shell covered.

    Fig.9 Safety factor with tensile crack ζ.(a), internal friction angle φ=5?; (b), internal friction angle φ=20?.

    Fig.10 Safety factor with an inclination angle of 45?. (a), wave height, 1m; (b), wave height, 1.5m.

    Fig.11 Safety factor with an inclination angle of 60?. (a), wave height, 1m; (b), wave height, 1.5m.

    4 Conclusions

    In this paper, the variational LE procedure is applied to obtain the safety factorNof the coral reefs covered with hard reef shells and to withstand wave loads in the horizontal direction. Some meaningful conclusions are drawn as follows:

    1) The analysis results show that the continuous hard shell covering the coral reef enhances the stability of the coral reef. Furthermore, there is a nonlinear relationship between the safety factorNand the tensile strengthand the thicknessDof the surface reef shell.

    2) The horizontal wave loads weaken the safety factorNof the coral reef, and the existence of tensile crackfurther reduces the safety factorNof the coral reef.

    Acknowledgements

    This paper is supported by the Project of National Science and Technology Ministry (No. 2014BAB16B03), andthe National Natural Science Foundation of China (No. 51679224).

    Baker, R., 1981. Tensile strength, tension cracks, and stability of slopes., 21 (2): 1-17.

    Baker, R., 2003. Sufficient conditions for existence of physically significant solutions in limiting equilibrium slope stability analysis., 40: 3717-3735.

    Baker, R., and Garber, M., 1977. Variational approach to slope stability.. Tokyo, Japan, 2: 9-12.

    Baker, R., and Garber, M., 1978. Theoretical analysis of the stability of slopes., 28 (4): 395-411.

    Beaman, R. J., Webster, J. M., and Wust, R. A. J., 2008. New evidence for drowned shelf edge reefs in the Great Barrier Reef, Australia., 247: 17-34.

    Chen, C. S., Xia, Y. Y., and Bowa, V. M., 2017. Slope stability analysis by polar slice method in rotational failure mechanism., 81: 188-194.

    Chen, W. F., 1975.. Elsevier, Amsterdam, 851pp.

    Gong, E. P., Zhang, Y. L., Guan, C. Q., and Chen, X. H., 2012. The Carboniferous reefs in China., 1 (1): 27-42.

    Harris, P. T., Heap, A. D., Wassenberg, T., and Passlow, V., 2004. Submerged coral reefs in the Gulf of Carpentaria, Australia., 207: 185-191.

    Kordi, M. N., and O’Leary, M., 2016. Geomorphic classification of coral reefs in the north western Australian shelf., 7: 100-110.

    Pirazzoli, P. A., Arnold, M., Giresse, P., Hsieh, M. L., and Liew, P. M., 1993. Marine deposits of late glacial times exposed by tectonic uplift on the east coast of Taiwan., 110: 1-6.

    Putnam,H. M., Barott, K. L., Ainsworth, T. D., and Gates, R. D., 2017. The vulnerability and resilience of reef-building corals., 27 (11): 528-540.

    Rogers, J. S., Monismith, S. G., Fringer, O. B., Koweek, D. A., and Dunbar, R. B., 2017. A coupled wave-hydrodynamic model of an atoll with high friction: Mechanisms for flow, connectivity, and ecological implications., 110: 66-82.

    Taylor, D. W., 1948.. Wiley, New York, 714pp.

    Woodroffe, C. D., and Webster, J. M., 2014. Coral reefs and sea-level change., 352: 248-267.

    Zhang, Q. Y., Liu, Z. J., Dong, X. S., and Wu, L. P., 2018. Theoretical analysis of coral reef stability in South Sea., 17 (5): 1026-1032.

    Zhang, Q. Y., Luan, M. T., Yuan, F. F., and Jin, D., 2008. Bearing capacity of rectangular footings on inhomogeneous foundation under combined loading., 30: 970-975.

    Zhang, Q. Y., Shi, H. D., Gao, W., and Li, J. F., 2017. Non-hydrostatic numerical simulation of wave propagation deformation on coral reef terrain., 36: 1-9.

