• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Organometallic Gels Based on Metal Ion Exchange for the Detection of Antibiotics and Nitroaromatic Compounds

    2022-06-14 09:03:50YUANYiZhenYANGYunShangZHAOYuChenZHANGYingPeng

    YUAN Yi-Zhen YANG Yun-Shang ZHAO Yu-Chen ZHANG Ying-Peng

    (School of Petrochemical Engineering,Lanzhou University of Technology,Lanzhou 730050,China)

    Abstract:Rapid detection of organic compounds in wastewater has always been an important issue.Fluorescent Tb-based metal-organic gel MOG(Tb)was prepared by the metal ion exchange method.The studies have shown that trace amounts of furazolidone(FZD),metronidazole(MDZ),2,4-dinitrotoluene(2,4-DNT),and 4-nitrophenol(4-NP)could effectively quench the fluorescence emission of MOG(Tb)even in the presence of other analytes,demonstrating that the MOG(Tb)xerogels could effectively detect antibiotics(FZD,MDZ)and nitroaromatic compounds(2,4-DNT,4-NP).However,penicillin G potassium salt(PCLP)could enhance the fluorescence of MOG(Tb).In addition,the recyclability and water stability tests of the MOG(Tb)xerogels were also carried out,and satisfactory results were obtained.

    Keywords:metal-organic gel;antibiotics;nitroaromatic compounds;fluorescence quenching

    0 Introduction

    There are many methods to detect antibiotics and organic explosives,including electrochemical methods[20],infrared spectroscopy[19],and liquid chromatography[21].However,these methods are limited by complex operations and costs[22].Therefore,there is an urgent need to explore a simple and effective strategy for antibiotic detection[23].Fluorescence quenching-based detection methods[24-25]are a very promising method[28]with the advantages of high efficiency[26],low cost[27],and short reaction time.

    Although metal-organic frameworks(MOFs)are often used to detect a variety of substances[29],metalorganic gels(MOGs)are very rare as a new type of material[30].Compared to MOFs,MOGs have a smaller density,lower crystallinity,and larger surface area[31-34],which would be very beneficial for the detection of antibiotics and nitroaromatic compounds (NACs)[35-36].However,the development of MOGs has only just begun and much work[38]remains to be done on MOGs due to uncertainties such as their gelation process and structure[37].

    In this work,inspired by the metal replacement method,Al-based MOG(MOG(Al))achieved irreversible partial metal ion exchange.With this post-treatment,the Al ion-based gel was converted into a metal-organic gel containing rare-earth ions(MOG(Tb)).Unexpectedly,due to its intense fluorescence and excellent water stability,it showed high selectivity and sensitive detection of antibiotics and NACs.Moreover,the method here is very convenient and feasible for the large-scale synthesis of MOG agglomerates.This will open up a new avenue for the application of MOG materials.

    1 Experimental

    1.1 Materials and general methods

    According to the reference[39],4,4,4-tricarboxylic acid triphenylamine(H3TCA)was synthesized by Friedel-Crafts acylation reaction(Scheme 1).All other chemical reagents were directly purchased through merchants,and the purity was sufficient,no further processing was required.The powder X-ray diffraction(PXRD)pattern was gained on a Rigaku Ultima Ⅳ polycrystalline powder X-ray diffractometer,where the radiation source was CuKαtarget,λ=0.154 06 nm,U=40 kV,I=30 mA,scanning range 2θ=5°-90°,scanning speed was 5(°)·min-1.The UV-Vis spectrophotometer model was UV-2700,from Varin,USA.The fluorescence spectrophotometer was F-7000 from Varin,USA.The thermogravimetric(TG)curve was recorded in a Q5000IR thermal analyzer,and the heating rate was 10 ℃ ·min-1in nitrogen.The nitrogen adsorptiondesorption was carried out in Mike ASAP2020 HD.

    Scheme 1 Synthetic route of H3TCA

    1.2 Synthesis of MOG(Tb)

    MOG(Al)was prepared by hydrothermal synthesis.Al(NO3)3·9H2O(0.375 1 g,1 mmol)and H3TCA(0.565 5 g,1.5 mmol)were put into 20 mL ethanol and stirred well,then the solution was transferred to a steel autoclave lined with tetrafluoroethylene,heated at 140℃for 8 h.After cooling to room temperature,the ocher gel was obtained,which was washed three times with ethanol.For the synthesis of homogeneous MOG(Al)gel,the molar ratio between the metal source and the ligand was 2∶3.

    The xerogel of MOG(Al)was soaked in an ethanol solution containing Tb(NO3)3·6H2O(30 mL,3 mmol)for 4 d to obtain MOG(Tb).After soaking,the gel was washed with ethanol to remove excess Tb3+ions,centrifuged to remove the supernatant,and then dried at 70℃for 12 h to obtain a xerogel of MOG(Tb).

    1.3 Water stability test

    To test the stability of MOG(Tb)in water,the powder sample of the xerogel was soaked in water with different pH values(2,3,5,7,9,11,and 12)for 48 h,after drying all samples were tested by PXRD.

    Vor der Kasernevor dem grossen Torstand eine Laterneund steht sie noch davor…Vor der Kasernevor dem grossen Torstand eine Laterneund steht sie noch davor…

    1.4 Fluorescence experiment

    The ultraviolet absorption spectrum of MOG(Tb)was measured,then the solution was diluted so that the absorbance was between 0.06 and 0.08.The excitation wavelength was 355 nm,and the slit width was 8.5 nm for excitation and emission.The absorbance at the fluorescence emission wavelength and the absorption maximum wavelength in a range of 355-540 nm were measured.

