• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Syntheses,Crystal Structures and Properties of Coordination Polymers Based on 4,4′-Bis(imidazol-l-yl)-phenyl Sulphone or 4,4′-Bis(imidazol-l-yl)diphenyl Thioether

    2022-06-14 09:03:52XUHanPANZhaoRuiJIANGRong
    無機化學(xué)學(xué)報 2022年6期

    XU HanPAN Zhao-RuiJIANG Rong

    (1School of Chemistry and Chemical Engineering,Key Laboratory of Inorganic Functional Materials,Huangshan University,Huangshan,Anhui 245041,China)

    (2School of Environmental Science,Nanjing Xiaozhuang University,Nanjing 211171,China)

    Abstract:Three new coordination polymers based on V-shaped ligands,namely{[Cd(BIDPS)(PA)(H2O)]·CH3OH}n(1),{[Zn(BIDPS)(p-bdc)]·H2O}n(2)and[Mn(BIDPT)(NBA)]n(3)(BIDPS=4,4′-bis(imidazol-l-yl)-phenyl sulphone,H2PA=pamoic acid,p-H2bdc=p-phthalic acid,BIDPT=4,4′-bis(imidazol-l-yl)diphenyl thioether,H2NBA=4,4′-azanediyl dibenzoic acid)have been hydrothermally synthesized and structurally characterized.Compounds 1 and 2 feature an undulate 2D layer structure.Compound 1 exhibits a rare 2D→3D inclined polycatenated structure,while compound 2 is further joined by intermolecular hydrogen bondings to form a 3D network.Compound 3 displays a 3-connected hexagonal layer hcb topology(honeycomb network)and is further assembled into a 3D network via C—H…π interaction.Compounds 1 and 2 showed excellent water stability and fluorescence,which were further confirmed as bifunctional fluorescent sensors for Fe3+and Cr2O72-with high selectivity,sensitivity,and anti-interference ability in the water.The mechanisms of fluorescence quenching were also studied in detail.CCDC:1919698,1;2085947,2;2117923,3.

    Keywords:coordination polymer;crystal structure;fluorescence;detection

    With the rapid growth of industrialization,environmental and water contamination problems have received growing attention because huge volumes of effluents containing high concentrations of heavy metal ions/anions have been discharged.Fe3+ion plays a vital role in humans or other living organisms due to its crucial role in muscle function,hemoglobin formation,and brain function[1-2].The deficiency or overload of Fe3+can cause serious physiological disorders such as skin diseases,insomnia,hepatic cirrhosis,and declining immunity[3-4].Similarly,Cr(Ⅵ)species are widely used in agriculture and industry.Long-term exposure to Cr(Ⅵ)can cause adverse health problems including hereditary genetic defects,lung cancer,and enzyme systems of the human body even at low concentrations[5-6].So Cr(Ⅵ)species have been listed as priority pollutants by the United States Environmental Protection Agency(EPA)[7].Therefore,rapid detection of Fe3+and Cr(Ⅵ)ions in a water system is essential for human health,food security,and the environment.Metal-organic frameworks(MOFs)have attracted considerable attention over the last couple of decades due to their potential application in gas adsorption and separation,catalysis,chemosensor,and so forth[8-12].Among them,chemists have been devoted to MOFs for chemical-sensing applications for their high sensibility,selectivity,quick response,and operability[13-14].Solution-phase detection of hazardous chemicals such as sensing of small molecules,cations,and anions by luminescent coordination polymers involvingd10metal ions/lanthanide cations has been well documented in the literature[15-16].Luminescent MOFs have been successfully applied in the sensing field toward inorganic ions or small organic molecules.

    In this work,three new coordination polymers{[Cd(BIDPS)(PA)(H2O)]·CH3OH}n(1),{[Zn(BIDPS)(p-bdc)]·H2O}n(2)and[Mn(BIDPT)(NBA)]n(3)(BIDPS=4,4′-bis(imidazol-l-yl)-phenyl sulphone,H2PA=pamoic acid,p-H2bdc=p-phthalic acid,BIDPT=4,4′-bis(imidazol-l-yl)diphenyl thioether,H2NBA=4,4′-azanediyl dibenzoic acid)were synthesized.Their crystal structures,infrared(IR),thermal stability,and powder X-ray diffraction(PXRD)patterns have been investigated.Fluorescence testing results demonstrated that compounds 1 and 2 had excellent stability and fluorescence in water.So,we used compounds 1 and 2 to detect the representative pollutants of Fe3+and Cr2O72-in water,and the detection limits were all outstanding.The quenching mechanisms of compounds 1 and 2 toward Fe3+and Cr2O72-have also been studied in detail.

    1 Experimental

    1.1 Materials and measurement

    All the chemicals except BIDPS and BIDPT were commercially purchased and used without further purification.BIDPS and BIDPT were synthesized according to the literature method[17].IR absorption spectra were recorded on a Nicolet(Impact 410)spectrometer as KBr pellets in a range of 400-4 000 cm-1.Elemental analyses(C,H,N)were carried out with a Perkin-Elmer model 240C elemental analyzer.Thermogravimetric(TG)analyses were conducted by using a Perkin-Elmer thermal analyzer.PXRD data were conducted on a Bruker D8 Advance X-ray diffractometer at room temperature with CuKαradiation(λ=0.154 18 nm,U=40 kV,I=150 mA,2θ=5°-50°).Fluorescence spectra were conducted on a SHIMAZU VF-320 X-ray fluorescence spectrophotometer at room temperature.UV-Vis absorption spectra were conducted on a UV-T9 spectrophotometer.

    1.2 Synthesis of compound 1

    A mixture of Cd(NO3)2·4H2O(30.8 mg,0.1 mmol),H2PA(38.8 mg,0.1mmol),and BIDPS(37.2 mg,0.1 mmol)was dissolved in 6 mL of DMF/CH3OH/H2O(2∶2∶2,V/V).The final mixture was placed in a Parr Teflonlined stainless-steel vessel(15 mL)and heated to 95℃for 72 h.The light yellow,block-shaped crystals were generated after cooling to room temperature naturally.The crystals were filtered off,washed with methanol,and dried in air(48.6 mg,54% yield based on BIDPS).Elemental analysis Calcd.for C42H34CdN4O10S(%):C,56.10;H,3.81;N,6.23.Found(%):C,56.05;H,3.78;N,6.26.IR(KBr,cm-1):3 406(m),3 189(m),1 646(m),1 597(s),1 406(s),1 296(s),1 234(m),1 183(w),862(m),816(m),683(m),564(w).