    (Oceanic and Coastal Sea Research)

    https://doi.org/10.1007/s11802-022-4846-0

    ISSN 1672-5182, 2022 21 (3): 647-655

    (November 21, 2020;

    February 28, 2021;

    March 16, 2021)

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2022

    Corresponding author. E-mail: zhangqiyi@163.com

    (Edited by Xie Jun)

    国产淫片久久久久久久久| 国产av一区在线观看免费| 国产伦一二天堂av在线观看| 国产精品福利在线免费观看| 久久久精品94久久精品| 国产精品嫩草影院av在线观看| 国产精品伦人一区二区| 国内精品一区二区在线观看| 无遮挡黄片免费观看| 国产一区亚洲一区在线观看| 欧美xxxx黑人xx丫x性爽| 色视频www国产| 亚洲人成网站在线观看播放| 国产男靠女视频免费网站| 久久婷婷人人爽人人干人人爱| 免费不卡的大黄色大毛片视频在线观看 | 搡女人真爽免费视频火全软件 | 少妇裸体淫交视频免费看高清| 日日干狠狠操夜夜爽| av在线天堂中文字幕| 日日干狠狠操夜夜爽| 一本久久中文字幕| 午夜爱爱视频在线播放| 性色avwww在线观看| 一本一本综合久久| 久久精品国产99精品国产亚洲性色| 亚洲图色成人| 亚洲在线自拍视频| av在线老鸭窝| 18+在线观看网站| 久久久久国产网址| 中文亚洲av片在线观看爽| 国产免费一级a男人的天堂| 寂寞人妻少妇视频99o| 久久久久久久久大av| 黄色视频,在线免费观看| 日韩三级伦理在线观看| 国产欧美日韩精品亚洲av| 日本一二三区视频观看| 亚洲人与动物交配视频| 亚洲精华国产精华液的使用体验 | 久久精品综合一区二区三区| 成人av在线播放网站| 国产成人a区在线观看| 熟女电影av网| 国产精品一区二区三区四区久久| 最近的中文字幕免费完整| 日韩一区二区视频免费看| 亚洲成人久久性| 黑人高潮一二区| 俺也久久电影网| 高清毛片免费看| 一个人看的www免费观看视频| 男女下面进入的视频免费午夜| 成人午夜高清在线视频| 直男gayav资源| 国产黄片美女视频| 亚洲一级一片aⅴ在线观看| 97热精品久久久久久| 久久久久久久久久久丰满| 亚洲av二区三区四区| www日本黄色视频网| 深夜精品福利| 搡女人真爽免费视频火全软件 | 人妻制服诱惑在线中文字幕| av天堂中文字幕网| 色哟哟哟哟哟哟| 亚洲成人精品中文字幕电影| 精品一区二区免费观看| 日韩强制内射视频| 欧美xxxx黑人xx丫x性爽| 99热这里只有是精品在线观看| 一本精品99久久精品77| 一进一出抽搐gif免费好疼| 少妇的逼好多水| 简卡轻食公司| 久久久欧美国产精品| 亚洲精品日韩在线中文字幕 | 久久精品夜色国产| 少妇熟女aⅴ在线视频| 日韩中字成人| 春色校园在线视频观看| 午夜视频国产福利| 亚洲精品日韩av片在线观看| 女人十人毛片免费观看3o分钟| 晚上一个人看的免费电影| 日韩成人伦理影院| 男女下面进入的视频免费午夜| 亚洲婷婷狠狠爱综合网| 国产精品电影一区二区三区| 亚洲自拍偷在线| 免费观看人在逋| 干丝袜人妻中文字幕| 久久久久久久久久成人| 看非洲黑人一级黄片| 亚洲七黄色美女视频| 日韩高清综合在线| 老师上课跳d突然被开到最大视频| 色5月婷婷丁香| 国产极品精品免费视频能看的| 国产成年人精品一区二区| 