• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-Layer High-Throughput: Effective Mass Calculations Including Warping

    2022-06-11 09:01:38AndrewSupkNicholsMecholskyMrcoBuongiornoNrdelliStefnoCurtroloMrcoFornri
    Engineering 2022年3期

    Andrew Supk, Nichols A. Mecholsky, Mrco Buongiorno Nrdelli, Stefno Curtrolo,Mrco Fornri,d,*

    a Department of Physics & Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, MI 48859, USA

    b Department of Physics & Vitreous State Laboratory, The Catholic University of America, Washington, DC 20064, USA

    c Department of Physics & Department of Chemistry, University of North Texas, Denton, TX 76203, USA

    d Center for Autonomous Materials Design, Duke University, Durham, NC 27708, USA

    e Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA

    Keywords:High-throughput Electronic structure Band warping Effective mass

    ABSTRACT In this paper, we perform two-layer high-throughput calculations. In the first layer, which involves changing the crystal structure and/or chemical composition, we analyze selected III–V semiconductors,filled and unfilled skutterudites,as well as rock salt and layered chalcogenides.The second layer searches the full Brillouin zone(BZ)for critical points within 1.5 eV(1 eV=1.602176×10-19 J)of the Fermi level and characterizes those points by computing the effective masses.We introduce several methods to compute the effective masses from first principles and compare them to each other. Our approach also includes the calculation of the density-of-states effective masses for warped critical points, where traditional approaches fail to give consistent results due to an underlying non-analytic behavior of the critical point. We demonstrate the need to consider the band structure in its full complexity and the value of complementary approaches to compute the effective masses. We also provide computational evidence that warping occurs only in the presence of degeneracies.

    1. Introduction

    The electronic band structure plays a fundamental role in our understanding of the origins of the physical properties of materials and in assessing paths for optimization and chemical substitutions.The dispersion relation of the solutions of the many-body electronic Schr?dinger equation provides quantitative information that is essential for understanding most of the functionalities that a material may exhibit.The band structure,En(k ),is a mapping from R3→ RN(where N is the number of relevant bands,n is the band index,and k is a vector indicating the crystalline momentum)and is usually represented by considering only two-dimensional (2D)band plots. Because any given band is a function whose domain is the three-dimensional (3D) Brillouin zone (BZ), k ∈ BZ ? R3,the graph of a given band is embedded in four dimensions. Band structure plots along high-symmetry lines are a useful tool for evaluating a material at a glance. However, the 2D representation hides the full complexity of the electronic spectrum by ignoring large sections of the BZ.Conventions,such as those in Ref.[1],provide common ground for band plots, but 2D band representations are intrinsically limited.

    Critical points, where ?En(k )/?k = 0 (with ?En(k )/?k indicating the gradient of En(k ) with respect to k), are an important feature of the electronic band structure. At these points, the density of states (DOS; also represented by the function of energy E,D(E)) is large (or diverges; see Ref. [2]):

    with the unit cell volume V and an infinitesimal element of the constant energy surface dS.Critical points are key in evaluating a material’s physical properties and fully characterizing the material. For example,for a 2D material,it is well known that saddle points lead to logarithmic singularities [3], and that maxima and minima in three dimensions lead to square root dependencies of the DOS and,in general,to van Hove singularities or non-smooth points[4].Thus, the identification of all critical points is an important goal.

    A related concept associated with the local properties of the electronic band structure involves the effective mass tensor M*,which is—assuming Taylor expansibility near k0—a second-rank tensor in 3D with components:

    where n is the band index, ˉh is the reduced Planck constant, meis the mass of electron, and the subscripts i, j are used to label the Cartesian components of the tensor M*or of the vector k.The reciprocal of the effective mass tensor is associated with the curvature of the energy dispersion, En(k ), and is a critical descriptor when discussing electronic transport and optical properties; its evaluation must be done by considering the full mathematical complexity of the band structure. In addition, the possible presence of nonanalytic points—such as points where the Hessian is not a symmetric matrix—leads to warped critical points,which play a role in several situations[5,6] but are difficult to identify with 2D band plots.By determining high-fidelity effective mass tensors at critical points, it is possible to formulate analytic models of band structures. Such models are important in many considerations in solidstate physics and electronic engineering; for example, they can be used as a starting point for Monte Carlo transport simulations [7]or for the multi-scale modeling [8] of electronic devices, batteries,and thermoelectric energy converters. Analytic band structures are used in applications such as modeling scattering rates where derivatives and integrals of the bands are necessary [7]. From an experimental standpoint,the DOS effective mass is a common property of the band structure that may be measured through cyclotron resonance [9–18], the four coefficients method [19], Shubnikov–de Haas oscillations [16,20–23], magnetophonon resonance[15,16,24,25], time-of-flight drift velocity [7,26–29], optical transmission and reflection[30–32], and infrared reflection and Faraday rotation [33–35]. Being able to compare the different measurements of the effective mass obtained with those indirect methods and reconcile such results with electronic structure calculations is a major goal.