    1.3 Synthesis of compound 2

    A mixture of Zn(NO3)2·6H2O(29.8 mg,0.1 mmol),p-H2bdc(16.6 mg,0.1 mmol),and BIDPS(37.2 mg,0.1 mmol)was dissolved in 6 mL of DMF/H2O(4∶2,V/V).The final mixture was placed in a Parr Teflon-lined stainless-steel vessel(15 mL)under autogenous pressure and heated at 105℃for 72 h.Colorless prism crystals were obtained.The crystals were filtered off,washed with methanol,and dried in air(32.4 mg,36% yield based on BIDPS).Elemental analysis Calcd.for C26H20ZnN4O7S(%):C,52.23;H,3.37;N,9.37.Found(%):C,52.18;H,3.41;N,9.33.IR(KBr,cm-1):3 457(s),3 136(s),1 608(s),1 452(vs),1 257(m),1 089(m),1 024(w),839(w),730(w),557(w).

    1.4 Synthesis of compound 3

    A mixture of MnCl2(12.5 mg,0.1 mmol),H2NBA(25.6 mg,0.1 mmol),and BIDPA(34.0 mg,0.1 mmol)was dissolved in 5 mL of DMF/CH3CN/H2O(2∶2∶1,V/V),sealed in 15 mL Teflon-lined stainless-steel vessel and heated at 95℃for 72 h,then cooled to room temperature slowly.Brown block crystals were filtered off,washed with methanol,and dried in air(43.2 mg,45% yield based on BIDPT).Elemental analysis Calcd.for C32H23MnN5O4S(%):C,61.15;H,3.69;N,11.14.Found(%):C,61.12;H,3.42;N,11.17.IR(KBr,cm-1):3 436(s),3 097(s),1 594(s),1 507(s),1 473(s),1 415(m),1 302(w),1 126(w),832(m),739(m),722(m),545(w),522(w),505(w).

    1.5 Crystal structure determination

    Single-crystal X-ray diffraction measurements of compounds 1-3 were performed on a Bruker SMART CCD diffractometer with MoKαradiation(λ=0.071 073 nm).The structures were solved by direct methods and refined by full-matrix least-squares onF2using the SHELXL software package.All non-hydrogen atoms were refined anisotropically.The hydrogen atoms except those of water and methanol molecules were generated geometrically.The crystal parameters,data collection,and structure refinements for compounds 1-3 are listed in Table 1.Selected bond lengths and angles are summarized in Table 2.Hydrogen bond parameters of compound 2 are listed in Table 3.

    CCDC:1919698,1;2085947,2;2117923,3.

    2 Results and discussion

    2.1 Crystal structure of{[Cd(BIDPS)(PA)(H2O)]·CH3OH}n(1)

    Compound 1 crystallizes in the orthorhombic system withP212121space group.The single-crystal X-ray diffraction reveals that compound 1 consists of one Cd2+ion,one PA2-anion,one BIDPS molecule,one coordinated water molecule,and one crystalline methanol molecule.In the crystal lattice,the Cd(Ⅱ)ions have distorted octahedral geometry by bonding to O8 of the water molecule,three carboxyl oxygen atoms(O5,O6,and O3)of the PA2-anions,and two nitrogen atoms(N1 and N3#1)from two BIDPS ligands(Fig.1).The Cd1—O bond lengths are in a range of 0.221 8(5)-0.241 4(5)nm and those of Cd1—N bonds are from 0.229 9(6)to 0.230 9(6)nm,and the coordination angles around Cd ion vary from 55.34(2)°to 166.62(2)°,all of which are within normal ranges[18-19].

    Fig.1 Coordination environment of Cd(Ⅱ)in compound 1

    The carboxyl and hydroxyl groups of flexible PA2-adopt atransconformation so as to minimize the steric hindrance.We found that the twisted PA2-anions bridged the Cd2+ions to form a 1D infinite left-handed helical chain of[Cd(PA)]nwith a pitch of 2.562 1 nm.It is noteworthy that the V-shaped BIDPS linked two neighboring Cd2+cations to form another left-helical chain[Cd(BIDPS)]n2n+.As shown in Fig.2,the two lefthelical chains are further interconnected into a(4,4)undulated grid coordination polymer layer.The undulated grid has dimensions of 1.519 nm×1.686 nm with angles of 65.64°and 78.91°(defined by Cd…Cd and Cd…Cd…Cd angles).Topologically,the Cd(Ⅱ) cations can be regarded as 4-connected nodes,PA2-and BIDPS ligands as linkers.So,compound 1 can be represented as asqlnetwork with the point symbol of{44·62}.The packing of the layers forms two sets of layers oriented in different directions(Fig.3a).That is to say,these two sets of undulated layers catenate to each other in a parallel-parallel arrangement to form a 2D+2D→3D inclined polycatenation structure(Fig.3b).

