• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-Layer High-Throughput: Effective Mass Calculations Including Warping

    2022-06-11 09:01:38AndrewSupkNicholsMecholskyMrcoBuongiornoNrdelliStefnoCurtroloMrcoFornri
    Engineering 2022年3期

    Andrew Supk, Nichols A. Mecholsky, Mrco Buongiorno Nrdelli, Stefno Curtrolo,Mrco Fornri,d,*

    a Department of Physics & Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, MI 48859, USA

    b Department of Physics & Vitreous State Laboratory, The Catholic University of America, Washington, DC 20064, USA

    c Department of Physics & Department of Chemistry, University of North Texas, Denton, TX 76203, USA

    d Center for Autonomous Materials Design, Duke University, Durham, NC 27708, USA

    e Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA

    Keywords:High-throughput Electronic structure Band warping Effective mass

    ABSTRACT In this paper, we perform two-layer high-throughput calculations. In the first layer, which involves changing the crystal structure and/or chemical composition, we analyze selected III–V semiconductors,filled and unfilled skutterudites,as well as rock salt and layered chalcogenides.The second layer searches the full Brillouin zone(BZ)for critical points within 1.5 eV(1 eV=1.602176×10-19 J)of the Fermi level and characterizes those points by computing the effective masses.We introduce several methods to compute the effective masses from first principles and compare them to each other. Our approach also includes the calculation of the density-of-states effective masses for warped critical points, where traditional approaches fail to give consistent results due to an underlying non-analytic behavior of the critical point. We demonstrate the need to consider the band structure in its full complexity and the value of complementary approaches to compute the effective masses. We also provide computational evidence that warping occurs only in the presence of degeneracies.

    1. Introduction

    The electronic band structure plays a fundamental role in our understanding of the origins of the physical properties of materials and in assessing paths for optimization and chemical substitutions.The dispersion relation of the solutions of the many-body electronic Schr?dinger equation provides quantitative information that is essential for understanding most of the functionalities that a material may exhibit.The band structure,En(k ),is a mapping from R3→ RN(where N is the number of relevant bands,n is the band index,and k is a vector indicating the crystalline momentum)and is usually represented by considering only two-dimensional (2D)band plots. Because any given band is a function whose domain is the three-dimensional (3D) Brillouin zone (BZ), k ∈ BZ ? R3,the graph of a given band is embedded in four dimensions. Band structure plots along high-symmetry lines are a useful tool for evaluating a material at a glance. However, the 2D representation hides the full complexity of the electronic spectrum by ignoring large sections of the BZ.Conventions,such as those in Ref.[1],provide common ground for band plots, but 2D band representations are intrinsically limited.

    Critical points, where ?En(k )/?k = 0 (with ?En(k )/?k indicating the gradient of En(k ) with respect to k), are an important feature of the electronic band structure. At these points, the density of states (DOS; also represented by the function of energy E,D(E)) is large (or diverges; see Ref. [2]):

    with the unit cell volume V and an infinitesimal element of the constant energy surface dS.Critical points are key in evaluating a material’s physical properties and fully characterizing the material. For example,for a 2D material,it is well known that saddle points lead to logarithmic singularities [3], and that maxima and minima in three dimensions lead to square root dependencies of the DOS and,in general,to van Hove singularities or non-smooth points[4].Thus, the identification of all critical points is an important goal.

    A related concept associated with the local properties of the electronic band structure involves the effective mass tensor M*,which is—assuming Taylor expansibility near k0—a second-rank tensor in 3D with components:

    where n is the band index, ˉh is the reduced Planck constant, meis the mass of electron, and the subscripts i, j are used to label the Cartesian components of the tensor M*or of the vector k.The reciprocal of the effective mass tensor is associated with the curvature of the energy dispersion, En(k ), and is a critical descriptor when discussing electronic transport and optical properties; its evaluation must be done by considering the full mathematical complexity of the band structure. In addition, the possible presence of nonanalytic points—such as points where the Hessian is not a symmetric matrix—leads to warped critical points,which play a role in several situations[5,6] but are difficult to identify with 2D band plots.By determining high-fidelity effective mass tensors at critical points, it is possible to formulate analytic models of band structures. Such models are important in many considerations in solidstate physics and electronic engineering; for example, they can be used as a starting point for Monte Carlo transport simulations [7]or for the multi-scale modeling [8] of electronic devices, batteries,and thermoelectric energy converters. Analytic band structures are used in applications such as modeling scattering rates where derivatives and integrals of the bands are necessary [7]. From an experimental standpoint,the DOS effective mass is a common property of the band structure that may be measured through cyclotron resonance [9–18], the four coefficients method [19], Shubnikov–de Haas oscillations [16,20–23], magnetophonon resonance[15,16,24,25], time-of-flight drift velocity [7,26–29], optical transmission and reflection[30–32], and infrared reflection and Faraday rotation [33–35]. Being able to compare the different measurements of the effective mass obtained with those indirect methods and reconcile such results with electronic structure calculations is a major goal.

    This paper introduces a two-layer high-throughput (HT)methodology with the aim of partially addressing the misalignement between theory and experiment in the current literature.The first layer is a conventional chemical substitution/structural variation(e.g.,see Refs.[36–42]),and the second is a careful exploration of En(k )to identify the nature of the critical points and compute the effective mass tensors. The conventional HT considers an array of prototypical materials: III–V semiconductors, filled and unfilled skutterudites, as well as rock salt and layered chalcogenides. For each material, we search the full BZ for critical points and determine the effective mass at those points using several different methodologies for verification [43]. These methodologies also characterize the warping of bands and correctly compute the DOS effective mass at those warped points [6]. To our knowledge,this is the first HT calculation of effective masses in a large portion of the BZ.

    In Section 2, we illustrate the details of the computations.Section 3 presents selected results(a large part of the data is included in Appendix A),and Section 4 discusses the impact of this work.

    2. Methods

    The prototypical materials selected for this work are as follows:III–V semiconductors(AlSb and AlP with the zincblende structure);rock salt (PbTe, GeTe, SnTe, PbS, GeS, SnS, PbSe, GeSe, and SnSe)and layered chalcogenides (Bi2Te3, Bi2Te2Se, Bi2Se2Te, Bi2Se3,Bi2Te2S, and Bi2Se2S); and pristine and fully filled cobalt antimonide (specifically CoSb3, CaCo4Sb12, and BaCo4Sb12). For each material, the workflow starts by generating a projected atomic orbital tight-binding (PAO-TB) Hamiltonian, which is exploited to interpolate the band structure efficiently and precisely [44]. We use Quantum Espresso (Quantum ESPRESSO Foundation, UK)[45,46] to calculate the electronic structure in the AFLOWπ HT computational framework [47].

    The AFLOWπ’s workflow (Fig. 1) drives the calculation of the Hubbard U correction within the ACBN0 [48–51] scheme (see Tables S1,S4,S14,and S18 in Appendix A),optimizes the structure of the unit cell,and generates the PAO-TB Hamiltonian.The wavefunction and charge kinetic energy cutoffs were 150 and 600 Ry(1 Ry = 2.179872 × 10-18J), respectively, and a Monkhorst–Pack k-point grid with a density of about 0.01 ?-1has been used. The choice of pseudopotentials was driven by a need to maximize the number of well-projected bands in the PAO-TB model;for this purpose, Perdew–Burke–Ernzerhof (PBE)-projector augmented wave(PAW) pseudopotentials generated from the PSlibrary [52] were modified to have an extended basis [44]. The computations included spin–orbit coupling. For comparison and testing of warping, calculations without spin–orbit were also performed.PAOFLOW (University of North Texas, USA) [53] was used to project the computationally expensive Hamiltonian from the plane wave basis into the more efficient PAO-TB basis. The PAO-TB Hamiltonian allows the exploitation of the Fourier interpolation to obtain a smooth version of the band structure. The full BZ was divided into a 12×12×12 grid, and each voxel was searched for an isolated critical point. It was assumed that a voxel would contain at most one critical point. We chose a 12×12×12 grid to strike a balance between accuracy and computational efficiency.The locations of the critical points in k-space were then compared using operations of the symmetry group to identify unique critical points.This was done for ease of computation and for uniformity in analysis, given different crystal structures.