    This paper introduces a two-layer high-throughput (HT)methodology with the aim of partially addressing the misalignement between theory and experiment in the current literature.The first layer is a conventional chemical substitution/structural variation(e.g.,see Refs.[36–42]),and the second is a careful exploration of En(k )to identify the nature of the critical points and compute the effective mass tensors. The conventional HT considers an array of prototypical materials: III–V semiconductors, filled and unfilled skutterudites, as well as rock salt and layered chalcogenides. For each material, we search the full BZ for critical points and determine the effective mass at those points using several different methodologies for verification [43]. These methodologies also characterize the warping of bands and correctly compute the DOS effective mass at those warped points [6]. To our knowledge,this is the first HT calculation of effective masses in a large portion of the BZ.

    In Section 2, we illustrate the details of the computations.Section 3 presents selected results(a large part of the data is included in Appendix A),and Section 4 discusses the impact of this work.

    2. Methods

    The prototypical materials selected for this work are as follows:III–V semiconductors(AlSb and AlP with the zincblende structure);rock salt (PbTe, GeTe, SnTe, PbS, GeS, SnS, PbSe, GeSe, and SnSe)and layered chalcogenides (Bi2Te3, Bi2Te2Se, Bi2Se2Te, Bi2Se3,Bi2Te2S, and Bi2Se2S); and pristine and fully filled cobalt antimonide (specifically CoSb3, CaCo4Sb12, and BaCo4Sb12). For each material, the workflow starts by generating a projected atomic orbital tight-binding (PAO-TB) Hamiltonian, which is exploited to interpolate the band structure efficiently and precisely [44]. We use Quantum Espresso (Quantum ESPRESSO Foundation, UK)[45,46] to calculate the electronic structure in the AFLOWπ HT computational framework [47].

    The AFLOWπ’s workflow (Fig. 1) drives the calculation of the Hubbard U correction within the ACBN0 [48–51] scheme (see Tables S1,S4,S14,and S18 in Appendix A),optimizes the structure of the unit cell,and generates the PAO-TB Hamiltonian.The wavefunction and charge kinetic energy cutoffs were 150 and 600 Ry(1 Ry = 2.179872 × 10-18J), respectively, and a Monkhorst–Pack k-point grid with a density of about 0.01 ?-1has been used. The choice of pseudopotentials was driven by a need to maximize the number of well-projected bands in the PAO-TB model;for this purpose, Perdew–Burke–Ernzerhof (PBE)-projector augmented wave(PAW) pseudopotentials generated from the PSlibrary [52] were modified to have an extended basis [44]. The computations included spin–orbit coupling. For comparison and testing of warping, calculations without spin–orbit were also performed.PAOFLOW (University of North Texas, USA) [53] was used to project the computationally expensive Hamiltonian from the plane wave basis into the more efficient PAO-TB basis. The PAO-TB Hamiltonian allows the exploitation of the Fourier interpolation to obtain a smooth version of the band structure. The full BZ was divided into a 12×12×12 grid, and each voxel was searched for an isolated critical point. It was assumed that a voxel would contain at most one critical point. We chose a 12×12×12 grid to strike a balance between accuracy and computational efficiency.The locations of the critical points in k-space were then compared using operations of the symmetry group to identify unique critical points.This was done for ease of computation and for uniformity in analysis, given different crystal structures.

    Fig. 1. The AFLOWπ workflow script used in this study. More details on AFLOWπ are available in Ref. [47].

    In order to identify critical points,we identified k-points,where the band velocities vnare very small.

    It should be noted that, in the definition of m*DOS, only one among the possible equivalent k-points is considered.The validity of the Fourier approach (which is very efficient computationally)holds for all non-warped bands but fails in the case of warped bands where the Hessian is not symmetric. In order to treat all the critical points in the same way,we calculated the inverse effective mass surface(IEMS)and used it to determine the three diagonal components of the effective mass tensor, the DOS effective mass accounting for band warping effects [6], and the band warping parameter (w) [5].

    is the matrix of second partial derivatives of the energy dispersion and A is the Euler rotation matrix (see Eq. 4.46 in Ref. [57]). Here,

    Fig.2. A 2D slice k = (i , j, 0.5)of the 3 components of the gradient of the energy for the bottom conduction band in the first BZ for SnTe.The purple and green represent k with large positive and negative values, respectively, for each gradient component.

    Fig.3. Energy dispersion in several radial directions around the degenerate,warped Γ point k = (0 , 0, 0) near the Fermi level (EFermi) in CaCo4Sb12. The lattice parameter is indicated with a.