给我免费播放毛片高清在线观看| 少妇的逼水好多| 日产精品乱码卡一卡2卡三| 深爱激情五月婷婷| 高清毛片免费看| 小说图片视频综合网站| 有码 亚洲区| 狂野欧美白嫩少妇大欣赏| 亚洲精华国产精华液的使用体验 | 男女之事视频高清在线观看| 亚洲国产精品国产精品| 日韩欧美 国产精品| 成年女人永久免费观看视频| 成年女人毛片免费观看观看9| 国产探花极品一区二区| 日日撸夜夜添| 亚洲人与动物交配视频| 色综合色国产| 国产男人的电影天堂91| 色视频www国产| 亚洲欧美日韩东京热| 在线观看一区二区三区| 精品一区二区三区视频在线| 国产成人一区二区在线| av免费在线看不卡| 秋霞在线观看毛片| 网址你懂的国产日韩在线| 日韩欧美一区二区三区在线观看| 女人十人毛片免费观看3o分钟| 亚洲图色成人| 男女啪啪激烈高潮av片| 成人午夜高清在线视频| 大又大粗又爽又黄少妇毛片口| 日韩av不卡免费在线播放| 免费大片18禁| 尤物成人国产欧美一区二区三区| 人妻夜夜爽99麻豆av| 成人特级av手机在线观看| 国产69精品久久久久777片| 不卡视频在线观看欧美| 日本精品一区二区三区蜜桃| 国产亚洲欧美98| 久久久久国产精品人妻aⅴ院| 性色avwww在线观看| 亚洲天堂国产精品一区在线| 国产爱豆传媒在线观看| 久久6这里有精品| 国产乱人偷精品视频| 亚洲一区二区三区色噜噜| 成年女人永久免费观看视频| 免费黄网站久久成人精品| 欧美最新免费一区二区三区| 天堂√8在线中文| 久久精品国产亚洲网站| av天堂中文字幕网| 九色成人免费人妻av| 啦啦啦啦在线视频资源| 熟女电影av网| 日韩欧美免费精品| 久久人妻av系列| 久久久久久九九精品二区国产| 嫩草影院精品99| 一卡2卡三卡四卡精品乱码亚洲| 99久久九九国产精品国产免费| 国产精品免费一区二区三区在线| 久久99热6这里只有精品| 国产毛片a区久久久久| av免费在线看不卡| 性欧美人与动物交配| 免费av不卡在线播放| 国产高清视频在线观看网站| 色av中文字幕| 久久热精品热| 一区二区三区四区激情视频 | 国产一级毛片七仙女欲春2| 九九热线精品视视频播放| 欧美成人精品欧美一级黄| 国产亚洲精品久久久久久毛片| 丰满的人妻完整版| 最近的中文字幕免费完整| 日韩精品中文字幕看吧| 男女边吃奶边做爰视频| 国内久久婷婷六月综合欲色啪| 在线天堂最新版资源| 18禁黄网站禁片免费观看直播| 亚洲av成人av| 夜夜爽天天搞| 午夜爱爱视频在线播放| 久久久精品大字幕| 永久网站在线| 丰满人妻一区二区三区视频av| 国模一区二区三区四区视频| 久久精品国产鲁丝片午夜精品| 色综合色国产| 深夜a级毛片| 日韩制服骚丝袜av| 国产精品精品国产色婷婷| 最近手机中文字幕大全| 一进一出抽搐动态| 久久精品国产亚洲av天美| 两性午夜刺激爽爽歪歪视频在线观看| 日韩一本色道免费dvd| 色吧在线观看| 久久午夜福利片| 久久草成人影院| 欧美日韩国产亚洲二区| 日韩一本色道免费dvd| 精品午夜福利在线看| 一本久久中文字幕| 高清毛片免费看| 亚洲最大成人中文| av国产免费在线观看| 狠狠狠狠99中文字幕| 亚洲在线自拍视频| 男女做爰动态图高潮gif福利片| av女优亚洲男人天堂| 亚洲欧美日韩东京热| 亚洲熟妇中文字幕五十中出| 蜜桃久久精品国产亚洲av| 免费观看在线日韩| 一个人免费在线观看电影| 色尼玛亚洲综合影院| 欧美+亚洲+日韩+国产| 免费人成视频x8x8入口观看| 亚洲成av人片在线播放无| 日日撸夜夜添| 校园春色视频在线观看| 亚洲精品在线观看二区| 麻豆国产av国片精品| 成人永久免费在线观看视频| 久久久久久久久久黄片| 欧美另类亚洲清纯唯美| 