    Fig.2 Two-dimensional(4,4)network structure of compound 1,consting of1D[Cd(BIDPS)]n2n+and[Cd(PA)]nhelical chains

    Fig.3 (a)Two sets of 2D undulated layers in a parallel-parallel arrangement of compound 1;(b)Schematic view of the sql topology,indicating a 2D+2D→3D inclined polycatenation structure of compound 1

    2.2 Crystal structure of{[Zn(BIDPS)(p-bdc)]·H2O}n(2)

    Compound 2 crystallizes in the triclinic system withPspace group.Its asymmetric unit comprises one independent Zn(Ⅱ)ion,one BIDPS molecule,onep-bdc2-anion,and a lattice water molecule.Zn(Ⅱ)is four-coordinated with coordination geometry of distorted tetrahedron,which is completed by two oxygen atoms(O2,O4)afforded by two monodentate carboxylates,and two nitrogen atoms(N1,N3#1)from two BIDPS ligands(Fig.4).The lengths of the Zn—O bonds are 0.193 8(2)and 0.195 6(2)nm,and Zn—N bond distances are 0.198 8(3)and 0.200 6(3)nm,which are within the normal values for the reported Zn complex[20-21].Notably,the twisted V-shaped BIDPS links two neighboring Zn2+ions to form right-and left-helical[Zn(BIDPS)]n2n+chains with a pitch of 1.488 9(1)nm along thec-axis,which are further interconnected with thep-bdc2-ligands into a 2D layer paralleled to theacplane(Fig.5).The adjacent 2D layers are connected together by hydrogen bonds interactions among O8—H8A…O5 and O8—H8B…O2 with O8…O5 and O8…O2 distances of 0.280 8(4)and 0.295 8(3)nm,respectively,generating a 3D supramolecular network(Fig.6).The same main ligands and metal salt Cd(NO3)2·4H2O as well as similar reaction conditions were adopted to synthesize another complex[Zn(L)2(p-bdc)]nwith the same 2D layer structure[22],while the 2D layers can′t form a 3D network for the absence of hydrogen bonds.

    Fig.4 Coordination environment of the Zn(Ⅱ)in compound 2

    Fig.5 Two-dimensional(4,4)network structure of compound 2,consisting of right-and left-helical[Zn(BIDPS)]n2n+chains

    Fig.6 Three-dimensional supramolecular structure of compound 2 assembled through hydrogen bonds(black dashed lines)

    2.3 Crystal structure of[Mn(BIDPT)(NBA)]n(3)

    Compound 3 crystallizes in the monoclinicP21/cspace group and the coordination environment around Mn(Ⅱ)is shown in Fig.7.In the asymmetric unit,the Mn1 cation and its symmetry-related Mn1#1 are fivecoordinated,which are assumed an identical pseudo pentagonal bipyramid.The Mn1 cation is coordinated by N1 and N4#2 atoms from two BIDPT molecules in the axial positions(Mn—N0.2259(2)and0.2280(2)nm)and O1#1,O2,and O4#2 atoms from the carboxylate groups of threeunique NBA2-anions(Mn—O0.2104(2)-0.214 8(2)nm)and all in the reasonable range[23-24].Two deprotonated carboxyl groups of each NBA2-adopt different coordination modes (monodentate and bridging-bidentate)connecting two neighboring Mn(Ⅱ)cations to form an Mn2(CO2)2dinuclear cluster with an Mn…Mn distance of 0.423 0 nm.The NBA2-anion bridges Mn(Ⅱ)atoms through carboxylate groups,forming an infinite[Mn(NBA)]n2n+helical chain along theb-axis,with a pitch of 1.514 6 nm.Interestingly,there exist both left-and right-handed helices in the structure(Fig.8).The helical chains with opposite chirality are united alternately and connected by sharing Mn2(CO2)2units to compose(4,4)-net(the NBA2-anions are considered as connectors and Mn2(CO2)2units as four-connected nodes).

    Fig.7 Coordination environment of the Mn(Ⅱ)in compound 3

    Fig.8 Two-dimensional layer composed of Mn2(CO2)2and NBA2-of compound 3,showing the Mn2(CO2)2 clusters and the left-and right-[Mn(NBA)]n2n+helical chains with opposite chirality

    More interest to us is that the imidazole group of BIDPT ligands links Mn(Ⅱ)cations to generate another type of[Mn(BIDPT)]nhelical chain with opposite chirality,which has the same pitch as[Mn(NBA)]n2n+helical chain(Fig.9).The left-and right-handed helices are hump alternately up and down from the(4,4)-net formed by Mn2(CO2)2and NBA2-.A topology analysis reveals that the binuclear manganese can be regarded as a network node,so the 2D coordination polymer can be described as a 3-connectedhcbnetwork with the point symbol of{63}(Fig.10).Noteworthy of mentioning here is that the edge-to-face C—H…πinteractions(0.262 nm)in an…ABAB… fashion between C atom(C9)and phenyl ring of NBA2-anions(C26-C31,Cg1)produce a 3D supramolecular network.The intramolecular C—H…π(0.312 nm)interaction between the carbon atom on BIDPT ligands and phenyl from the NBA2-ligands(C12 and carbon atoms C20-C25(Cg2))also existed in the compound(Fig.11).These C—H…πinteractions maybe increase the rigidity and make the molecule stable in the crystal.

    Fig.9 Left-and right-handed[Mn(BIDPT)]nhelical chains of compound 3

    Fig.10 Schematic view of hcb topology of compound 3

    Fig.11 Three-dimensional supramolecular framework and the C—H…π interactions of compound 3

    2.4 PXRD and thermal stability analyses

    PXRD analyses of compounds 1-3 were performed in order to check the phase purity.As shown in Fig.S4-S6(Supporting information),the experimental PXRD patterns were consistent with the simulated ones,demonstrating the phase purity of the samples.Furthermore,PXRD patterns of compounds 1 and 2 immersed in acidic and basic solutions(pH=4-10)for 2 h were obtained and the framework was maintained,indicating that compounds 1 and 2 remain stable in aqueous solution and can be candidates for contaminant sensing.

    The thermal analyses curves of compounds 1-3 were performed under a nitrogen atmosphere.For compound 1,a gradual weight loss of 5.68%(Calcd.5.56%)from 132 to 155℃is due to the removal of the coordinated H2O molecule and lattice CH3OH molecule.The framework of compound 1 decomposed at 238℃,and the final residues were CdO(Obsd.14.27%,Calcd.14.38%,Fig.S7).For compound 2,along with heating,the weight loss of 3.13% from 136℃can be ascribed to the removal of the guest water molecule(Calcd.3.01%),then the framework gradually collapsed with a residual mass of ZnO(Obsd.13.70%,Calcd.13.61%,Fig.S8).Compound 3 started to lose its ligands at 85℃as a result of thermal decomposition.The final residual was presumed to be MnO(Obsd.11.42%,Calcd.11.31%,Fig.S9).