    The sign of the integral depends on the sign of the IEMS. For saddle points, the value of the integrand in Eq. (14) approaches infinity when f2(φ, θ) approaches zero. In principle, one can integrate over the range of φ and θ where f2(φ, θ)is positive and separately where it is negative.In practice,however,it proves difficult to achieve convergence for the integral,and we do not include the calculation of the DOS effective mass for warped saddle points in our results. To the best of our knowledge,the problem of properly accounting for saddle points is still unsolved.

    3. Results

    There is a wide range of effects on the DOS and other material properties from the local band structure at critical points [4]. The HT procedure produces many such critical points for a given crystal, and the distribution and type of critical points ultimately account for the similarities and differences in material properties.Table 1 [58,59] summarizes some of our computations for several common materials in comparison with reference values.The effective mass was computed by all three methods discussed above:m*DOSby fitting Fourier derivatives (Eq. (6), m*F), m*DOSby fitting the IEMS(m*I),and m*DOSfrom the warped definition(m*wevaluated from Eqs. (13) and (14)). It should be noticed that, in Table 1, all calculations for masses agree for non-warped critical points,including the warped calculation of Eqs. (13) and (14). This is to be expected and is reflected in the data in general.Large discrepancies in the experimental effective masses of different materials make it difficult to directly compare with the calculated effective mass; however, our study compares favorably in most cases with the results from previous work (Table 1). All our results are included in Appendix A, specifically the band structure plots, the Hubbard U corrections, and the effective mass computed for critical points in the proximity of the Fermi level. It should be noted that experimental data are not available for critical points away from the Fermi level.

    Table 1 Comparison of the IEMS fit(m*I),Fourier derivative(m*F),and warped(m*w)DOS effective masses calculated in our study with measured values(m*exp).The subscripts indicate the band-type (e: electron, h: hole, so: split-off), L and Γ are the conventional labels for two different critical points.

    Fig.4. Critical points for FCC GeS in the first BZ.Each polyhedral shape relates to a different symmetry (star of the k-point) of the BZ, depending on the location of a representative point.

    Consider Fig. 6 where the relative error of the direct fitting relative to the warped DOS effective mass is plotted versus the warping parameter. It can be seen from the figure that there is a general positive correlation,indicating that the warping parameter is a measure of how badly traditional methods(e.g.,direct fitting or the Fourier method) perform when evaluating effective masses;thus,the warping parameter is an indication of how badly a Taylor approximation will perform in approximating the surface of an IEMS at a warped point. This is similar to what is reported in Ref.[6]for a surface warped in Kittel’s form.Thus,the only correct value for the DOS effective mass is m*w. Fig. 7 shows the DOS of CaCo4Sb12. Critical points (van Hove singularities) are marked as red disks. The size of the disk indicates the amount of warping,as calculated in Ref. [5]. It can be seen that the DOS effective masses give rise to the shape of the non-smooth points.The particular shape can be expressed in terms of the DOS effective mass[4,6].With spin–orbit coupling included, the largest warping value w is about 1.94 in CaCo4Sb12at Γ. In general, without spin–orbit coupling, there are many more warped points (since spin–orbit coupling lifts degeneracy), and the warping is larger in that case.This study provides a computational answer to questions related to the origin and occurrence of warping effects [60]. Without exception,warping did not occur at a specific critical point without the presence of degeneracies.

    Fig.5. An example of the Si band structure computed along the path suggested by Ref. [1] without spin–orbit coupling and with warping noted in red circles. The magnitude of the warping parameter w, is given as the size of the disk.

    Table 2 Warping extent w and DOS effective mass at selected warped critical points calculated with 3 different methods: integral over the IEMS, ellipsoidal fit of the IEMS, and secondorder Fourier derivative.The table includes the following critical points:hole band m*e (H),heavy-hole band(m*hh),and light-hole band(m*lh)at Γ= (0 , 0, 0),the maximum of the valence band (m*max) at X = (1, 0, 0) or Γ, and selected saddle point (m*sad) at Γ.

    Fig. 6. The error between the warped effective mass DOS calculation and the DOS effective mass calculated with the fit to the IEMS versus the dimensionless warping parameter (w), for the materials in this study.

    Fig.7. DOS for CaCo4Sb12 including spin–orbit coupling.The van Hove singularities are identified by red disks, where the diameter of the disk is determined by the warping parameter of the critical point located at the center of the disk.The shapes of the IEMS at the warped critical points are included in the figure. Blue (red)portions of the IEMS represent negative (positive) band curvature.

    In all of the cubic materials, all saddle points at Γ and at L (or other critical points) are warped. The reason for this can be seen in the requirements placed on the IEMS: The IEMS will have regions of positive and negative values due to the saddle behavior of the energy dispersion, and the cubic symmetry forces the principal directions to be the same. These two competing geometric requirements lead to warping at these points.