    Fig. 1. The AFLOWπ workflow script used in this study. More details on AFLOWπ are available in Ref. [47].

    In order to identify critical points,we identified k-points,where the band velocities vnare very small.

    It should be noted that, in the definition of m*DOS, only one among the possible equivalent k-points is considered.The validity of the Fourier approach (which is very efficient computationally)holds for all non-warped bands but fails in the case of warped bands where the Hessian is not symmetric. In order to treat all the critical points in the same way,we calculated the inverse effective mass surface(IEMS)and used it to determine the three diagonal components of the effective mass tensor, the DOS effective mass accounting for band warping effects [6], and the band warping parameter (w) [5].

    is the matrix of second partial derivatives of the energy dispersion and A is the Euler rotation matrix (see Eq. 4.46 in Ref. [57]). Here,

    Fig.2. A 2D slice k = (i , j, 0.5)of the 3 components of the gradient of the energy for the bottom conduction band in the first BZ for SnTe.The purple and green represent k with large positive and negative values, respectively, for each gradient component.

    Fig.3. Energy dispersion in several radial directions around the degenerate,warped Γ point k = (0 , 0, 0) near the Fermi level (EFermi) in CaCo4Sb12. The lattice parameter is indicated with a.

    The sign of the integral depends on the sign of the IEMS. For saddle points, the value of the integrand in Eq. (14) approaches infinity when f2(φ, θ) approaches zero. In principle, one can integrate over the range of φ and θ where f2(φ, θ)is positive and separately where it is negative.In practice,however,it proves difficult to achieve convergence for the integral,and we do not include the calculation of the DOS effective mass for warped saddle points in our results. To the best of our knowledge,the problem of properly accounting for saddle points is still unsolved.

    3. Results

    There is a wide range of effects on the DOS and other material properties from the local band structure at critical points [4]. The HT procedure produces many such critical points for a given crystal, and the distribution and type of critical points ultimately account for the similarities and differences in material properties.Table 1 [58,59] summarizes some of our computations for several common materials in comparison with reference values.The effective mass was computed by all three methods discussed above:m*DOSby fitting Fourier derivatives (Eq. (6), m*F), m*DOSby fitting the IEMS(m*I),and m*DOSfrom the warped definition(m*wevaluated from Eqs. (13) and (14)). It should be noticed that, in Table 1, all calculations for masses agree for non-warped critical points,including the warped calculation of Eqs. (13) and (14). This is to be expected and is reflected in the data in general.Large discrepancies in the experimental effective masses of different materials make it difficult to directly compare with the calculated effective mass; however, our study compares favorably in most cases with the results from previous work (Table 1). All our results are included in Appendix A, specifically the band structure plots, the Hubbard U corrections, and the effective mass computed for critical points in the proximity of the Fermi level. It should be noted that experimental data are not available for critical points away from the Fermi level.

    Table 1 Comparison of the IEMS fit(m*I),Fourier derivative(m*F),and warped(m*w)DOS effective masses calculated in our study with measured values(m*exp).The subscripts indicate the band-type (e: electron, h: hole, so: split-off), L and Γ are the conventional labels for two different critical points.

    Fig.4. Critical points for FCC GeS in the first BZ.Each polyhedral shape relates to a different symmetry (star of the k-point) of the BZ, depending on the location of a representative point.

    Consider Fig. 6 where the relative error of the direct fitting relative to the warped DOS effective mass is plotted versus the warping parameter. It can be seen from the figure that there is a general positive correlation,indicating that the warping parameter is a measure of how badly traditional methods(e.g.,direct fitting or the Fourier method) perform when evaluating effective masses;thus,the warping parameter is an indication of how badly a Taylor approximation will perform in approximating the surface of an IEMS at a warped point. This is similar to what is reported in Ref.[6]for a surface warped in Kittel’s form.Thus,the only correct value for the DOS effective mass is m*w. Fig. 7 shows the DOS of CaCo4Sb12. Critical points (van Hove singularities) are marked as red disks. The size of the disk indicates the amount of warping,as calculated in Ref. [5]. It can be seen that the DOS effective masses give rise to the shape of the non-smooth points.The particular shape can be expressed in terms of the DOS effective mass[4,6].With spin–orbit coupling included, the largest warping value w is about 1.94 in CaCo4Sb12at Γ. In general, without spin–orbit coupling, there are many more warped points (since spin–orbit coupling lifts degeneracy), and the warping is larger in that case.This study provides a computational answer to questions related to the origin and occurrence of warping effects [60]. Without exception,warping did not occur at a specific critical point without the presence of degeneracies.