    Using the fluorescence quantum yield of quinine sulfate in 0.1 mol·L-1sulfuric acid solution as the benchmark(Φr=0.58),the fluorescence quantum yields of MOG(Al)and MOG(Tb)were calculated by the following formula:

    wherenis the refractive index of the solution,Ais the absorbance of the compound at the excitation wavelength,r represents the reference compound,Iis the fluorescence intensity of the compound,g represents the gel compound sample,andΦis the fluorescence quantum yield of the sample.

    To effectively detect antibiotics and NACs,4 mg of the MOG(Tb)xerogel powder was put into a 15 mL aqueous solution of antibiotics and organic explosives(c=0.4 mmol·L-1)at room temperature.All the mixtures were sonicated for 50 min to become stable suspensions.

    Selective detection was then performed:(1)4 mg of MOG(Tb)xerogel powder was added to furazolidone(FZD)and metronidazole(MDZ)aqueous solutions(0.4 mmol·L-1),respectively,and other antibiotics were added;(2)4 mg of MOG(Tb)xerogel powder was put into an aqueous solution (0.4 mmol·L-1)of 2,4-dinitrotoluene(2,4-DNT)and 4-nitrophenol(4-NP),and other NACs were added.All the mixtures were also sonicated for 40 min.

    1.5 Cytotoxicity test

    To examine the biocompatibility of MOG(Tb),the MTS(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulopheny)-2H-tetraolium,inner salt)method was used to detect the toxicity of MOG(Tb)to pig kidney cells(PK cells)and baby hamster Syrian kidney cells(BHK cells).First,PK and BHK cells were cultured using Dulbecco′s modified Eagle medium(DMEM)containing 10% fetal bovine serum(FBS)in a humid air environment with a temperature of 37℃and a 5% volume fraction of CO2.Then DMEM was used to prepare the dried sample into a homogeneous solution,and the solutions with concentrations of 10,20,100,150,200 μg·mL-1were added to the cells,making six copies,and leaving a set of blanks as a comparison.After the cells were incubated for 24 h,10 μL of MTS solution was added to the cells and incubated for 3 h.A microplate spectrophotometer was used to measure the optical density(OD)value of each well at a wavelength of 490 nm.

    2 Results and discussion

    2.1 Characterization of MOG(Al)and MOG(Tb)

    Compared with conventional MOFs,MOGs have lower crystallinity and only a few broad peaks as seen byobservation of PXRD.Similar characterization results have also been reported for xerogels.After metal ion exchange,the PXRD pattern of MOG(Tb)was almost identical to that of MOG(Al)(Fig.1a).Nitrogen adsorption-desorption tests were then performed to observe the porosity of MOG(Tb).As shown in Fig.1b,it was aⅠ-type isotherm,which was similar to the Langmuir-type adsorption isotherm,reflecting the micropore filling phenomenon,and indicating that MOG(Tb)has a certain microporous structure,and the saturated adsorption value is equal to the micropore.By NLDFT(nonlocal density functional theory)analy-sis of nitrogen adsorption-desorption isotherms,the pore size distribution of MOG(Tb)was about 1.1 nm,and the BET(Brunauer-Emmett-Teller)specific surface area was about 168 m2·g-1.

    Fig.1 (a)PXRD patterns of MOG(Al)and MOG(Tb);(b)N2adsorption-desorption isotherms of MOG(Tb)

    As can be seen from the TG curves(Fig.S1,Supporting information),MOG(Al)and MOG(Tb)have similar thermal stability.There were two stages of weight loss from room temperature to 700℃for MOG(Al).The first weight loss from room temperature to 300℃is probably due to the solvent removal,removal of structural water,and volatilization of small molecular components.The subsequent weight loss can be attributed to the thermal effects of organic ligand decomposition and burning of the functional group.For MOG(Tb),the weight of the sample slowly decreased with increasing temperature.The weight of the sample decreased rapidly until 400℃.After the unstable groups in the sample have been decomposed,the weight of the sample did not change when the temperature was above 700℃,indicating that the organic components of the sample are completely oxidized to carbon dioxide and other relatively stable small molecular gaseous products.The difference in thermal stability of the two MOG compounds may be due to the fact that MOG(Al)is formed at high temperatures,whereas MOG(Tb)only undergoes ion exchange at room temperature,although the central ion has a larger radius and can be accommodated at the periphery.The more ligands there are,the larger the ionic radius of Tb and the less attractive it is to the ligand,which in turn will be the case and the coordination number will decrease.

    The substitution effect of the metal ions Al3+and Tb3+was verified by ICP-OES(inductively coupled plasma-optical emission spectroscopy)tests.Table S1 summarizes the ion concentrations of Al3+and Tb3+in the xerogels before and after 3,7,and 15 d of replacement.The concentration of Al3+decreased as the replacement period increased,while the concentration of Tb3+gradually increased,reaching a peak at 7 d of replacement.The results indicate that the ions in the gels have been successfully exchanged.The substitution of Al3+may be due to the stronger interaction between the Tb3+and the main group of the polycarboxylic acid.

    2.2 Fluorescence characteristics,stability,and cytotoxicity of MOG(Tb)

    After ion exchange,we can see that the product has obvious Tb3+characteristic emission(Fig.2).The obvious characteristic peak of MOG(Tb)at 418 nm is due to the5D3→7F5transition of Tb3+.The characteristic peak at 538 nm can be attributed to the5D4→7F5transition.Compared with the weak fluorescence emission of H3TCA at 425 nm,due to the charge transfer between the ligand and the metal,the coordination between Tb3+and H3TCA makes the xerogel have stronger fluorescence at 418 and 538 nm(Fig.S2).The fluo-rescence quantum yields were calculated,andΦMOG(Al)=0.261,ΦMOG(Tb)=0.273.It can be seen that Tb3+as the central ion has a better luminescence effect than Al3+,and the energy transfer efficiency with the ligand is also higher.