    The HT list of critical points and effective masses has a variety of applications.For example,a full approximate analytic model of the BZ may be accomplished by approximating each critical point with the corresponding ellipsoid or saddle in the case of materials where warping is not an issue for critical points near the Fermi energy.This could be used for calculating scattering rates in Monte Carlo simulations[7]or for calculations of relaxation times[61]for different scattering processes.Moreover,a full analytic band structure would allow for possible band engineering,for the exploration of material properties,and even for the low-dimensionality reduction of thermoelectric properties [62]. A full description of the effective masses would also provide a model for the exploration of anisotropic transport considerations. As opposed to critical points that are not near high-symmetry points, lines, or planes,none of the effective masses from a quadratic expansion of the energy dispersion need to be the same. This gives rise to anisotropic transport that is all but ignored to avoid excessive complication. This procedure provides examples where anisotropy may be relevant for transport or other properties and provides a first step toward realistic analytic descriptions of band structures with these properties.

    The Appendix A includes: ①the Hubbard U correction determined with the ACBN0 self-consistent protocol (Tables S1, S4,S14, and S18); ②characterization of the critical points found in the proximity of the Fermi level for AlSb, AlP, GeS, GeSe, GeTe,PbS, PbSe, PbTe, SnS, SnSe, SnTe, CoSb3, CaCo4Sb12, BaCo4Sb12, Bi2-Se2Te, Bi2Te3, Bi2Te2Se, Bi2Se3, Bi2Te2S, and Bi2Se2S (Tables S2, S3,S5, S7–S13, S15–S17, and S19–S24 in Appendix A); and ③band structure plots (Figs. S1–S20 in Appendix A).

    4. Conclusions

    We have designed and applied a two-level HT calculation with the aim of finding and characterizing critical points in the BZs of several materials.This search identified features of the band structures, En(k ), that are not visible in 2D plots but nonetheless contribute to electronic transport, DOS, and other material properties. We used three different methods to compute the DOS effective masses at these critical points:namely,the direct method,the Fourier derivative method,and the warped method.At analytic(ellipsoidal) critical points, all approaches agreed with each other and aligned well with literature values,where available.This study also identified many warped critical points and used Eqs. (13) and(14)to correctly calculate the DOS effective mass.At these warped points, we provided reliable values for m*DOSusing the theory reported in Ref.[5].All three methods disagreed,but the‘‘warped”method was correct. Standard 2D band structure plots are often inadequate to convey the complicated nature of the effective masses at important critical points. Our HT procedure overcomes this issue and facilitates comparison with experiments and the development of analytical models, as well as band structure engineering and the tuning of properties for technological applications.

    Acknowledgments

    The authors would like to thank Lorenzo Resca for helpful discussions regarding the symmetry properties of the Brillouin zones,along with other aspects concerning warping. This work was performed in part through computational resources and services provided by the Institute for Cyber-Enabled Research at Michigan State University.Nicholas A.Mecholsky would like to acknowledge financial support from the Vitreous State Laboratory.

    Compliance with ethics guidelines

    Andrew Supka, Nicholas A. Mecholsky, Marco Buongiorno Nardelli, Stefano Curtarolo, and Marco Fornari declare that they have no conflict of interest or financial conflicts to disclose.

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2021.03.031.