    Fig.5. An example of the Si band structure computed along the path suggested by Ref. [1] without spin–orbit coupling and with warping noted in red circles. The magnitude of the warping parameter w, is given as the size of the disk.

    Table 2 Warping extent w and DOS effective mass at selected warped critical points calculated with 3 different methods: integral over the IEMS, ellipsoidal fit of the IEMS, and secondorder Fourier derivative.The table includes the following critical points:hole band m*e (H),heavy-hole band(m*hh),and light-hole band(m*lh)at Γ= (0 , 0, 0),the maximum of the valence band (m*max) at X = (1, 0, 0) or Γ, and selected saddle point (m*sad) at Γ.

    Fig. 6. The error between the warped effective mass DOS calculation and the DOS effective mass calculated with the fit to the IEMS versus the dimensionless warping parameter (w), for the materials in this study.

    Fig.7. DOS for CaCo4Sb12 including spin–orbit coupling.The van Hove singularities are identified by red disks, where the diameter of the disk is determined by the warping parameter of the critical point located at the center of the disk.The shapes of the IEMS at the warped critical points are included in the figure. Blue (red)portions of the IEMS represent negative (positive) band curvature.

    In all of the cubic materials, all saddle points at Γ and at L (or other critical points) are warped. The reason for this can be seen in the requirements placed on the IEMS: The IEMS will have regions of positive and negative values due to the saddle behavior of the energy dispersion, and the cubic symmetry forces the principal directions to be the same. These two competing geometric requirements lead to warping at these points.

    The HT list of critical points and effective masses has a variety of applications.For example,a full approximate analytic model of the BZ may be accomplished by approximating each critical point with the corresponding ellipsoid or saddle in the case of materials where warping is not an issue for critical points near the Fermi energy.This could be used for calculating scattering rates in Monte Carlo simulations[7]or for calculations of relaxation times[61]for different scattering processes.Moreover,a full analytic band structure would allow for possible band engineering,for the exploration of material properties,and even for the low-dimensionality reduction of thermoelectric properties [62]. A full description of the effective masses would also provide a model for the exploration of anisotropic transport considerations. As opposed to critical points that are not near high-symmetry points, lines, or planes,none of the effective masses from a quadratic expansion of the energy dispersion need to be the same. This gives rise to anisotropic transport that is all but ignored to avoid excessive complication. This procedure provides examples where anisotropy may be relevant for transport or other properties and provides a first step toward realistic analytic descriptions of band structures with these properties.

    The Appendix A includes: ①the Hubbard U correction determined with the ACBN0 self-consistent protocol (Tables S1, S4,S14, and S18); ②characterization of the critical points found in the proximity of the Fermi level for AlSb, AlP, GeS, GeSe, GeTe,PbS, PbSe, PbTe, SnS, SnSe, SnTe, CoSb3, CaCo4Sb12, BaCo4Sb12, Bi2-Se2Te, Bi2Te3, Bi2Te2Se, Bi2Se3, Bi2Te2S, and Bi2Se2S (Tables S2, S3,S5, S7–S13, S15–S17, and S19–S24 in Appendix A); and ③band structure plots (Figs. S1–S20 in Appendix A).