    Fig.2 (a)Emission and(b)excitation spectra of MOG(Tb)

    In addition,the framework and structure of MOG(Tb)remained intact after soaking in pH=2,3,5,7,9,11,and 12 for 48 h(Fig.3),and it can be seen from Fig.S3 that the N2adsorption-desorption isotherms did not change significantly after the xerogel was immersed in the aqueous solutions with pH=2 and 12.To further examine the stability of the structure,MOG(Tb)was sonicated in aqueous solutions with different pH values,and then Al3+and Tb3+in the aqueous solutions were detected by titration and chromogenic methods,respectively.NaOH solution was added dropwise to the aqueous solutions with pH=2,3,5,7,9,11,and 12 after ultrasonic treatment.It can be seen that there was a small amount of white precipitate in the aqueous solution with pH=2 and 12,but there was no precipitation in other solutions(Fig.S4).It can be concluded that a small amount of Al3+was released into the aqueous solution with pH=2 and 12.Then,ammonium oxalate was used to detect the free Tb3+content in aqueous solutions with different pH values after ultrasonication.0.05 mL of the aqueous solution was pipetted with a micropipette and placed on filter paper.After drying with hot air,saturated ammonium oxalate solution was sprayed.If there are Tb ions,it will show yellow-green fluorescence under ultraviolet light.We can see that at pH=2,a few Tb3+ions were released in an aqueous solution(Fig.S5).

    Fig.3 PXRD patterns of MOG(Tb)in aqueous solutions with pH=2,3,5,7,9,11,and 12

    As shown in Fig.S6,after 24 h of incubation,the survival rate of PK cells was still greater than 76%,and the survival rate of BHK cells was greater than 83%.These results indicate that MOG(Tb)has relatively low cytotoxicity.

    2.3 Detection of antibiotics and NACs

    Due to the superior water stability and excellent fluorescence emission of the xerogel,we were able to use MOG(Tb)to detect some antibiotics.We used nine antibiotics for the assay,namely sulfamethazine(SMZ),sulfadiazine(SDZ),FZD,MDZ,dimetridazole(DTZ),ornidazole(ODZ),chloramphenicol(CAP),florfenicol(FFC),and penicillin G potassium salt(PCLP).As can be seen in Fig.4,MDZ and FZD had the highest quenching efficiencies of 91.2% and 94.7%,respectively.Interestingly,PCLP enhanced the fluorescence of MOG(Tb).The quenching efficiencies of DTZ and ODZ were average.The quenching efficiencies of the other types of antibiotics were weaker.To quenching intensity of these antibiotics were ranked in the order of FZD>MDZ>ODZ>DTZ>CAP>FFC>SDZ>SMZ>PCLP.PXRD testing of the antibiotic-tested MOG(Tb)xerogel powder in turn showed that the structure and skeleton of the xerogel remained unchanged significantly(Fig.S4).Compared to Fig.2a,the leftward shift of the peak near 420 nm in Fig.4a may be due to the up-conversion process.When MOG(Tb)is mixed with the antibiotic solution,the luminescent center can absorb more photon energy and then produce emitted photons of higher energy than each excited photon.The absorption process for each photon is a binary primitive reaction due to the presence of an excited intermediate state.The“new peak”at 740 nm was the emission spectrum,which is due to the transition of electrons to different excited-state energy levels,absorbing different wavelengths of energy and producing different absorption bands,resulting in fluorescence of a certain wavelength.

    Fig.4 (a)Emission spectra and(b)fluorescence intensity at 538 nm of MOG(Tb)in various antibiotic aqueous solutions

    To more clearly explain the fluorescence quenching effect of MOG(Tb)on MDZ and FZD,we tested the change of xerogel′s fluorescence intensity as the antibiotic concentration gradually increased where each concentration gradient was increased by adding a 2 μL antibiotic solution(Fig.5a and 5c).The quenching effect can be rationally calculated using the Stern-Volmer(SV)equation:I0/I=1+KSVcQ,whereI0andIare the fluorescence intensity of MOG(Tb)without adding and adding a certain concentration of the antibiotic solution,respectively,cQis the concentration of the antibiotic aqueous solution,andKSVis the quenching constant.KSVcan be obtained by plotting 1/(I0-I)against 1/cQand performing a linear fit.

    For MOG(Tb),the quenching constants of FZD and MDZ were 7.76×104and 8.03×104L·mol-1,respectively(Fig.5b and 5d).The values of the limit of detection(LOD=3σ/KSV)for FZD and MDZ were 0.668 and 1.27 μmol·L-1(Table S2).The quenching constant of FZD and MDZ to MOG(Tb)was also higher than some reported MOF materials(Table 1),which is sufficient to prove its excellent quenching ability.