    日韩中字成人| 97碰自拍视频| 变态另类成人亚洲欧美熟女| 一本一本综合久久| 我要搜黄色片| 久久中文看片网| 久久精品影院6| 18禁在线播放成人免费| 成人性生交大片免费视频hd| 九色国产91popny在线| 一个人看视频在线观看www免费| 国产熟女欧美一区二区| 香蕉av资源在线| 在线观看美女被高潮喷水网站| 国产精品嫩草影院av在线观看 | 久久久久久久久中文| 99视频精品全部免费 在线| 久久精品国产自在天天线| 欧美日韩中文字幕国产精品一区二区三区| 成人性生交大片免费视频hd| a级一级毛片免费在线观看| 在线天堂最新版资源| eeuss影院久久| 黄色视频,在线免费观看| 亚洲av免费高清在线观看| 日本在线视频免费播放| 婷婷精品国产亚洲av| 欧美日本亚洲视频在线播放| 我要搜黄色片| 特大巨黑吊av在线直播| 黄色一级大片看看| 午夜影院日韩av| 国产精品久久久久久亚洲av鲁大| 美女大奶头视频| 国产一区二区亚洲精品在线观看| 能在线免费观看的黄片| 国产在线男女| 又粗又爽又猛毛片免费看| 国产欧美日韩精品亚洲av| 国产成人影院久久av| 精品99又大又爽又粗少妇毛片 | 夜夜爽天天搞| 高清在线国产一区| 在线天堂最新版资源| 黄色女人牲交| 免费观看的影片在线观看| 国内久久婷婷六月综合欲色啪| 欧美绝顶高潮抽搐喷水| 精品久久久久久久久亚洲 | 女的被弄到高潮叫床怎么办 | 91久久精品电影网| 亚洲精品色激情综合| 久久久久国内视频| 国内久久婷婷六月综合欲色啪| 午夜免费男女啪啪视频观看 | 少妇的逼好多水| www.www免费av| 日韩欧美在线二视频| 人妻制服诱惑在线中文字幕| 日韩精品有码人妻一区| 亚洲国产精品成人综合色| 男人狂女人下面高潮的视频| 国产亚洲精品av在线| 成人毛片a级毛片在线播放| 国产一区二区在线观看日韩| 嫩草影院入口| 欧美一级a爱片免费观看看| 免费av不卡在线播放| 国产高清激情床上av| 69av精品久久久久久| 欧美成人免费av一区二区三区| 成人永久免费在线观看视频| avwww免费| 一区二区三区四区激情视频 | 久久久国产成人免费| 精品久久久噜噜| 成人特级黄色片久久久久久久| 我的女老师完整版在线观看| 亚洲欧美日韩高清专用| 少妇的逼水好多| 日韩人妻高清精品专区| 欧美一区二区国产精品久久精品| 亚洲国产色片| 亚洲av免费高清在线观看| 成人综合一区亚洲| 最好的美女福利视频网| 日日干狠狠操夜夜爽| 老司机福利观看| 成人高潮视频无遮挡免费网站| 婷婷色综合大香蕉| 最近最新免费中文字幕在线| 日韩大尺度精品在线看网址| 日韩人妻高清精品专区| 岛国在线免费视频观看| 老女人水多毛片| 国产极品精品免费视频能看的| 国产高清视频在线观看网站| 成年免费大片在线观看| 人妻丰满熟妇av一区二区三区| 国产视频一区二区在线看| 在线免费观看的www视频| 亚洲最大成人手机在线| 亚洲成av人片在线播放无| 自拍偷自拍亚洲精品老妇| 制服丝袜大香蕉在线| 成人亚洲精品av一区二区| 看十八女毛片水多多多| 亚洲综合色惰| 欧美xxxx性猛交bbbb| 在线播放无遮挡| 少妇人妻一区二区三区视频| 啪啪无遮挡十八禁网站| 联通29元200g的流量卡| 久久久久久九九精品二区国产| 淫秽高清视频在线观看| 特大巨黑吊av在线直播| 免费观看在线日韩| 亚洲无线在线观看| 蜜桃亚洲精品一区二区三区| 国产午夜福利久久久久久| www.色视频.com| 俺也久久电影网| 亚洲人成网站高清观看| 人人妻人人澡欧美一区二区| 在线观看午夜福利视频| 波多野结衣巨乳人妻| 亚洲乱码一区二区免费版| 91在线精品国自产拍蜜月| 亚洲男人的天堂狠狠| 小说图片视频综合网站| 久久婷婷人人爽人人干人人爱| 免费搜索国产男女视频| 美女被艹到高潮喷水动态| 国产高潮美女av| 男女做爰动态图高潮gif福利片| 欧美一区二区亚洲| 极品教师在线视频| 欧美最新免费一区二区三区| 久久精品综合一区二区三区| 欧美高清性xxxxhd video| 亚洲第一区二区三区不卡| 国产精品日韩av在线免费观看| 日本黄色片子视频| 熟女电影av网| 俄罗斯特黄特色一大片| 国产色爽女视频免费观看| 男女啪啪激烈高潮av片| 亚洲五月天丁香| 久久久精品大字幕| 亚洲精品成人久久久久久| 一边摸一边抽搐一进一小说| netflix在线观看网站| 