    4. Conclusions

    We have designed and applied a two-level HT calculation with the aim of finding and characterizing critical points in the BZs of several materials.This search identified features of the band structures, En(k ), that are not visible in 2D plots but nonetheless contribute to electronic transport, DOS, and other material properties. We used three different methods to compute the DOS effective masses at these critical points:namely,the direct method,the Fourier derivative method,and the warped method.At analytic(ellipsoidal) critical points, all approaches agreed with each other and aligned well with literature values,where available.This study also identified many warped critical points and used Eqs. (13) and(14)to correctly calculate the DOS effective mass.At these warped points, we provided reliable values for m*DOSusing the theory reported in Ref.[5].All three methods disagreed,but the‘‘warped”method was correct. Standard 2D band structure plots are often inadequate to convey the complicated nature of the effective masses at important critical points. Our HT procedure overcomes this issue and facilitates comparison with experiments and the development of analytical models, as well as band structure engineering and the tuning of properties for technological applications.

    Acknowledgments

    The authors would like to thank Lorenzo Resca for helpful discussions regarding the symmetry properties of the Brillouin zones,along with other aspects concerning warping. This work was performed in part through computational resources and services provided by the Institute for Cyber-Enabled Research at Michigan State University.Nicholas A.Mecholsky would like to acknowledge financial support from the Vitreous State Laboratory.

    Compliance with ethics guidelines

    Andrew Supka, Nicholas A. Mecholsky, Marco Buongiorno Nardelli, Stefano Curtarolo, and Marco Fornari declare that they have no conflict of interest or financial conflicts to disclose.

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2021.03.031.