    2.5 Fluorescence property

    Coordination compounds,especially withd10metal centers,have been investigated for fluorescence properties because of their potential applications as luminescent materials[25-26].Free H2PA ligands showed the emission at 474 nm(λex=434 nm),which may be attributed to theπ→π*transition[27-28].The solid fluorescence spectra of BIDPS,compounds 1 and 2 were measured at room temperature(Fig.S10).The free BIDPS ligand showed fluorescence with the emission at 437 nm(λex=372 nm).The emission peaks of compounds 1(λem=418 nm,λex=366 nm)and 2(λem=410 nm,λex=363 nm)were blue-shift compared with the free H2PA and BIDPS ligands.This can be ascribed to ligand-to-ligand charge transfer(LLCT)transitions within the short distance between adjacent ligands[29].

    Taking into consideration ofthe fluorescent response and the good water stability of compounds 1 and 2,as well as the industrial pollutants in wastewater,we selected the aqueous solutions of 1 and 2 to explore the fluorescent sensing activities toward a series of cations and anions.

    2.6 Detection of Fe3+and Cr2O72-

    The finely grounded samples of compounds 1 and 2(2 mg)were dispersed in 2 mL water and then subjected to 30 min of ultrasonication to disperse completely.Upon excitation at 363 nm for compound 1 and 360 nm for compound 2,the water suspension of compounds 1 and 2 emitted at 411 and 402 nm.The emission maximum displayed a little blue shift compared with its solid-state emission peak due to the solvent effect.The fluorescence sensing ability of 1 and 2 to varied metal cations was conducted with the gradual addition of an aqueous solution of nitrate salts M(NO3)x(Mx+=K+,Na+,Ca2+,Zn2+,Ba2+,Ni2+,Cu2+,Co2+,Cd2+,Fe3+)with a concentration of 5 mmol·L-1.Among the mentioned above cations,Fe3+showed a higher quenching effect than other cations.The fluorescent intensity of compound 1 decreased to 7.12% by gradual addition of 90 μL Fe3+solutions,but the other cations exhibited little effect on the fluorescence under the same test concentration.As shown in Fig.12a,the titration curves showed that the emission intensities of compound 1 gradually decreased with the increasing concentration of Fe3+.The fluorescence quenching efficiency of Fe3+can be analyzed by the Stern-Volmer(SV)equation:I0/I=1+KSVc,whereKSVis the quenching effect coefficient(L·mol-1),cis the concentration of Fe3+,andI0andIare the emission intensities before and after adding Fe3+,respectively.The SV plot for Fe3+was nearly linear at low concentration.However,the curve deviated from linearity and bent upward with the increasing concentration,which can be explained by self-absorption or an energy-transfer process[30].As shown in Fig.12b,theKSVwas calculated to be 1.18×104L·mol-1based on the linear part.The limit of detection(LOD)was calculated according to the equation reported in the literature[31].LOD of compound 1 was calculated to be 4.04 μmol·L-1.Similar to compound 1,compound 2 can selectively detect Fe3+.The fluorescent intensity of compound 2 decreased gradually with an increasing amount of Fe3+solution.And the emission of compound 2 was quenched by 91.2% after the addition of 90 μL Fe3+(Fig.12c).Furthermore,theKSVand LOD values for compound 2 were estimated to be 9.58×103L·mol-1(Fig.12d)and 5.38 μmol·L-1,respectively.TheKSVand LOD values for compounds 1 and 2 were comparable to the reported MOF-based fluorescent sensor toward Fe3+[32-33].Competitive experiments showed that the fluorescent intensities of compounds 1 and 2 suspensions in 1 mmol·L-1aqueous solution of individual cations(excluding Fe3+)did not cause significant quenching,while the addition of Fe3+(1 mmol·L-1)showed almost complete quenching(Fig.13a and 13b),demonstrating the excellent selectivity of compounds 1 and 2 toward Fe3+even in the presence of other competitive metal cations.

    Fig.12 (a)Fluorescence spectra and(b)SV plot for compound 1 with gradual addition of Fe3+in water;(c)Fluorescence spectra and(d)SV plot for compound 2 with gradual addition of Fe3+in water

    The sensing result of compounds 1 and 2 toward metal ions prompted us to further examine the detection of anions in an aqueous solution,which has relevance to environmental and security issues.The same procedure was conducted to examine the fluorescence sensing of inorganic anions.Various aqueous solutions containing 5 mmol·L-1NaxA(Ax-=F-,Cl-,Br-,NO2-,NO3-,IO3-,CO32-,SO42-,C2O42-,Cr2O72-)were added into the suspension of compounds 1 and 2.The gradual addition of 90 μL anions caused the intensity changes to a different extent.Strikingly,Cr2O72-afforded a noteworthy turn-off quenching effect with a quenching efficiency of 91.6% for compound 1 and90.2% for compound 2,respectively.While the other anions showed slight influence on the emission intensities.The titration curves showed that the fluorescent intensity of compounds 1 and 2 both decreased with the increasing concentration of Cr2O72-(Fig.14a and 14c).TheKSVand LOD were calculated to be 7.64×103L·mol-1,5.06 μmol·L-1for 1,and 6.89×103L·mol-1,6.15 μmol·L-1for 2(Fig.14b and 14d).Interestingly,the observedKSVand LOD values for compounds 1 and 2 are comparable to some previously reported fluorescent sensors for Cr2O72-[34-35].Interference by otheranions in the detection of Cr2O72-was studied by competitive experiments,which were performed in the same procedure as Fe3+,and the sensing response of compounds 1 and 2 toward Cr2O72-was unaffected even in the presence of added anions(Fig.15a and 15b).All these experiments results indicate that compounds 1 and 2 are highly selective and sensitive for Fe3+and Cr2O72-detection.