美女免费视频网站| 国产真实乱freesex| 亚洲,欧美,日韩| 男女做爰动态图高潮gif福利片| 亚洲四区av| 看黄色毛片网站| www日本黄色视频网| 欧美xxxx黑人xx丫x性爽| 精品久久久噜噜| 自拍偷自拍亚洲精品老妇| 嫩草影院入口| 久久久久免费精品人妻一区二区| 九九久久精品国产亚洲av麻豆| 禁无遮挡网站| 亚洲精华国产精华液的使用体验 | 免费av观看视频| 国产精品综合久久久久久久免费| 99久久精品热视频| 国产伦人伦偷精品视频| 久久午夜亚洲精品久久| 久久久久久久亚洲中文字幕| 成人三级黄色视频| 久9热在线精品视频| 国产免费男女视频| 婷婷色综合大香蕉| 性插视频无遮挡在线免费观看| x7x7x7水蜜桃| 99热这里只有是精品50| 麻豆成人av在线观看| 国产精品一及| 美女高潮的动态| .国产精品久久| 麻豆国产97在线/欧美| 中出人妻视频一区二区| 国产乱人视频| 18禁裸乳无遮挡免费网站照片| 人人妻人人看人人澡| eeuss影院久久| 1024手机看黄色片| 亚洲av五月六月丁香网| 我要看日韩黄色一级片| 亚洲精品乱码久久久v下载方式| 三级国产精品欧美在线观看| 亚洲精华国产精华精| 大又大粗又爽又黄少妇毛片口| 深夜a级毛片| 日韩高清综合在线| 国产探花极品一区二区| 女生性感内裤真人,穿戴方法视频| 婷婷丁香在线五月| 麻豆久久精品国产亚洲av| 男女之事视频高清在线观看| 精品久久久久久久人妻蜜臀av| 少妇丰满av| 1024手机看黄色片| 在线观看66精品国产| 色综合站精品国产| 男女那种视频在线观看| 成人国产麻豆网| 精品人妻熟女av久视频| 国产精品亚洲一级av第二区| 91在线精品国自产拍蜜月| 日韩大尺度精品在线看网址| 亚洲综合色惰| 欧美日韩亚洲国产一区二区在线观看| 91午夜精品亚洲一区二区三区 | 国产高潮美女av| 久久6这里有精品| 联通29元200g的流量卡| 国产精品一及| 亚洲男人的天堂狠狠| 亚洲专区中文字幕在线| 亚洲最大成人手机在线| 亚洲专区国产一区二区| 天堂√8在线中文| 成人亚洲精品av一区二区| 成人av一区二区三区在线看| 啪啪无遮挡十八禁网站| 搞女人的毛片| 尤物成人国产欧美一区二区三区| 亚洲国产精品合色在线| 亚洲综合色惰| 精品一区二区三区视频在线| 久久久精品大字幕| 22中文网久久字幕| 乱人视频在线观看| 99热这里只有精品一区| 国产熟女欧美一区二区| 成人特级av手机在线观看| 国产日本99.免费观看| 国产毛片a区久久久久| 我的女老师完整版在线观看| 99久久精品国产国产毛片| 真实男女啪啪啪动态图| 午夜a级毛片| 亚洲人与动物交配视频| 亚洲一区二区三区色噜噜| 搡老妇女老女人老熟妇| 日韩欧美在线乱码| 精品久久国产蜜桃| 午夜久久久久精精品| 国产一区二区三区av在线 | 99riav亚洲国产免费| 国产在线男女| 美女大奶头视频| 亚洲精品久久国产高清桃花| 成人综合一区亚洲| 少妇丰满av| 麻豆精品久久久久久蜜桃| 日本黄色视频三级网站网址| 最近最新免费中文字幕在线| 窝窝影院91人妻| 亚洲精品日韩av片在线观看| x7x7x7水蜜桃| 亚洲中文字幕一区二区三区有码在线看| 日本a在线网址| 小蜜桃在线观看免费完整版高清| 国产国拍精品亚洲av在线观看| 亚洲久久久久久中文字幕| 久久香蕉精品热| 久久久久久国产a免费观看| 亚洲美女搞黄在线观看 | 日本免费a在线| 国产伦精品一区二区三区四那| 99久久精品热视频| 亚洲美女搞黄在线观看 | 婷婷六月久久综合丁香| 99热这里只有是精品在线观看| 日本黄大片高清| 精品久久久久久久末码| 看十八女毛片水多多多| 亚洲aⅴ乱码一区二区在线播放| 午夜免费男女啪啪视频观看 | 国产人妻一区二区三区在| 在线观看免费视频日本深夜| 99国产精品一区二区蜜桃av| 欧美日韩国产亚洲二区| 噜噜噜噜噜久久久久久91| 淫妇啪啪啪对白视频| 久久这里只有精品中国| 成人亚洲精品av一区二区| 午夜免费成人在线视频| 狂野欧美白嫩少妇大欣赏| 国产一级毛片七仙女欲春2| 精品久久久久久久末码| 亚洲精品一卡2卡三卡4卡5卡| 极品教师在线免费播放| 人妻丰满熟妇av一区二区三区| 午夜福利18| 可以在线观看的亚洲视频| 国产毛片a区久久久久| 欧美性感艳星| av在线亚洲专区| 欧美性猛交黑人性爽| 国产成人a区在线观看| 欧美日韩黄片免| 