    国产成人一区二区在线| 校园人妻丝袜中文字幕| 在线观看免费午夜福利视频| 高清黄色对白视频在线免费看| 国产精品久久久人人做人人爽| 人人妻,人人澡人人爽秒播 | 青草久久国产| 欧美日韩综合久久久久久| 大香蕉久久网| 宅男免费午夜| 尾随美女入室| 在线观看免费视频网站a站| 18禁动态无遮挡网站| 大片免费播放器 马上看| 天天躁夜夜躁狠狠久久av| 久久国产精品男人的天堂亚洲| av卡一久久| 十八禁人妻一区二区| 韩国精品一区二区三区| 男女国产视频网站| 男女下面插进去视频免费观看| 国产精品熟女久久久久浪| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美激情 高清一区二区三区| 精品少妇内射三级| 69精品国产乱码久久久| 欧美黑人欧美精品刺激| 丰满饥渴人妻一区二区三| 国产激情久久老熟女| 午夜av观看不卡| 国产黄色免费在线视频| 美女大奶头黄色视频| 精品福利永久在线观看| 男女之事视频高清在线观看 | 国产精品久久久久成人av| 无限看片的www在线观看| 亚洲国产最新在线播放| 国产成人免费无遮挡视频| 亚洲av福利一区| 国产男女内射视频| 国产麻豆69| 精品国产一区二区久久| 操美女的视频在线观看| 在线观看免费午夜福利视频| 操出白浆在线播放| 日本vs欧美在线观看视频| bbb黄色大片| 精品国产一区二区久久| 免费不卡黄色视频| 亚洲免费av在线视频| 免费不卡黄色视频| 777米奇影视久久| 国产亚洲午夜精品一区二区久久| 一级毛片电影观看| 黑人欧美特级aaaaaa片| 啦啦啦视频在线资源免费观看| 中文字幕高清在线视频| 最近手机中文字幕大全| av女优亚洲男人天堂| 黄色视频在线播放观看不卡| 亚洲欧美一区二区三区国产| 老司机在亚洲福利影院| 少妇人妻精品综合一区二区| 建设人人有责人人尽责人人享有的| 性色av一级| 天天躁夜夜躁狠狠躁躁| 亚洲精品一区蜜桃| 精品国产一区二区三区四区第35| 久久精品熟女亚洲av麻豆精品| 久久毛片免费看一区二区三区| 黄片小视频在线播放| 岛国毛片在线播放| 国产熟女欧美一区二区| 亚洲激情五月婷婷啪啪| 最新的欧美精品一区二区| 香蕉国产在线看| 在线观看三级黄色| 中文精品一卡2卡3卡4更新| 久久午夜综合久久蜜桃| 亚洲一级一片aⅴ在线观看| av又黄又爽大尺度在线免费看| 夫妻午夜视频| 看免费av毛片| 亚洲自偷自拍图片 自拍| 国产精品久久久久久精品电影小说| 在线观看www视频免费| 国产在线一区二区三区精| 亚洲欧美色中文字幕在线| 国产午夜精品一二区理论片| 亚洲中文av在线| 天天添夜夜摸| 丝袜人妻中文字幕| 香蕉国产在线看| 一级片'在线观看视频| 亚洲精品久久午夜乱码| 在现免费观看毛片| 丝袜在线中文字幕| 无遮挡黄片免费观看| 亚洲,欧美精品.| 成人亚洲欧美一区二区av| 亚洲欧美精品自产自拍| 成人手机av| 国产97色在线日韩免费| 成人18禁高潮啪啪吃奶动态图| 大片免费播放器 马上看| 欧美日韩av久久| 超碰97精品在线观看| 晚上一个人看的免费电影| 精品亚洲成a人片在线观看| 秋霞伦理黄片| 80岁老熟妇乱子伦牲交| 老汉色av国产亚洲站长工具| 99精国产麻豆久久婷婷| 日韩av不卡免费在线播放| 91精品三级在线观看| 久久久精品免费免费高清| 亚洲精华国产精华液的使用体验| 老汉色av国产亚洲站长工具| av.在线天堂| 免费高清在线观看视频在线观看| 人人妻人人澡人人看| 大片电影免费在线观看免费| 天美传媒精品一区二区| 亚洲精品av麻豆狂野| 日日爽夜夜爽网站| 免费观看性生交大片5| 欧美乱码精品一区二区三区| 在线免费观看不下载黄p国产| 国产乱人偷精品视频| 80岁老熟妇乱子伦牲交| 国产免费现黄频在线看| 久久99精品国语久久久| 中国三级夫妇交换| 搡老乐熟女国产| 啦啦啦在线免费观看视频4| 久久久久网色| 欧美亚洲日本最大视频资源| 国产乱人偷精品视频| 国产av一区二区精品久久| 成人免费观看视频高清| 亚洲激情五月婷婷啪啪| 精品国产一区二区久久| xxx大片免费视频| 欧美久久黑人一区二区| 精品国产露脸久久av麻豆| 国产成人午夜福利电影在线观看| 亚洲人成网站在线观看播放| 日日啪夜夜爽| 