    Fig.5 Emission spectra of MOG(Tb)with the gradually increasing(a)FZD and(c)MDZ concentrations;Linear fitting of SV equation for the fluorescence of MOG(Tb)quenched by(b)FZD and(d)MDZ in aqueous solution

    Table 1 Summary of queching constants(KSV)of related materials for FZD,MDZ,2,4-DNT,and 4-NP

    The selective detection ability of the xerogel for antibiotics is also very important in practical applications.To demonstrate the selective detection of FZD and MDZ by MOG(Tb),we performed control experiments.First,the fluorescence intensity of MOG(Tb)dispersed in water was tested,and then other antibiotics(30 μL)and the corresponding FZD and MDZ aqueous solutions(30 μL)were added to observe the change in fluorescence intensity.Fluorescence quenching occurred immediately after the addition of selected antibiotics FZD and MDZ to MOG(Tb)aqueous solutions containing other antibiotics,as shown in Fig.6,with negligible effects of other antibiotics.The above experiments demonstrate the high selectivity and sensitivity of MOG(Tb)for FZD and MDZ.Furthermore,we also found that the drop wise addition of PCLP solution to MOG(Tb)solution resulted in enhanced fluorescence(Fig.4a).Although the specific fluorescence enhancement mechanism is unclear,we believe that the improved fluorescence properties can be attributed to the interaction of the carboxyl group of H3TCA in MOG(Tb)with PCLP,resulting in the aggregationinduced emission(AIE)effect of the triphenylamine central structure.

    Many researchers use unsaturated fatty acids for the detection of NACs,however,this method must be performed in organic solvents.It is more troublesome in practical application.Therefore,MOG(Tb)xerogels with excellent water stability and high-intensity fluorescence are particularly suitable for the detection of NACs.We selected 2,4-DNT,2,4,6-trinitrophenol(TNP),nitrobenzene(NB),4-NP,phenol(PHL),benzoic acid(BC),chlorobenzene(CB),toluene(MB),2,3-dimethyl-2,3-dinitrobutane(DMNB)to study their effects on the fluorescence of MOG(Tb)in water.As shown in Fig.7,the quenching effect of 4-NP on the fluorescence of MOG(Tb)was the strongest,followed by 2,4-DNT.The quenching efficiencies of 2,4-DNT and 4-NP were 92.5% and 95.7%,respectively,while those of the other analytes were less than ideal.Their quenching efficiencies can be ordered as 4-NP>2,4-DNT>NB>DMNB>MB>BC>TNP>CB>PHL.Moreover,after being immersed in an aqueous solution of antibiotics or small organic molecules for 24 h,the framework and structure of MOG(Tb)were still closely arranged with almost no change(Fig.S7 and S8).

    Fig.7 (a)Fluorescence spectra and(b)fluorescence intensity at 538 nm of MOG(Tb)in aqueous solutions of various small organic molecules

    Fluorescence quenching titration(Fig.8a and 8c)and SV linear fitting(Fig.8b and 8d)were performed for 2,4-DNT and 4-NP,respectively.TheKSVfor 2.4-DNT and 4-NP were 2.65×104and 8.58×104L·mol-1,respectively,and the LOD values for 2,4-DNT and 4-NP were 1.49 and 0.253 μmol·L-1,respectively(Table S2).TheKSVvalues of MOG(Tb)for 2.4-DNT and 4-NP were higher or comparable to those of previously reported MOF materials,which demonstrates its good detecting ability(Table 1).In addition,we also analyzed and discussed the effect of other small organic molecules(TNP,DMNB,BC,MB,NB,CB,PHL)on the detection of 2,4-DNT and 4-NP by MOG(Tb).The fluorescence from MOG(Tb)was almost completely quenched when 2,4-DNT and 4-NP(30 μL)were added to an aqueous MOG(Tb)solution containing other analytes(Fig.9).Negligible effects of other small organic molecules on the analysis can be demonstrated,demonstrating the excellent selectivity and sensitivity of the xerogel for 2,4-DNT and 4-NP.

    Fig.8 Emission spectra of the fluorescence quenching titration of MOG(Tb)by(a)2,4-DNT and(c)4-NP;SV linear fitting for the fluorescence of MOG(Tb)quenched by(b)2,4-DNT and(d)4-NP in aqueous solution

    Fig.9 Fluorescence intensity of MOG(Tb)at 538 nm in the presence of(a)2,4-DNT/(b)4-NP and other small organic molecules

    After detection,the xerogel could be washed with ethanol,filtered,and dried,and it still had a reproduc-ible fluorescence quenching effect for detecting the analytes(Fig.10).After 7 cycles of quenching experiments,the framework and structure of MOG(Tb)were still intact(Fig.S9).It could also be seen from the SEM image of MOG(Tb)that the structures were closely arranged(Fig.S10),proving that MOG(Tb)has good recyclability and stability.

    Fig.10 Reproducible fluorescence quenching effect for MOG(Tb)detecting the analytes

    2.4 Mechanism of fluorescence quenching

    We further explored the mechanism of fluorescence quenching MOG(Tb).UV-Vis spectra of the nine antibiotic analytes mentioned above and the nine NACs and non-NACs were examined(Fig.S11 and S12).It can be seen that the absorption bands of FZD and MDZ overlapped most of the excitation band of MOG(Tb)compared to the other antibiotic analytes,which may lead to lower absorption of the ligands of MOG(Tb).This implies that the stronger quenching of MOG(Tb)by FZD and MDZ is due to an energy transfer process between the ligands and metal ions[50].For NACs and non-NACs,2,4-DNT and 4-NP had the highest recombination and the mechanism can be inferred that the fluorescence quenching of MOG(Tb)by FZD,MDZ,2,4-DNT,and 4-NP can be attributed to their competition with the ligands of MOG(Tb)[48].FZD,MDZ,2,4-DNT,and 4-NP absorb the excitation energy and reduce the ligand absorbed light,so the energy transfer from the ligand to the Tb3+ion is reduced and the characteristic fluorescence of Tb3+is subsequently quenched.