久久久久久久久久黄片| 很黄的视频免费| 伦理电影大哥的女人| 丰满人妻一区二区三区视频av| 国产人妻一区二区三区在| 夜夜看夜夜爽夜夜摸| 久久亚洲真实| 国产精品98久久久久久宅男小说| 毛片一级片免费看久久久久 | 嫩草影院精品99| 啦啦啦韩国在线观看视频| 高清日韩中文字幕在线| 亚洲精品乱码久久久v下载方式| 精品久久久久久,| 很黄的视频免费| 特级一级黄色大片| 无遮挡黄片免费观看| 好男人在线观看高清免费视频| 国产亚洲精品综合一区在线观看| 97超视频在线观看视频| 观看免费一级毛片| 在线免费观看的www视频| 在线播放国产精品三级| 国产伦精品一区二区三区视频9| 男人狂女人下面高潮的视频| 久久国产乱子免费精品| 女的被弄到高潮叫床怎么办 | 十八禁国产超污无遮挡网站| 深夜精品福利| 国产色婷婷99| 精品久久国产蜜桃| 中文字幕高清在线视频| 亚洲精品国产成人久久av| 精品国内亚洲2022精品成人| 免费高清视频大片| 美女被艹到高潮喷水动态| 久久精品影院6| 欧美一级a爱片免费观看看| 免费不卡的大黄色大毛片视频在线观看 | av视频在线观看入口| 国产午夜精品论理片| 久久久久久大精品| 国产精品人妻久久久久久| 国国产精品蜜臀av免费| 亚洲av中文字字幕乱码综合| 国产一区二区三区在线臀色熟女| 搡老熟女国产l中国老女人| 久久久精品欧美日韩精品| 中文字幕av在线有码专区| 亚洲精品粉嫩美女一区| 国产激情偷乱视频一区二区| 深夜精品福利| 国产欧美日韩精品一区二区| a级毛片a级免费在线| 天堂av国产一区二区熟女人妻| 亚洲内射少妇av| 亚洲天堂国产精品一区在线| 久久人人精品亚洲av| 午夜精品在线福利| 日韩欧美在线乱码| 亚州av有码| xxxwww97欧美| 婷婷精品国产亚洲av| 日韩强制内射视频| av黄色大香蕉| 日韩欧美一区二区三区在线观看| 久久国产精品人妻蜜桃| 99在线人妻在线中文字幕| 人妻丰满熟妇av一区二区三区| 国产亚洲91精品色在线| 国产aⅴ精品一区二区三区波| 亚洲乱码一区二区免费版| 色视频www国产| 亚洲成人精品中文字幕电影| 色av中文字幕| 久久久成人免费电影| 尤物成人国产欧美一区二区三区| 亚洲av美国av| 联通29元200g的流量卡| 综合色av麻豆| 搞女人的毛片| 性插视频无遮挡在线免费观看| 欧美最新免费一区二区三区| 久久国内精品自在自线图片| 精品人妻偷拍中文字幕| 夜夜夜夜夜久久久久| 亚洲欧美日韩无卡精品| 欧美高清性xxxxhd video| 黄色女人牲交| 九色国产91popny在线| 亚洲男人的天堂狠狠| 最新中文字幕久久久久| 高清在线国产一区| 亚洲国产欧洲综合997久久,| 国产在线男女| 国产伦人伦偷精品视频| 亚洲av二区三区四区| 国产精品久久视频播放| 亚洲中文字幕日韩| 亚洲国产色片| 亚洲精品一区av在线观看| 亚洲一区高清亚洲精品| 午夜a级毛片| av黄色大香蕉| 少妇的逼好多水| 午夜日韩欧美国产| 天美传媒精品一区二区| 老熟妇乱子伦视频在线观看| 美女cb高潮喷水在线观看| 亚洲一区二区三区色噜噜| 乱系列少妇在线播放| 亚洲精品亚洲一区二区| 蜜桃亚洲精品一区二区三区| www.色视频.com| 男女那种视频在线观看| 琪琪午夜伦伦电影理论片6080| 日韩在线高清观看一区二区三区 | 欧美最黄视频在线播放免费| 最近视频中文字幕2019在线8| 亚洲性久久影院| 观看美女的网站| 婷婷亚洲欧美| 国产亚洲av嫩草精品影院| 一进一出抽搐gif免费好疼| 欧美xxxx性猛交bbbb| 亚洲乱码一区二区免费版| 色视频www国产| 久久热精品热| 男插女下体视频免费在线播放| 变态另类成人亚洲欧美熟女| 真人一进一出gif抽搐免费| 国产乱人视频| 99久国产av精品| 日韩欧美一区二区三区在线观看| 联通29元200g的流量卡| 国产精品女同一区二区软件 | 男人和女人高潮做爰伦理| ponron亚洲| 午夜激情福利司机影院| 一级a爱片免费观看的视频| 亚洲美女搞黄在线观看 | 99在线视频只有这里精品首页| 欧美+亚洲+日韩+国产| 男人狂女人下面高潮的视频| 99热网站在线观看| 免费人成在线观看视频色| 日韩强制内射视频| 色综合色国产| 国产亚洲av嫩草精品影院| 日韩一本色道免费dvd| 欧美中文日本在线观看视频| 22中文网久久字幕| 在线看三级毛片| 