免费看av在线观看网站| 我要看黄色一级片免费的| 亚洲情色 制服丝袜| 操出白浆在线播放| 日韩人妻精品一区2区三区| 亚洲av日韩精品久久久久久密 | 性高湖久久久久久久久免费观看| 久久狼人影院| 亚洲成人免费av在线播放| 黄色 视频免费看| 少妇 在线观看| 欧美 亚洲 国产 日韩一| a 毛片基地| 久久久久久人人人人人| 国产免费又黄又爽又色| 成年人免费黄色播放视频| 久久久亚洲精品成人影院| 色婷婷av一区二区三区视频| 国产片内射在线| 午夜日韩欧美国产| 亚洲精品成人av观看孕妇| 国产成人系列免费观看| www.av在线官网国产| 亚洲激情五月婷婷啪啪| 亚洲成国产人片在线观看| 一二三四中文在线观看免费高清| 国产精品99久久99久久久不卡 | 婷婷色麻豆天堂久久| 色综合欧美亚洲国产小说| 91精品国产国语对白视频| 免费黄色在线免费观看| 美女午夜性视频免费| 黄色一级大片看看| 麻豆av在线久日| bbb黄色大片| 国产精品免费大片| 国产精品久久久久成人av| 亚洲精品成人av观看孕妇| 丝袜喷水一区| 亚洲,欧美,日韩| 久久久亚洲精品成人影院| 亚洲美女视频黄频| 欧美少妇被猛烈插入视频| 婷婷色综合www| 久久精品国产a三级三级三级| 岛国毛片在线播放| 美女视频免费永久观看网站| 国产又爽黄色视频| 亚洲av日韩精品久久久久久密 | 成年动漫av网址| 岛国毛片在线播放| 国产精品无大码| av天堂久久9| 成年人午夜在线观看视频| 新久久久久国产一级毛片| www.av在线官网国产| 一区二区三区精品91| 成人国语在线视频| 高清不卡的av网站| 侵犯人妻中文字幕一二三四区| 波多野结衣av一区二区av| 国产免费现黄频在线看| 大香蕉久久成人网| 黑人猛操日本美女一级片| 欧美国产精品va在线观看不卡| www.自偷自拍.com| 不卡视频在线观看欧美| 视频在线观看一区二区三区| 精品一区二区三区四区五区乱码 | 69精品国产乱码久久久| 久久久久精品国产欧美久久久 | 老司机深夜福利视频在线观看 | 捣出白浆h1v1| 亚洲国产成人一精品久久久| 妹子高潮喷水视频| 日日啪夜夜爽| 亚洲中文av在线| 国产极品天堂在线| 免费av中文字幕在线| 国语对白做爰xxxⅹ性视频网站| 飞空精品影院首页| 热99久久久久精品小说推荐| 国产成人精品无人区| 一级毛片 在线播放| 嫩草影院入口| 狠狠精品人妻久久久久久综合| kizo精华| 亚洲人成77777在线视频| 国产一区二区三区av在线| 国产精品人妻久久久影院| 亚洲国产最新在线播放| 如何舔出高潮| 在线观看人妻少妇| 久久精品国产亚洲av涩爱| 大香蕉久久成人网| 男女边吃奶边做爰视频| 日本欧美国产在线视频| 男女边吃奶边做爰视频| 91精品国产国语对白视频| 久久精品久久久久久久性| 欧美变态另类bdsm刘玥| 精品国产一区二区三区久久久樱花| 91国产中文字幕| 国产精品欧美亚洲77777| 又黄又粗又硬又大视频| 18禁动态无遮挡网站| 久久av网站| 免费高清在线观看视频在线观看| 汤姆久久久久久久影院中文字幕| 久久这里只有精品19| 99热网站在线观看| 丰满乱子伦码专区| 中文字幕精品免费在线观看视频| 精品亚洲乱码少妇综合久久| 美女高潮到喷水免费观看| 一区二区三区精品91| 国产男女内射视频| 人人妻人人添人人爽欧美一区卜| 少妇人妻精品综合一区二区| 国产免费又黄又爽又色| 国产av精品麻豆| 一区在线观看完整版| 两个人看的免费小视频| 国产日韩欧美视频二区| 亚洲视频免费观看视频| 天堂中文最新版在线下载| xxx大片免费视频| 少妇人妻精品综合一区二区| 日本91视频免费播放| 男女床上黄色一级片免费看| 亚洲精品自拍成人| 大码成人一级视频| 无限看片的www在线观看| 精品亚洲成a人片在线观看| 国产熟女欧美一区二区| av网站在线播放免费| 侵犯人妻中文字幕一二三四区| 在线观看免费视频网站a站| 人成视频在线观看免费观看| 熟女少妇亚洲综合色aaa.