    3 Conclusions

    In summary,we prepared a gel named MOG(Al)based on the triphenylamine structure as the main ligand and then formed a xerogel named MOG(Tb)with strong fluorescence emission through metal ion exchange.And it has sensitive detectability for FZD,MDZ,2,4-DNT,and 4-NP,and the detection limits are 0.668,1.27,1.49,0.253 μmol·L-1respectively.The quenching mechanism can be attributed to the interaction with the ligand competitive absorption.The preparation of MOG(Tb)can provide more possibilities for the development of MOG in the future.

    Conflicts of interest:The authors declare no competing financial interest.

    Supporting information is available at http://www.wjhxxb.cn

    欧美成人免费av一区二区三区| 国产99白浆流出| 亚洲色图 男人天堂 中文字幕| 久久精品国产亚洲av香蕉五月| 激情在线观看视频在线高清| 99久久精品国产亚洲精品| 最近最新中文字幕大全免费视频| 97人妻精品一区二区三区麻豆 | 男女午夜视频在线观看| 在线国产一区二区在线| 精品国产一区二区久久| 大陆偷拍与自拍| 久久天堂一区二区三区四区| 丁香欧美五月| 久久婷婷成人综合色麻豆| www日本在线高清视频| 国产人伦9x9x在线观看| 桃色一区二区三区在线观看| 亚洲五月婷婷丁香| 亚洲狠狠婷婷综合久久图片| 一进一出好大好爽视频| 涩涩av久久男人的天堂| 不卡一级毛片| 精品少妇一区二区三区视频日本电影| 我的亚洲天堂| 久久久久国产一级毛片高清牌| 亚洲精品av麻豆狂野| 一个人观看的视频www高清免费观看 | avwww免费| 一区二区三区激情视频| 亚洲色图综合在线观看| 伦理电影免费视频| 欧美色欧美亚洲另类二区 | 777久久人妻少妇嫩草av网站| 91在线观看av| 9色porny在线观看| www国产在线视频色| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美精品综合久久99| 在线观看免费日韩欧美大片| 亚洲狠狠婷婷综合久久图片| 久久久国产欧美日韩av| 国产精品98久久久久久宅男小说| 日日摸夜夜添夜夜添小说| 亚洲欧美精品综合久久99| 久久香蕉激情| 中国美女看黄片| 香蕉丝袜av| 男女下面插进去视频免费观看| 欧美日韩乱码在线| 成在线人永久免费视频| 长腿黑丝高跟| 在线观看一区二区三区| 亚洲精品国产区一区二| 欧美日韩精品网址| 757午夜福利合集在线观看| 欧美最黄视频在线播放免费| 久久人人爽av亚洲精品天堂| 法律面前人人平等表现在哪些方面| 岛国在线观看网站| e午夜精品久久久久久久| 国产麻豆成人av免费视频| 视频在线观看一区二区三区| 亚洲精品粉嫩美女一区| 在线免费观看的www视频| 欧美日本亚洲视频在线播放| 欧美一区二区精品小视频在线| 久久久久国产精品人妻aⅴ院| 亚洲色图av天堂| 欧美精品亚洲一区二区| 日日爽夜夜爽网站| 亚洲欧美日韩高清在线视频| 亚洲avbb在线观看| 少妇的丰满在线观看| 久久这里只有精品19| 黄片大片在线免费观看| 国产成人精品无人区| 露出奶头的视频| av欧美777| 美女午夜性视频免费| 亚洲专区中文字幕在线| 成人特级黄色片久久久久久久| 一级a爱视频在线免费观看| 国产精品乱码一区二三区的特点 | 亚洲一区中文字幕在线| 国产成+人综合+亚洲专区| 脱女人内裤的视频| 久久午夜综合久久蜜桃| 国产成人啪精品午夜网站| 女人精品久久久久毛片| 老鸭窝网址在线观看| 日本 欧美在线| 欧美激情高清一区二区三区| 琪琪午夜伦伦电影理论片6080| 久久精品国产清高在天天线| 在线永久观看黄色视频| 色综合亚洲欧美另类图片| 日本欧美视频一区| 18禁观看日本| 午夜福利高清视频| 久久婷婷成人综合色麻豆| 777久久人妻少妇嫩草av网站| 亚洲人成网站在线播放欧美日韩| 欧美日韩瑟瑟在线播放| 91九色精品人成在线观看| 在线国产一区二区在线| 狂野欧美激情性xxxx| 国产亚洲av嫩草精品影院| 亚洲久久久国产精品| 日韩 欧美 亚洲 中文字幕| 