    Fig.14 (a)Fluorescence spectra and(b)SV plot for compound 1 with gradual addition of Cr2O72-in water;(c)Fluorescence spectra and(d)SV plot for compound 2 with gradual addition of Cr2O72-in water

    Fig.15 Quenching efficiency of compounds(a)1 and(b)2 in the presence of individual anions and mixed anions containing CrO2-27

    2.7 Mechanism of fluorescence quenching

    To deeply understand the selectivity of compounds 1 and 2 toward Fe3+and Cr2O72-,we studied their fluorescence quenching mechanism.The UV-Vis absorption spectra of Fe3+(260-400 nm)and CrO2-27(250-450 nm)had a large overlap with the excitation spectrum of compounds 1(λmax=363 nm)and 2(λmax=360 nm),while other ions have weak absorption in this wavelength range.It is very likely that Fe3+and CrO2-27in the solution can compete with compounds 1 and 2 for absorbing the excitation light and hinder the absorption of compounds 1 and 2,resulting in a decrease,or almost full quenching,of the fluorescent intensities.Furthermore,a small overlap between the emission spectra of compounds 1 and 2 with the tail end of the absorption spectra of Fe3+and Cr2O72-over 343 and 363 nm were observed,which can assist the resonance energy transfer from compounds 1 or 2(donor)to Fe3+and Cr2O72-(acceptor),and contributing a part to the quenching effect(Fig.16a and 16b).As shown in Fig.S11 and S12,PXRD patterns showed that the structural integrity of compounds 1and 2 could be well-retained before and after sensing experiments(immersed in Fe3+and Cr2O72-aqueous solution for 2 h),so fluorescence attenuation was not caused by the decomposition of compounds 1 and 2.Then we compared the fluorescence of compounds 1 and 2 with H2PA and BIDPS ligands in an aqueous solution.And H2PA,p-H2bdc,and BIDPS had no fluorescence,while compounds 1 and 2 had obvious fluorescence.All the above results confirm that the fluorescence quenching is caused by compounds 1 and 2,not the H2PA,p-H2bdc,and BIDPS ligands or the decomposition of crystalline structure.The quenching mechanism is consistent with other previously proposed mechanisms[36].

    Fig.16 UV-Vis absorption spectra of the 1 mmol·L-1aqueous solutions of(a)cations and(b)anions along with the emission of compounds 1 and 2

    3 Conclusions

    In summary,three new compounds have been solvothermally synthesized based on 4,4′-bis(imidazol-lyl)-phenyl sulphone,pamoic acid,4,4′-bis(imidazol-lyl)diphenyl thioether,andp-phthalic acid,4,4′-azanediyl dibenzoic acid.The crystal structure analysis result shows that compounds 1-3 have 3D networks.Meanwhile,compounds 1 and 2 show highly selective detecting for Fe3+and Cr2O72-.Furthermore,the fluorescence quenching mechanisms for compounds 1 and 2 were studied by the UV-Vis absorption and PXRD techniques.This work indicates that compounds 1 and 2 have the potential for fluorescence detection.