国产一区二区在线观看日韩| 亚洲人成网站高清观看| 嫩草影院精品99| 婷婷亚洲欧美| 国产精品嫩草影院av在线观看 | 久久久国产成人免费| 免费看a级黄色片| 校园春色视频在线观看| 亚洲熟妇中文字幕五十中出| 伦精品一区二区三区| 天天躁日日操中文字幕| 91久久精品电影网| 99久国产av精品| 久久中文看片网| 赤兔流量卡办理| 国产高清有码在线观看视频| 亚洲人成网站在线播放欧美日韩| 51国产日韩欧美| 搡老岳熟女国产| av黄色大香蕉| a级毛片a级免费在线| 国产精品国产高清国产av| 亚洲四区av| 最好的美女福利视频网| av黄色大香蕉| 亚洲最大成人av| 国产乱人伦免费视频| 1024手机看黄色片| 亚洲精品日韩av片在线观看| 又黄又爽又刺激的免费视频.| 欧美一区二区国产精品久久精品| 欧美激情久久久久久爽电影| 在现免费观看毛片| 国产三级在线视频| 尤物成人国产欧美一区二区三区| a级毛片免费高清观看在线播放| 黄色一级大片看看| 在线免费十八禁| 日本色播在线视频| 精品久久久噜噜| 我要搜黄色片| 亚洲电影在线观看av| aaaaa片日本免费| 国内揄拍国产精品人妻在线| 窝窝影院91人妻| 日日干狠狠操夜夜爽| 精品一区二区三区视频在线观看免费| 麻豆av噜噜一区二区三区| 国产精品久久久久久精品电影| 国产激情偷乱视频一区二区| 亚洲黑人精品在线| 12—13女人毛片做爰片一| 91精品国产九色| 久久久久久久久久黄片| 伦精品一区二区三区| 一本久久中文字幕| 国产av在哪里看| 天堂影院成人在线观看| 黄色视频,在线免费观看| 在线a可以看的网站| 少妇人妻精品综合一区二区 | 在线观看免费视频日本深夜| 99热6这里只有精品| 精品国产三级普通话版| 天堂av国产一区二区熟女人妻| 丝袜美腿在线中文| 日本免费一区二区三区高清不卡| 女人被狂操c到高潮| 亚洲精品色激情综合| 欧美人与善性xxx| 99久久精品国产国产毛片| 亚洲乱码一区二区免费版| 最近最新中文字幕大全电影3| 欧美性猛交╳xxx乱大交人| 一级黄色大片毛片| 麻豆精品久久久久久蜜桃| 国产私拍福利视频在线观看| 欧美日韩国产亚洲二区| 免费观看的影片在线观看| 午夜福利18| 国产在线精品亚洲第一网站| 国产av不卡久久| 18+在线观看网站| 亚洲五月天丁香| 午夜福利在线在线| 观看免费一级毛片| 观看美女的网站| 三级国产精品欧美在线观看| 亚洲av不卡在线观看| 国产黄a三级三级三级人| 白带黄色成豆腐渣| 亚洲成人久久爱视频| 午夜福利在线在线| 欧美高清性xxxxhd video| 琪琪午夜伦伦电影理论片6080| 精品福利观看| 免费在线观看成人毛片| 在线免费观看的www视频| 国产探花极品一区二区| 别揉我奶头~嗯~啊~动态视频| 国产午夜精品久久久久久一区二区三区 | 国产精品伦人一区二区| 五月玫瑰六月丁香| 黄色配什么色好看| 在线免费十八禁| 久久这里只有精品中国| 国产精品不卡视频一区二区| 99riav亚洲国产免费| 深夜a级毛片| 99热精品在线国产| 国产精品久久久久久av不卡| av天堂在线播放| 国产在视频线在精品| 亚洲av一区综合| 午夜福利在线观看免费完整高清在 | 少妇裸体淫交视频免费看高清| 国产极品精品免费视频能看的| 精品午夜福利视频在线观看一区| 久久久久久国产a免费观看| 在线观看免费视频日本深夜| 又爽又黄无遮挡网站| 国产黄a三级三级三级人| .国产精品久久| 麻豆av噜噜一区二区三区| 亚洲熟妇中文字幕五十中出| 久久久久久久久久成人| 色精品久久人妻99蜜桃| 久久热精品热| 午夜久久久久精精品| 一夜夜www| 大型黄色视频在线免费观看| 国产综合懂色| av视频在线观看入口| 日韩欧美国产一区二区入口| 日本一本二区三区精品| 欧美在线一区亚洲| 午夜福利在线在线| 欧美一级a爱片免费观看看| 亚洲黑人精品在线| 人人妻人人澡欧美一区二区| 亚洲三级黄色毛片| 性插视频无遮挡在线免费观看| 国产三级在线视频| 成人一区二区视频在线观看| 亚洲国产精品成人综合色| av中文乱码字幕在线| 免费在线观看日本一区| 欧美xxxx黑人xx丫x性爽| 亚洲精品日韩av片在线观看| 麻豆一二三区av精品| 免费观看的影片在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲精品av在线| 最近在线观看免费完整版|