涩涩av久久男人的天堂| 国产av在哪里看| 乱人伦中国视频| 麻豆久久精品国产亚洲av| 亚洲欧美精品综合一区二区三区| 757午夜福利合集在线观看| 国产精品乱码一区二三区的特点 | 亚洲成人国产一区在线观看| 99精品欧美一区二区三区四区| 一区二区日韩欧美中文字幕| 国产精品久久久久久精品电影 | 国产男靠女视频免费网站| 亚洲伊人色综图| 色哟哟哟哟哟哟| av天堂在线播放| av中文乱码字幕在线| 久久精品91蜜桃| 激情在线观看视频在线高清| 亚洲一区中文字幕在线| 精品高清国产在线一区| 国产精品野战在线观看| 怎么达到女性高潮| 亚洲中文日韩欧美视频| 在线国产一区二区在线| 精品卡一卡二卡四卡免费| 国产精品永久免费网站| 色av中文字幕| av天堂久久9| 大码成人一级视频| 免费久久久久久久精品成人欧美视频| www.熟女人妻精品国产| 黄色a级毛片大全视频| 99精品在免费线老司机午夜| 成人欧美大片| 成人精品一区二区免费| 国产亚洲精品av在线| 久久精品亚洲精品国产色婷小说| 老司机深夜福利视频在线观看| 亚洲午夜理论影院| 免费在线观看视频国产中文字幕亚洲| 搞女人的毛片| 午夜激情av网站| 国产精品亚洲一级av第二区| 国产午夜福利久久久久久| 夜夜看夜夜爽夜夜摸| 亚洲中文字幕一区二区三区有码在线看 | 国产精品,欧美在线| 国产私拍福利视频在线观看| 亚洲中文av在线| 久久中文字幕人妻熟女| 两性夫妻黄色片| 桃红色精品国产亚洲av| 99久久国产精品久久久| 国产单亲对白刺激| 熟女少妇亚洲综合色aaa.| 久久久久久久久免费视频了| 99精品在免费线老司机午夜| 国产激情欧美一区二区| 精品国内亚洲2022精品成人| 91九色精品人成在线观看| 国产精品国产高清国产av| 国产视频一区二区在线看| av免费在线观看网站| 激情视频va一区二区三区| 精品人妻1区二区| 欧美在线黄色| 亚洲片人在线观看| 99在线人妻在线中文字幕| 俄罗斯特黄特色一大片| 色精品久久人妻99蜜桃| 国产色视频综合| 99久久精品国产亚洲精品| 日本三级黄在线观看| 黄色a级毛片大全视频| 女性被躁到高潮视频| 久久影院123| 日日摸夜夜添夜夜添小说| 久久久久久久久中文| 久久精品国产综合久久久| 欧美性长视频在线观看| 侵犯人妻中文字幕一二三四区| 此物有八面人人有两片| 久久国产乱子伦精品免费另类| 18禁国产床啪视频网站| 久久精品影院6| 69av精品久久久久久| 禁无遮挡网站| 最新在线观看一区二区三区| 久久国产精品人妻蜜桃| 亚洲自偷自拍图片 自拍| 成人国产综合亚洲| 丝袜在线中文字幕| 99re在线观看精品视频| АⅤ资源中文在线天堂| 少妇裸体淫交视频免费看高清 | 亚洲av第一区精品v没综合| 69av精品久久久久久| 中文字幕人妻熟女乱码| 99久久国产精品久久久| 在线av久久热| 黑人欧美特级aaaaaa片| 黑人操中国人逼视频| 亚洲精品国产区一区二| 亚洲国产精品sss在线观看| 国产午夜精品久久久久久| 日韩av在线大香蕉| 亚洲成av人片免费观看| 一级作爱视频免费观看| 欧美中文综合在线视频| 色综合婷婷激情| 日韩中文字幕欧美一区二区| 伊人久久大香线蕉亚洲五| 久热这里只有精品99| 女生性感内裤真人,穿戴方法视频| 电影成人av| 性少妇av在线| 欧美久久黑人一区二区| 久久精品亚洲熟妇少妇任你| 亚洲精品中文字幕在线视频| 久久狼人影院| 久久人妻福利社区极品人妻图片| www.www免费av| 精品无人区乱码1区二区| 多毛熟女@视频| 超碰成人久久| ponron亚洲| 18禁国产床啪视频网站| 日韩欧美免费精品| 国产精华一区二区三区| 午夜久久久在线观看| 久久国产亚洲av麻豆专区| 国语自产精品视频在线第100页| 无遮挡黄片免费观看| 免费在线观看完整版高清| 国产亚洲精品久久久久5区| 亚洲一卡2卡3卡4卡5卡精品中文| 色av中文字幕| 久久久久久久久中文| 丝袜在线中文字幕| 久久精品国产清高在天天线| 日本a在线网址| 无人区码免费观看不卡| 久久人妻av系列| 99国产精品一区二区三区| 天天躁夜夜躁狠狠躁躁| 欧美黑人欧美精品刺激| av网站免费在线观看视频| 国产成人一区二区三区免费视频网站| 日韩大尺度精品在线看网址 | or卡值多少钱| 国产精品美女特级片免费视频播放器 | 一二三四社区在线视频社区8| 久久精品国产亚洲av高清一级| 国产成人一区二区三区免费视频网站| 亚洲在线自拍视频| 欧美日韩精品网址| 亚洲国产精品sss在线观看| 日韩视频一区二区在线观看| 欧美日韩一级在线毛片| 精品第一国产精品| 精品不卡国产一区二区三区| 日韩 欧美 亚洲 中文字幕| 欧美日韩亚洲综合一区二区三区_| 欧美人与性动交α欧美精品济南到| svipshipincom国产片| 亚洲激情在线av| 午夜精品国产一区二区电影| 久久婷婷人人爽人人干人人爱 | 最新在线观看一区二区三区| 