亚洲美女黄片视频| 久久久色成人| 亚洲人成网站在线播放欧美日韩| 日韩av在线大香蕉| 搡老熟女国产l中国老女人| 色吧在线观看| 亚洲精品乱码久久久v下载方式| 欧美一区二区精品小视频在线| 亚洲av第一区精品v没综合| 青春草视频在线免费观看| 精华霜和精华液先用哪个| 一本一本综合久久| 国产老妇女一区| 我要搜黄色片| 18+在线观看网站| 97超视频在线观看视频| 国产久久久一区二区三区| 亚洲av中文av极速乱| 成人无遮挡网站| 色5月婷婷丁香| 欧美性感艳星| 日韩 亚洲 欧美在线| 成人亚洲欧美一区二区av| 国国产精品蜜臀av免费| 亚洲三级黄色毛片| 久久久久久久久久黄片| 精品人妻一区二区三区麻豆 | 99riav亚洲国产免费| 熟妇人妻久久中文字幕3abv| 国产精品日韩av在线免费观看| 亚洲图色成人| 午夜影院日韩av| 久久久国产成人免费| 婷婷亚洲欧美| 日日干狠狠操夜夜爽| 久久久久久久久中文| 久久久久久久久久黄片| 日韩欧美国产在线观看| 亚洲美女视频黄频| 欧美色欧美亚洲另类二区| 国产精品一区二区性色av| 美女内射精品一级片tv| 老熟妇乱子伦视频在线观看| 两个人视频免费观看高清| av专区在线播放| 男人舔女人下体高潮全视频| 最新在线观看一区二区三区| 成人av一区二区三区在线看| 一本一本综合久久| 夜夜看夜夜爽夜夜摸| 91久久精品国产一区二区成人| 午夜免费男女啪啪视频观看 | 色5月婷婷丁香| 少妇的逼好多水| 中文在线观看免费www的网站| 一级a爱片免费观看的视频| 熟女人妻精品中文字幕| 成人av一区二区三区在线看| 欧美色视频一区免费| 三级经典国产精品| 色播亚洲综合网| 神马国产精品三级电影在线观看| 国产精品美女特级片免费视频播放器| 国产精品一区二区性色av| 一边摸一边抽搐一进一小说| av天堂中文字幕网| 国产黄色小视频在线观看| 国产伦精品一区二区三区四那| 99久久中文字幕三级久久日本| 晚上一个人看的免费电影| 久久欧美精品欧美久久欧美| 1024手机看黄色片| 精品一区二区三区视频在线观看免费| 日本一二三区视频观看| 你懂的网址亚洲精品在线观看 | 亚洲性夜色夜夜综合| 成人综合一区亚洲| 国产亚洲91精品色在线| 成人综合一区亚洲| 欧美精品国产亚洲| 99热这里只有是精品50| 日韩欧美三级三区| 又黄又爽又刺激的免费视频.| 草草在线视频免费看| 女的被弄到高潮叫床怎么办| 亚洲乱码一区二区免费版| 精品人妻熟女av久视频| 免费在线观看影片大全网站| 老司机影院成人| 在线观看66精品国产| 欧美zozozo另类| 亚洲,欧美,日韩| 日韩强制内射视频| 国产亚洲精品av在线| 久久久久久久午夜电影| 国产精品野战在线观看| 国产一区二区亚洲精品在线观看| 天堂av国产一区二区熟女人妻| 亚洲av免费在线观看| 国产av一区在线观看免费| 久久亚洲精品不卡| 别揉我奶头 嗯啊视频| 搡老岳熟女国产| 最新在线观看一区二区三区| 国产男靠女视频免费网站| 少妇人妻精品综合一区二区 | 亚洲成人中文字幕在线播放| 国产精品伦人一区二区| 亚洲精品成人久久久久久| 夜夜夜夜夜久久久久| 人人妻,人人澡人人爽秒播| 一进一出抽搐动态| 欧美又色又爽又黄视频| 色视频www国产| 亚洲真实伦在线观看| 三级毛片av免费| 欧美一区二区精品小视频在线| 国产欧美日韩一区二区精品| ponron亚洲| 欧美色视频一区免费| 国产极品精品免费视频能看的| 高清毛片免费观看视频网站| 精品一区二区三区视频在线观看免费| 久久久色成人| 国内少妇人妻偷人精品xxx网站| 国内精品宾馆在线| 日本黄色视频三级网站网址| 最近在线观看免费完整版| 亚洲电影在线观看av| 