    Supporting information is available at http://www.wjhxxb.cn

    av欧美777| 免费看a级黄色片| 啦啦啦免费观看视频1| 国产三级黄色录像| 制服诱惑二区| 成人18禁高潮啪啪吃奶动态图| 超碰成人久久| 亚洲少妇的诱惑av| 99国产综合亚洲精品| 69精品国产乱码久久久| 国产成人免费无遮挡视频| 黄网站色视频无遮挡免费观看| 亚洲第一av免费看| 国产精品日韩av在线免费观看 | 国产蜜桃级精品一区二区三区| 一边摸一边抽搐一进一出视频| 高清欧美精品videossex| 热99国产精品久久久久久7| 午夜福利影视在线免费观看| 久久国产亚洲av麻豆专区| 免费在线观看日本一区| 在线国产一区二区在线| 亚洲精品在线美女| 岛国视频午夜一区免费看| 视频在线观看一区二区三区| 久久人妻av系列| 国产精品1区2区在线观看.| 99re在线观看精品视频| 免费女性裸体啪啪无遮挡网站| 日本vs欧美在线观看视频| 黄色毛片三级朝国网站| av中文乱码字幕在线| 午夜福利免费观看在线| 麻豆国产av国片精品| 国产精品一区二区免费欧美| 在线观看www视频免费| 欧美午夜高清在线| 国产av又大| xxx96com| 三上悠亚av全集在线观看| 亚洲久久久国产精品| 黄片大片在线免费观看| 亚洲 欧美一区二区三区| 身体一侧抽搐| 成人亚洲精品一区在线观看| 三级毛片av免费| 一级毛片精品| 国产男靠女视频免费网站| 一个人免费在线观看的高清视频| 欧美黄色淫秽网站| 美女国产高潮福利片在线看| 一进一出好大好爽视频| 黄片大片在线免费观看| 麻豆一二三区av精品| 午夜视频精品福利| 成在线人永久免费视频| 久久精品国产99精品国产亚洲性色 | 麻豆av在线久日| 多毛熟女@视频| 欧美日韩精品网址| 亚洲av美国av| 如日韩欧美国产精品一区二区三区| 丰满迷人的少妇在线观看| 国产精品亚洲一级av第二区| 80岁老熟妇乱子伦牲交| 午夜福利欧美成人| 日韩欧美在线二视频| 久久这里只有精品19| 国产成人av教育| 两人在一起打扑克的视频| 高清av免费在线| 欧美最黄视频在线播放免费 | 欧美午夜高清在线| 国产精品偷伦视频观看了| 亚洲欧洲精品一区二区精品久久久| 亚洲五月色婷婷综合| 欧美午夜高清在线| 日韩有码中文字幕| 免费在线观看视频国产中文字幕亚洲| 亚洲精品一卡2卡三卡4卡5卡| 777久久人妻少妇嫩草av网站| 神马国产精品三级电影在线观看 | 老司机深夜福利视频在线观看| 久久久国产欧美日韩av| 老鸭窝网址在线观看| 黑人猛操日本美女一级片| 九色亚洲精品在线播放| 免费av毛片视频| 男人的好看免费观看在线视频 | 中文字幕人妻丝袜制服| 亚洲色图 男人天堂 中文字幕| 欧美亚洲日本最大视频资源| 日日摸夜夜添夜夜添小说| 亚洲精品国产色婷婷电影| 黄色a级毛片大全视频| 国产精品电影一区二区三区| 精品久久久精品久久久| 欧美日韩av久久| 亚洲国产欧美日韩在线播放| 欧美av亚洲av综合av国产av| 亚洲人成电影观看| 精品卡一卡二卡四卡免费| 91成人精品电影| 国产亚洲精品久久久久5区| 婷婷丁香在线五月| 国产视频一区二区在线看| 午夜福利,免费看| 久9热在线精品视频| 黄色毛片三级朝国网站| 精品国产一区二区三区四区第35| 日韩人妻精品一区2区三区| 国内久久婷婷六月综合欲色啪| 又紧又爽又黄一区二区| 久久久久久久精品吃奶| a级毛片在线看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 69精品国产乱码久久久| 青草久久国产| 欧美精品一区二区免费开放| 亚洲成a人片在线一区二区| 欧美久久黑人一区二区| 高清欧美精品videossex| 亚洲精品在线观看二区| 国产精品久久视频播放| 久久 成人 亚洲| 日本五十路高清| 亚洲精品中文字幕一二三四区| 狂野欧美激情性xxxx| 国产乱人伦免费视频| 亚洲第一青青草原| 夜夜夜夜夜久久久久| 欧美日韩瑟瑟在线播放| 老汉色av国产亚洲站长工具| 国产成人一区二区三区免费视频网站| 亚洲色图av天堂| 亚洲第一青青草原| 在线av久久热| 黄网站色视频无遮挡免费观看| 国产午夜精品久久久久久| 免费在线观看亚洲国产| 国产精品一区二区精品视频观看| 美女高潮到喷水免费观看| 国产亚洲欧美98| 又黄又爽又免费观看的视频| 在线天堂中文资源库| 亚洲免费av在线视频| 国产精品99久久99久久久不卡| 日本精品一区二区三区蜜桃| 国产成人一区二区三区免费视频网站| 亚洲精品一卡2卡三卡4卡5卡| 国产精品二区激情视频| 亚洲人成伊人成综合网2020| 国产精品99久久99久久久不卡| 国产精品一区二区三区四区久久 | 一区福利在线观看| 国产成人一区二区三区免费视频网站| 精品福利观看| 国产一区二区三区在线臀色熟女 | 日本精品一区二区三区蜜桃| 91麻豆av在线| 18禁观看日本| 日韩大码丰满熟妇| 一本综合久久免费| 99国产精品免费福利视频| 免费在线观看亚洲国产| 日韩中文字幕欧美一区二区| 性色av乱码一区二区三区2| 欧美一级毛片孕妇| 人妻丰满熟妇av一区二区三区| 天天添夜夜摸| 老汉色av国产亚洲站长工具| 日韩av在线大香蕉| 成人影院久久| 色哟哟哟哟哟哟| 琪琪午夜伦伦电影理论片6080| 69精品国产乱码久久久| 欧美大码av| 超碰成人久久| 欧美亚洲日本最大视频资源| 成人特级黄色片久久久久久久| 动漫黄色视频在线观看| 巨乳人妻的诱惑在线观看| 天堂动漫精品| 人成视频在线观看免费观看| 99久久国产精品久久久| 国产精品一区二区在线不卡| 操美女的视频在线观看| 亚洲人成伊人成综合网2020| 窝窝影院91人妻| 12—13女人毛片做爰片一| 久久中文看片网| e午夜精品久久久久久久| 免费一级毛片在线播放高清视频 | 亚洲男人的天堂狠狠| 日日爽夜夜爽网站| 999精品在线视频| 国产精品爽爽va在线观看网站 | 