亚洲中文日韩欧美视频| 久久精品91蜜桃| 岛国视频午夜一区免费看| 国产精品日韩av在线免费观看 | av免费在线观看网站| 国产高清激情床上av| a在线观看视频网站| 成人18禁高潮啪啪吃奶动态图| 午夜激情av网站| 亚洲成人精品中文字幕电影| 久久中文字幕人妻熟女| 国产97色在线日韩免费| 亚洲国产日韩欧美精品在线观看 | 两个人视频免费观看高清| 国产成人av教育| 日日爽夜夜爽网站| 天天躁夜夜躁狠狠躁躁| 国产精品九九99| 免费在线观看亚洲国产| 国产熟女xx| 天天躁狠狠躁夜夜躁狠狠躁| 长腿黑丝高跟| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人av激情在线播放| 国产一级毛片七仙女欲春2 | 搡老岳熟女国产| 免费观看人在逋| 少妇的丰满在线观看| 欧美精品啪啪一区二区三区| 亚洲少妇的诱惑av| 叶爱在线成人免费视频播放| 18禁黄网站禁片午夜丰满| 91在线观看av| 亚洲成人免费电影在线观看| 村上凉子中文字幕在线| 91精品三级在线观看| 高清黄色对白视频在线免费看| av片东京热男人的天堂| 国产亚洲精品av在线| 亚洲精品在线观看二区| 亚洲精品粉嫩美女一区| 后天国语完整版免费观看| 淫妇啪啪啪对白视频| 久久精品91蜜桃| 午夜福利,免费看| 99在线视频只有这里精品首页| 9191精品国产免费久久| 无遮挡黄片免费观看| 日日干狠狠操夜夜爽| www.熟女人妻精品国产| 亚洲 欧美 日韩 在线 免费| 亚洲熟妇中文字幕五十中出| 99在线视频只有这里精品首页| 真人做人爱边吃奶动态| 乱人伦中国视频| 丝袜美腿诱惑在线| 亚洲第一欧美日韩一区二区三区| 欧美日韩瑟瑟在线播放| 一区福利在线观看| 亚洲色图 男人天堂 中文字幕| 精品久久久久久久人妻蜜臀av | 久久精品影院6| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲精品av在线| 两个人免费观看高清视频| 欧美成人一区二区免费高清观看 | 精品国内亚洲2022精品成人| 亚洲电影在线观看av| 亚洲熟妇中文字幕五十中出| 性少妇av在线| 欧美日韩瑟瑟在线播放| 免费在线观看完整版高清| av福利片在线| 免费在线观看日本一区| 亚洲av成人不卡在线观看播放网| 久久久久久国产a免费观看| 热99re8久久精品国产| 国产精品亚洲美女久久久| 日韩精品免费视频一区二区三区| 久久亚洲真实| 人人澡人人妻人| 女人高潮潮喷娇喘18禁视频| 国产成人精品无人区| 国产av一区在线观看免费| 久久香蕉精品热| 国产成人精品在线电影| 精品久久蜜臀av无| 国产精品亚洲一级av第二区| 亚洲精品美女久久av网站| 亚洲成a人片在线一区二区| 老司机在亚洲福利影院| 十八禁网站免费在线| 国产熟女午夜一区二区三区| 热re99久久国产66热| 亚洲国产精品sss在线观看| 这个男人来自地球电影免费观看| 黄片播放在线免费| 男人舔女人的私密视频| 51午夜福利影视在线观看| 国产aⅴ精品一区二区三区波| 日韩免费av在线播放| 国产高清有码在线观看视频 | 国产一区二区三区视频了| 午夜福利,免费看| 日本vs欧美在线观看视频| 欧美不卡视频在线免费观看 | 一级毛片精品| 村上凉子中文字幕在线| 欧美激情高清一区二区三区| 国产精品 欧美亚洲| 午夜福利高清视频| 欧美成人性av电影在线观看| 亚洲欧洲精品一区二区精品久久久| 999精品在线视频| 久久中文字幕人妻熟女| 多毛熟女@视频| 国产成人欧美| 午夜亚洲福利在线播放| 精品第一国产精品| 成人国产一区最新在线观看| av在线天堂中文字幕| 日本三级黄在线观看| 午夜精品国产一区二区电影| 久久人妻熟女aⅴ| 国产人伦9x9x在线观看| 精品人妻1区二区| 一级片免费观看大全| 久久国产亚洲av麻豆专区| 国产不卡一卡二| 一区在线观看完整版| 国产精品一区二区精品视频观看| 亚洲熟妇熟女久久| 精品午夜福利视频在线观看一区| 亚洲一区二区三区色噜噜| 久久人妻熟女aⅴ| xxx96com| 欧美在线黄色| 99精品久久久久人妻精品| 好看av亚洲va欧美ⅴa在| 宅男免费午夜| 国产亚洲欧美98| 精品人妻在线不人妻| 亚洲av成人不卡在线观看播放网| 久久精品成人免费网站| 黄色毛片三级朝国网站| 国产又爽黄色视频| 两性夫妻黄色片| 无限看片的www在线观看| 十八禁网站免费在线| 亚洲国产中文字幕在线视频| 日韩精品青青久久久久久| 电影成人av| 91在线观看av| 亚洲熟妇中文字幕五十中出| 国产亚洲欧美精品永久| 日韩精品青青久久久久久| 黄片大片在线免费观看| 久久久久国产精品人妻aⅴ院| 啦啦啦 在线观看视频| 成人18禁在线播放| 少妇粗大呻吟视频| 精品久久久久久久毛片微露脸| 给我免费播放毛片高清在线观看| 老司机午夜福利在线观看视频| 亚洲情色 制服丝袜| 色老头精品视频在线观看| 