欧美成人一区二区免费高清观看| 天天一区二区日本电影三级| 我要搜黄色片| 国产精品国产高清国产av| av视频在线观看入口| 免费看光身美女| 观看美女的网站| 熟妇人妻久久中文字幕3abv| 丝袜美腿在线中文| 一级黄色大片毛片| 久久天躁狠狠躁夜夜2o2o| 欧美激情国产日韩精品一区| 久久6这里有精品| 国产精品一区二区三区四区免费观看 | 直男gayav资源| 久久精品国产亚洲av香蕉五月| 欧美国产日韩亚洲一区| 久久中文看片网| 国产精品一区二区免费欧美| 波多野结衣高清作品| 亚洲三级黄色毛片| 免费高清视频大片| 国产欧美日韩精品一区二区| 中文字幕熟女人妻在线| 不卡视频在线观看欧美| 男女视频在线观看网站免费| 在线a可以看的网站| 18禁在线无遮挡免费观看视频 | 51国产日韩欧美| 男女啪啪激烈高潮av片| 最新在线观看一区二区三区| 精华霜和精华液先用哪个| 成熟少妇高潮喷水视频| 日韩制服骚丝袜av| 淫妇啪啪啪对白视频| 变态另类丝袜制服| 免费人成在线观看视频色| 精品久久久久久久久av| 国产精品不卡视频一区二区| 国产高清有码在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 97热精品久久久久久| h日本视频在线播放| 在线观看美女被高潮喷水网站| 亚洲人成网站在线观看播放| АⅤ资源中文在线天堂| 国产亚洲91精品色在线| 无遮挡黄片免费观看| 最近2019中文字幕mv第一页| 不卡一级毛片| 夜夜爽天天搞| 久久久久免费精品人妻一区二区| 国产精品日韩av在线免费观看| 淫妇啪啪啪对白视频| 亚洲综合色惰| 久久人人爽人人片av| 不卡一级毛片| 一夜夜www| 国产伦精品一区二区三区四那| 国产精品久久久久久精品电影| 免费看av在线观看网站| 99久久久亚洲精品蜜臀av| videossex国产| 中国美白少妇内射xxxbb| 亚洲国产欧洲综合997久久,| 99久久成人亚洲精品观看| 深夜a级毛片| 精品无人区乱码1区二区| 日本黄大片高清| 中国美女看黄片| 亚洲最大成人中文| 国产精品爽爽va在线观看网站| 啦啦啦观看免费观看视频高清| 久久婷婷人人爽人人干人人爱| 老司机午夜福利在线观看视频| 此物有八面人人有两片| 精品欧美国产一区二区三| 国产白丝娇喘喷水9色精品| 美女内射精品一级片tv| 1000部很黄的大片| 夜夜夜夜夜久久久久| 日本与韩国留学比较| 免费在线观看成人毛片| eeuss影院久久| 色尼玛亚洲综合影院| 色综合亚洲欧美另类图片| 国产色婷婷99| 国产精品精品国产色婷婷| 日韩精品中文字幕看吧| 久久久久九九精品影院| 国产乱人视频| 久久草成人影院| 国产成人91sexporn| 国产探花在线观看一区二区| 九九爱精品视频在线观看| 91久久精品电影网| 夜夜夜夜夜久久久久| 一区福利在线观看| 人妻丰满熟妇av一区二区三区| 国产一区二区三区在线臀色熟女| 欧美激情久久久久久爽电影| 亚洲四区av| 午夜福利在线在线| 内地一区二区视频在线| 国产一区亚洲一区在线观看| 久久久精品大字幕| 深爱激情五月婷婷| 亚洲成人av在线免费| 精品欧美国产一区二区三| 亚洲激情五月婷婷啪啪| 最新在线观看一区二区三区| 国产精品久久久久久精品电影| 青春草视频在线免费观看| 欧美性感艳星| 欧美日韩综合久久久久久| 午夜爱爱视频在线播放| 亚洲国产精品sss在线观看| 99久久成人亚洲精品观看| 99在线人妻在线中文字幕| 伦精品一区二区三区| 一区二区三区免费毛片| 91久久精品电影网| 亚洲欧美精品综合久久99| 丰满人妻一区二区三区视频av| 精品久久久噜噜| 我要看日韩黄色一级片| 亚洲专区国产一区二区| 