日韩大码丰满熟妇| 久久精品亚洲熟妇少妇任你| 免费在线观看完整版高清| x7x7x7水蜜桃| 久久久久久免费高清国产稀缺| 久久久精品欧美日韩精品| 亚洲男人的天堂狠狠| 国产欧美日韩一区二区三区在线| 亚洲av第一区精品v没综合| 两个人看的免费小视频| 日本 av在线| 黄色片一级片一级黄色片| 国产精品99久久99久久久不卡| 久久久久久久午夜电影 | 天堂√8在线中文| 自拍欧美九色日韩亚洲蝌蚪91| 热re99久久精品国产66热6| 五月开心婷婷网| 如日韩欧美国产精品一区二区三区| 制服人妻中文乱码| 久久久久久免费高清国产稀缺| 日韩欧美免费精品| 高潮久久久久久久久久久不卡| 在线视频色国产色| 国产国语露脸激情在线看| 欧美精品亚洲一区二区| 午夜亚洲福利在线播放| 久久国产亚洲av麻豆专区| 欧美黑人精品巨大| 久久久久国产一级毛片高清牌| 丝袜在线中文字幕| av超薄肉色丝袜交足视频| 中文字幕高清在线视频| 长腿黑丝高跟| 成人亚洲精品av一区二区 | 一级片'在线观看视频| 12—13女人毛片做爰片一| 亚洲aⅴ乱码一区二区在线播放 | 中文欧美无线码| 在线十欧美十亚洲十日本专区| 一二三四社区在线视频社区8| 可以免费在线观看a视频的电影网站| 亚洲精品中文字幕在线视频| 高潮久久久久久久久久久不卡| 久久精品亚洲熟妇少妇任你| 午夜影院日韩av| 99精国产麻豆久久婷婷| 欧美日韩福利视频一区二区| 在线国产一区二区在线| 天堂√8在线中文| 午夜成年电影在线免费观看| 啦啦啦免费观看视频1| 免费在线观看黄色视频的| av免费在线观看网站| 嫩草影院精品99| 黄片播放在线免费| 在线永久观看黄色视频| 精品午夜福利视频在线观看一区| 新久久久久国产一级毛片| 欧美日韩视频精品一区| 女同久久另类99精品国产91| 亚洲aⅴ乱码一区二区在线播放 | 国产精品成人在线| 国产精品亚洲一级av第二区| 日韩av在线大香蕉| 午夜91福利影院| 久久中文看片网| 别揉我奶头~嗯~啊~动态视频| 久久久久久久午夜电影 | 欧美精品亚洲一区二区| 亚洲色图av天堂| 亚洲美女黄片视频| 99精国产麻豆久久婷婷| 亚洲欧美激情综合另类| 在线观看免费高清a一片| 日本黄色视频三级网站网址| 欧美午夜高清在线| 免费看十八禁软件| 91大片在线观看| 午夜两性在线视频| 91精品三级在线观看| 久久精品亚洲av国产电影网| 精品久久久久久久久久免费视频 | 一区二区日韩欧美中文字幕| 18美女黄网站色大片免费观看| 国产激情欧美一区二区| 日本精品一区二区三区蜜桃| 欧美久久黑人一区二区| 欧美老熟妇乱子伦牲交| 夫妻午夜视频| 国产又色又爽无遮挡免费看| 精品午夜福利视频在线观看一区| 在线视频色国产色| 国产精品亚洲av一区麻豆| 欧美一区二区精品小视频在线| 午夜福利在线观看吧| 欧美人与性动交α欧美软件| 欧美激情高清一区二区三区| 亚洲男人天堂网一区| 人妻久久中文字幕网| 久久久久亚洲av毛片大全| 后天国语完整版免费观看| 侵犯人妻中文字幕一二三四区| 免费女性裸体啪啪无遮挡网站| 男男h啪啪无遮挡| 99国产精品免费福利视频| 国产人伦9x9x在线观看| 免费av毛片视频| 校园春色视频在线观看| 亚洲第一av免费看| 91麻豆av在线| 国产成人系列免费观看| 国产单亲对白刺激| 国产在线观看jvid| 精品欧美一区二区三区在线| 国产精品久久久av美女十八| 中出人妻视频一区二区| 久久国产精品男人的天堂亚洲| 两人在一起打扑克的视频| 好男人电影高清在线观看| 欧美成狂野欧美在线观看| 一二三四在线观看免费中文在| 一夜夜www| 国产熟女xx| 午夜福利免费观看在线| 亚洲国产欧美网| 国产精品九九99| 黄色a级毛片大全视频| 国产一卡二卡三卡精品| 制服人妻中文乱码| 美女高潮喷水抽搐中文字幕| 午夜免费鲁丝| 日韩三级视频一区二区三区| 亚洲 欧美一区二区三区| 日本精品一区二区三区蜜桃| 免费观看精品视频网站| 88av欧美| 国产99久久九九免费精品| a级片在线免费高清观看视频| 夫妻午夜视频| 免费av毛片视频| 丰满人妻熟妇乱又伦精品不卡| 国产又色又爽无遮挡免费看| 精品日产1卡2卡| 搡老岳熟女国产| 首页视频小说图片口味搜索| 亚洲欧美日韩无卡精品| 老司机福利观看| 在线视频色国产色| 成熟少妇高潮喷水视频| 久久精品aⅴ一区二区三区四区| 成熟少妇高潮喷水视频| 日本 av在线| 亚洲精品国产一区二区精华液| 巨乳人妻的诱惑在线观看| 国产成人欧美在线观看| 国产又爽黄色视频| 国产成人啪精品午夜网站| 一a级毛片在线观看| 99久久综合精品五月天人人| 男人舔女人下体高潮全视频| 国产精品 欧美亚洲| 久久亚洲精品不卡| 国产片内射在线| 国产精品国产av在线观看| 丰满人妻熟妇乱又伦精品不卡| 两个人免费观看高清视频| 欧美另类亚洲清纯唯美| av在线播放免费不卡| 高清av免费在线| 男女下面进入的视频免费午夜 | 母亲3免费完整高清在线观看| 激情在线观看视频在线高清| 免费看十八禁软件| 久久久久久免费高清国产稀缺| 久久性视频一级片| 女人被躁到高潮嗷嗷叫费观| 久久久精品国产亚洲av高清涩受| 免费看a级黄色片| 夜夜夜夜夜久久久久| 国产亚洲精品第一综合不卡| 精品午夜福利视频在线观看一区| 久热这里只有精品99| 国产精品永久免费网站| 好看av亚洲va欧美ⅴa在| 19禁男女啪啪无遮挡网站| 一级毛片精品| av在线天堂中文字幕 | 亚洲一区二区三区不卡视频| 免费女性裸体啪啪无遮挡网站| 亚洲自偷自拍图片 自拍| 国产伦人伦偷精品视频| 亚洲一区中文字幕在线| 夜夜爽天天搞| 女同久久另类99精品国产91| 欧美色视频一区免费| 欧美一区二区精品小视频在线| 亚洲人成电影免费在线| 免费看a级黄色片| 女人被狂操c到高潮| 巨乳人妻的诱惑在线观看| 校园春色视频在线观看| 欧美午夜高清在线| 久久青草综合色| 国产精品日韩av在线免费观看 | 新久久久久国产一级毛片| 在线av久久热| 