老熟妇仑乱视频hdxx| av视频免费观看在线观看| 香蕉国产在线看| 欧美色视频一区免费| 超碰成人久久| 19禁男女啪啪无遮挡网站| 国产成人啪精品午夜网站| 婷婷精品国产亚洲av在线| 高清毛片免费观看视频网站| 在线十欧美十亚洲十日本专区| 午夜福利免费观看在线| 精品一区二区三区av网在线观看| avwww免费| 精品久久蜜臀av无| 国产精品综合久久久久久久免费 | 亚洲第一欧美日韩一区二区三区| 女人被躁到高潮嗷嗷叫费观| 久久久久久久精品吃奶| 色综合婷婷激情| 人人妻人人爽人人添夜夜欢视频| 狂野欧美激情性xxxx| 欧美+亚洲+日韩+国产| 国产亚洲av嫩草精品影院| 两性午夜刺激爽爽歪歪视频在线观看 | 日日干狠狠操夜夜爽| 久久精品国产综合久久久| 亚洲av成人av| 精品久久久久久成人av| 午夜福利18| 免费在线观看亚洲国产| 午夜视频精品福利| 国产亚洲av嫩草精品影院| 九色亚洲精品在线播放| 亚洲人成77777在线视频| 怎么达到女性高潮| 日韩欧美一区二区三区在线观看| aaaaa片日本免费| 久久婷婷成人综合色麻豆| 久久天躁狠狠躁夜夜2o2o| 精品国产国语对白av| 国产精品二区激情视频| 亚洲男人的天堂狠狠| 午夜影院日韩av| 中文字幕人妻熟女乱码| 少妇 在线观看| 狠狠狠狠99中文字幕| 亚洲国产日韩欧美精品在线观看 | 精品国产亚洲在线| 日本 欧美在线| 熟妇人妻久久中文字幕3abv| 99在线人妻在线中文字幕| 久久午夜综合久久蜜桃| 男人舔女人下体高潮全视频| 夜夜夜夜夜久久久久| 12—13女人毛片做爰片一| 十八禁人妻一区二区| 九色亚洲精品在线播放| 亚洲七黄色美女视频| 亚洲av片天天在线观看| 日本精品一区二区三区蜜桃| 国产av一区在线观看免费| 国产不卡一卡二| 亚洲欧美精品综合久久99| 久久人人精品亚洲av| 性少妇av在线| 黑人巨大精品欧美一区二区蜜桃| 国产欧美日韩一区二区精品| 久久香蕉精品热| 一级,二级,三级黄色视频| 日韩精品中文字幕看吧| 搡老妇女老女人老熟妇| 韩国av一区二区三区四区| 久久精品人人爽人人爽视色| 黄色毛片三级朝国网站| 久久久水蜜桃国产精品网| 久久久久久久久免费视频了| 男女下面进入的视频免费午夜 | av视频在线观看入口| 91在线观看av| videosex国产| 淫妇啪啪啪对白视频| 免费在线观看完整版高清| 国产人伦9x9x在线观看| 日韩欧美一区视频在线观看| 久久久国产成人精品二区| av天堂在线播放| av片东京热男人的天堂| 欧美+亚洲+日韩+国产| 国产成人av教育| 好男人电影高清在线观看| 在线观看免费午夜福利视频| 女人被躁到高潮嗷嗷叫费观| 国产色视频综合| 夜夜看夜夜爽夜夜摸| 这个男人来自地球电影免费观看| 国产亚洲av高清不卡| 18美女黄网站色大片免费观看| 国语自产精品视频在线第100页| 色播亚洲综合网| 老司机在亚洲福利影院| 中亚洲国语对白在线视频| 国产精品免费视频内射| 亚洲黑人精品在线| 亚洲av五月六月丁香网| 国产精品久久视频播放| 精品不卡国产一区二区三区| www.www免费av| 亚洲熟女毛片儿| 久久久久九九精品影院| 日韩中文字幕欧美一区二区| 午夜福利视频1000在线观看 | 午夜福利在线观看吧| 亚洲五月色婷婷综合| 99riav亚洲国产免费| 女同久久另类99精品国产91| 桃红色精品国产亚洲av| 18禁观看日本| 香蕉国产在线看| 日韩免费av在线播放| 国产成人av教育| 亚洲精品一区av在线观看| 首页视频小说图片口味搜索| 国产精品久久久av美女十八| 欧美一级毛片孕妇| 欧美黑人精品巨大| av天堂久久9| 日本精品一区二区三区蜜桃| 人妻丰满熟妇av一区二区三区| 亚洲熟妇中文字幕五十中出| 精品国产乱子伦一区二区三区| 久久香蕉国产精品| 精品高清国产在线一区| 国产精品自产拍在线观看55亚洲| 美国免费a级毛片| 亚洲精品中文字幕一二三四区| 一边摸一边抽搐一进一出视频| 满18在线观看网站| 亚洲精品一卡2卡三卡4卡5卡| 久久久久国内视频| 又紧又爽又黄一区二区| 禁无遮挡网站| 国产99白浆流出| 操出白浆在线播放| 97碰自拍视频| 97超级碰碰碰精品色视频在线观看| 亚洲av成人不卡在线观看播放网| 精品无人区乱码1区二区| 亚洲美女黄片视频| 精品午夜福利视频在线观看一区| 婷婷六月久久综合丁香| 久久午夜综合久久蜜桃| 男女床上黄色一级片免费看| 看片在线看免费视频| 极品教师在线免费播放| 色婷婷久久久亚洲欧美| a级毛片在线看网站| 亚洲电影在线观看av| 国产欧美日韩一区二区精品| 成人国产一区最新在线观看| www国产在线视频色| 国产精品久久久久久精品电影 | 久久久久精品国产欧美久久久| 日韩欧美三级三区| 免费在线观看日本一区| 国产亚洲欧美在线一区二区| 亚洲一区二区三区不卡视频| 人成视频在线观看免费观看| 精品国产超薄肉色丝袜足j| 黄色片一级片一级黄色片| 亚洲国产毛片av蜜桃av|