国产黄色视频一区二区在线观看 | 亚洲av五月六月丁香网| 久久久国产成人免费| 波多野结衣高清无吗| 一级av片app| 国产精品一及| 亚洲成av人片在线播放无| 国产精品久久久久久av不卡| 欧美一区二区精品小视频在线| 蜜桃亚洲精品一区二区三区| 97超视频在线观看视频| 91狼人影院| 久久午夜福利片| 中文字幕av成人在线电影| 亚洲精品456在线播放app| 在线免费观看的www视频| 在线播放无遮挡| 久久天躁狠狠躁夜夜2o2o| 精品人妻偷拍中文字幕| 国产v大片淫在线免费观看| 日韩三级伦理在线观看| 欧美人与善性xxx| 亚洲va在线va天堂va国产| 国产精品久久久久久亚洲av鲁大| 别揉我奶头 嗯啊视频| 女生性感内裤真人,穿戴方法视频| 搞女人的毛片| 亚洲最大成人手机在线| 2021天堂中文幕一二区在线观| 天堂影院成人在线观看| 噜噜噜噜噜久久久久久91| 一个人看的www免费观看视频| 亚洲欧美中文字幕日韩二区| 少妇丰满av| 成人一区二区视频在线观看| 日日干狠狠操夜夜爽| 国产精品一区二区性色av| 蜜桃亚洲精品一区二区三区| 国产欧美日韩精品亚洲av| 免费看光身美女| 在现免费观看毛片| 国产一区二区三区av在线 | 我的老师免费观看完整版| 最近的中文字幕免费完整| 久久这里只有精品中国| 免费观看精品视频网站| 99国产精品一区二区蜜桃av| ponron亚洲| 精品久久久久久成人av| 丰满乱子伦码专区| 亚洲经典国产精华液单| 精品无人区乱码1区二区| 精品一区二区免费观看| 中文资源天堂在线| 国产精华一区二区三区| 搡老岳熟女国产| 精品国内亚洲2022精品成人| 69av精品久久久久久| 一进一出抽搐gif免费好疼| 校园春色视频在线观看| 成人特级av手机在线观看| av福利片在线观看| a级毛色黄片| 久久久久久久久大av| 久久久久免费精品人妻一区二区| 久久国内精品自在自线图片| 欧美日韩在线观看h| 成人美女网站在线观看视频| 搡老妇女老女人老熟妇| 成人毛片a级毛片在线播放| 亚洲久久久久久中文字幕| 色综合站精品国产| 99视频精品全部免费 在线| aaaaa片日本免费| 亚洲av.av天堂| 亚洲国产日韩欧美精品在线观看| 99久久精品国产国产毛片| 亚洲成人中文字幕在线播放| 国产欧美日韩精品一区二区| 亚洲高清免费不卡视频| 久久久午夜欧美精品| 午夜久久久久精精品| 少妇裸体淫交视频免费看高清| 三级国产精品欧美在线观看| 中文字幕免费在线视频6| 九九热线精品视视频播放| 亚洲人成网站在线播放欧美日韩| 久久精品国产99精品国产亚洲性色| 国产av不卡久久| 欧美不卡视频在线免费观看| 美女 人体艺术 gogo| 美女黄网站色视频| 亚洲,欧美,日韩| 在线免费十八禁| 精品一区二区免费观看| 成人永久免费在线观看视频| 别揉我奶头~嗯~啊~动态视频| 热99在线观看视频| 日韩成人伦理影院| 精品欧美国产一区二区三| 国内揄拍国产精品人妻在线| 在线播放无遮挡| 男人和女人高潮做爰伦理| 久久精品久久久久久噜噜老黄 | 国产精品电影一区二区三区| 国产精品久久视频播放| 无遮挡黄片免费观看| 可以在线观看毛片的网站| 亚洲精品久久国产高清桃花| 日本色播在线视频| 精品久久久久久久人妻蜜臀av| 性色avwww在线观看| 搡老岳熟女国产| 小蜜桃在线观看免费完整版高清| 春色校园在线视频观看| 一a级毛片在线观看| 91在线观看av| 麻豆国产av国片精品| 日韩欧美一区二区三区在线观看| 亚洲,欧美,日韩| 亚洲成人久久爱视频| 国产精品国产三级国产av玫瑰| 久久久久国产精品人妻aⅴ院| 免费在线观看成人毛片| 十八禁网站免费在线| 国产白丝娇喘喷水9色精品|