久久精品aⅴ一区二区三区四区| 国产精品永久免费网站| 天堂动漫精品| 色播在线永久视频| 亚洲七黄色美女视频| 美女国产高潮福利片在线看| www.www免费av| 999久久久精品免费观看国产| 国产熟女午夜一区二区三区| 婷婷精品国产亚洲av在线| 国产区一区二久久| 男女下面进入的视频免费午夜 | 亚洲五月婷婷丁香| 妹子高潮喷水视频| 在线观看免费午夜福利视频| 无遮挡黄片免费观看| 中文字幕色久视频| 少妇被粗大的猛进出69影院| 亚洲精品久久午夜乱码| 欧美激情极品国产一区二区三区| 韩国av一区二区三区四区| 精品免费久久久久久久清纯| 一级黄色大片毛片| 中文字幕人妻熟女乱码| 色在线成人网| 男女高潮啪啪啪动态图| 99在线人妻在线中文字幕| 丝袜美足系列| 男女下面插进去视频免费观看| a级毛片黄视频| 久久精品91无色码中文字幕| 亚洲精品在线美女| 精品久久久久久电影网| 啦啦啦免费观看视频1| 黄色丝袜av网址大全| www.999成人在线观看| 中文字幕高清在线视频| 在线看a的网站| 在线观看66精品国产| 午夜精品在线福利| 久久欧美精品欧美久久欧美| 欧美日韩亚洲国产一区二区在线观看| av视频免费观看在线观看| √禁漫天堂资源中文www| 亚洲,欧美精品.| 久久青草综合色| 成在线人永久免费视频| 久久精品亚洲熟妇少妇任你| 高清毛片免费观看视频网站 | 亚洲五月婷婷丁香| 97碰自拍视频| 校园春色视频在线观看| 亚洲久久久国产精品| 国产成人精品久久二区二区免费| 欧美成人性av电影在线观看| 激情视频va一区二区三区| 国产成人av教育| 巨乳人妻的诱惑在线观看| 搡老乐熟女国产| 黄色视频不卡| 欧美精品啪啪一区二区三区| 91国产中文字幕| 黑人巨大精品欧美一区二区蜜桃| 欧美另类亚洲清纯唯美| 国产欧美日韩精品亚洲av| 欧美日韩国产mv在线观看视频| 亚洲aⅴ乱码一区二区在线播放 | 成年女人毛片免费观看观看9| 两个人免费观看高清视频| xxxhd国产人妻xxx| 国产av精品麻豆| 老熟妇乱子伦视频在线观看| 青草久久国产| 色在线成人网| 成人18禁高潮啪啪吃奶动态图| 五月开心婷婷网| 在线十欧美十亚洲十日本专区| 久久久久九九精品影院| 婷婷精品国产亚洲av在线| 欧美中文综合在线视频| 亚洲熟妇熟女久久| 免费日韩欧美在线观看| 成年人黄色毛片网站| 免费看a级黄色片| 免费av中文字幕在线| 黄色视频不卡| 色老头精品视频在线观看| 成人手机av| 免费看a级黄色片| 丰满人妻熟妇乱又伦精品不卡| 啦啦啦 在线观看视频| 欧美人与性动交α欧美软件| 在线观看免费日韩欧美大片| 午夜免费成人在线视频| 正在播放国产对白刺激| 久久精品人人爽人人爽视色| 成年版毛片免费区| 欧美人与性动交α欧美精品济南到| 精品久久久久久,| 成人18禁高潮啪啪吃奶动态图| 亚洲人成77777在线视频| 9热在线视频观看99| 香蕉国产在线看| 久久人人精品亚洲av| 搡老乐熟女国产| 精品久久久久久久毛片微露脸| 97人妻天天添夜夜摸| 欧美日韩一级在线毛片| 在线观看一区二区三区| 亚洲 欧美一区二区三区| 亚洲精品中文字幕一二三四区| 热re99久久精品国产66热6| 夜夜夜夜夜久久久久| 91麻豆精品激情在线观看国产 | 国产精品 国内视频| 日本免费一区二区三区高清不卡 | 免费日韩欧美在线观看| 国产欧美日韩一区二区精品| 美女大奶头视频| 国产精品一区二区免费欧美| 欧美日韩乱码在线| 久久久久久免费高清国产稀缺| 成人国语在线视频| 亚洲,欧美精品.| 午夜福利影视在线免费观看| 两性夫妻黄色片| 国产成人系列免费观看| 一级毛片女人18水好多| 51午夜福利影视在线观看| 亚洲精品中文字幕在线视频| 91麻豆av在线| 黄色视频不卡| 午夜激情av网站| 成人黄色视频免费在线看| 国产又爽黄色视频| 啦啦啦在线免费观看视频4| 高清黄色对白视频在线免费看| 每晚都被弄得嗷嗷叫到高潮| 久久久国产一区二区| 国产一区二区三区综合在线观看| 美女国产高潮福利片在线看| 国产极品粉嫩免费观看在线| 午夜福利一区二区在线看| 午夜日韩欧美国产| 99riav亚洲国产免费| 国产野战对白在线观看| 淫妇啪啪啪对白视频| 男女之事视频高清在线观看| 悠悠久久av| 精品日产1卡2卡| 国产精品九九99| 亚洲欧美精品综合一区二区三区| aaaaa片日本免费| 亚洲视频免费观看视频| 欧美乱色亚洲激情| 国产熟女午夜一区二区三区| 国产高清激情床上av| 中文字幕高清在线视频| a在线观看视频网站| 亚洲成人精品中文字幕电影 | 男女午夜视频在线观看| 精品日产1卡2卡| 18禁国产床啪视频网站| 精品久久久久久电影网| 亚洲欧美日韩高清在线视频| 天堂动漫精品| 成人精品一区二区免费| 一夜夜www| 日韩中文字幕欧美一区二区| 69精品国产乱码久久久| 亚洲精品在线观看二区| 婷婷丁香在线五月| 国产蜜桃级精品一区二区三区| 最新美女视频免费是黄的| 免费av毛片视频| 啦啦啦在线免费观看视频4| 国产精品自产拍在线观看55亚洲| 老司机亚洲免费影院| 1024视频免费在线观看| 午夜视频精品福利| 色婷婷av一区二区三区视频| 啦啦啦免费观看视频1| 高清在线国产一区| 十八禁网站免费在线| 热re99久久国产66热| 亚洲av日韩精品久久久久久密| 麻豆一二三区av精品| 免费搜索国产男女视频| 国产一区二区三区视频了| 免费不卡黄色视频| 99re在线观看精品视频| 夫妻午夜视频| 黄色视频不卡| 欧美精品啪啪一区二区三区| 又大又爽又粗| 悠悠久久av| 亚洲免费av在线视频| 另类亚洲欧美激情| 看片在线看免费视频| 18禁美女被吸乳视频| 伊人久久大香线蕉亚洲五| 国内久久婷婷六月综合欲色啪| 香蕉丝袜av| 日本免费一区二区三区高清不卡 | 亚洲av成人一区二区三| 亚洲色图 男人天堂 中文字幕| 日韩欧美一区视频在线观看| 国产成+人综合+亚洲专区| 在线观看日韩欧美| 18禁国产床啪视频网站| 色老头精品视频在线观看|