| 欧美国产精品va在线观看不卡| 国产一区有黄有色的免费视频| 亚洲成色77777| 少妇人妻久久综合中文| 无限看片的www在线观看| 老熟女久久久| 99国产精品免费福利视频| 人成视频在线观看免费观看| 美女扒开内裤让男人捅视频| 国产精品久久久久久精品电影小说| 精品亚洲成国产av| 国产熟女欧美一区二区| 久久久久视频综合| 我要看黄色一级片免费的| 国产淫语在线视频| 亚洲av中文av极速乱| av天堂久久9| 女人被躁到高潮嗷嗷叫费观| 午夜福利免费观看在线| 性少妇av在线| 一本大道久久a久久精品| 国产亚洲av片在线观看秒播厂| 天堂中文最新版在线下载| 一本色道久久久久久精品综合| 热99国产精品久久久久久7| 欧美在线黄色| 人成视频在线观看免费观看| 男女边吃奶边做爰视频| 一级黄片播放器| 国产探花极品一区二区| 观看av在线不卡| 亚洲,一卡二卡三卡| 天天躁夜夜躁狠狠躁躁| 国产免费现黄频在线看| 中文字幕色久视频| 亚洲自偷自拍图片 自拍| 男女无遮挡免费网站观看| 老鸭窝网址在线观看| 国产精品免费大片| 精品国产超薄肉色丝袜足j| 久久av网站| 免费在线观看黄色视频的| 无限看片的www在线观看| 精品一品国产午夜福利视频| 成人手机av| 国产免费视频播放在线视频| 亚洲少妇的诱惑av| 制服丝袜香蕉在线| 国产亚洲欧美精品永久| 国产亚洲av高清不卡| 亚洲久久久国产精品| 精品一区二区三区四区五区乱码 | av福利片在线| 热re99久久国产66热| 国产一区有黄有色的免费视频| 日韩av在线免费看完整版不卡| 中国国产av一级| 九九爱精品视频在线观看| 男女下面插进去视频免费观看| 成人漫画全彩无遮挡| 成年av动漫网址| 男的添女的下面高潮视频| 精品第一国产精品| 中文字幕亚洲精品专区| 黄频高清免费视频| 久久久久人妻精品一区果冻| 亚洲精品中文字幕在线视频| 免费高清在线观看日韩| 久久久精品94久久精品| 久久久久久久国产电影| 国产免费福利视频在线观看| 色综合欧美亚洲国产小说| 一边摸一边做爽爽视频免费| 亚洲国产日韩一区二区| 国产精品人妻久久久影院| 天堂俺去俺来也www色官网| 日韩熟女老妇一区二区性免费视频| 亚洲综合色网址| 三上悠亚av全集在线观看| 51午夜福利影视在线观看| 久久ye,这里只有精品| 如何舔出高潮| 免费女性裸体啪啪无遮挡网站| 一级片'在线观看视频| 久久久精品区二区三区| 国产在线免费精品| 成人国产av品久久久| 成人国语在线视频| 午夜福利,免费看| 免费高清在线观看视频在线观看| 日本av手机在线免费观看| 国产亚洲精品第一综合不卡| 久久人妻熟女aⅴ| 久久ye,这里只有精品| 久久久久久久大尺度免费视频| 久久国产精品大桥未久av| 美女扒开内裤让男人捅视频| 999精品在线视频| 男女之事视频高清在线观看 | 婷婷色麻豆天堂久久| 观看美女的网站| 新久久久久国产一级毛片| 亚洲人成电影观看| 午夜91福利影院| 亚洲人成网站在线观看播放| 日本av免费视频播放| 高清欧美精品videossex| 另类亚洲欧美激情| 69精品国产乱码久久久| 国产成人a∨麻豆精品| 在线观看一区二区三区激情| 亚洲精品视频女| 嫩草影院入口| 日韩一区二区视频免费看| 国产欧美日韩综合在线一区二区| 又黄又粗又硬又大视频| 亚洲成人国产一区在线观看 | 亚洲欧洲国产日韩| 亚洲欧美精品综合一区二区三区| 国产一区二区三区综合在线观看| 日本午夜av视频| 国产精品熟女久久久久浪| 在线天堂中文资源库| 2018国产大陆天天弄谢| 九九爱精品视频在线观看| 国产福利在线免费观看视频| 欧美日韩视频高清一区二区三区二| 女人高潮潮喷娇喘18禁视频| 亚洲精品久久久久久婷婷小说| 看免费av毛片| 日韩视频在线欧美| 欧美人与性动交α欧美精品济南到| 婷婷色综合www| 久久天堂一区二区三区四区| 人人妻人人澡人人看| 欧美成人午夜精品| 亚洲人成77777在线视频| 欧美另类一区| 18禁动态无遮挡网站| 久久久久久久久久久久大奶| 久久韩国三级中文字幕| 亚洲国产看品久久| 制服诱惑二区| 国产在视频线精品| a级片在线免费高清观看视频| 黄片无遮挡物在线观看| 亚洲欧美一区二区三区久久| 考比视频在线观看| 精品国产一区二区久久| 侵犯人妻中文字幕一二三四区| 香蕉丝袜av| 午夜免费鲁丝| 秋霞伦理黄片| 精品一区二区三区四区五区乱码 | 777米奇影视久久| 伊人久久大香线蕉亚洲五| 日韩一本色道免费dvd| 午夜日韩欧美国产| 亚洲精品一二三| 日韩中文字幕视频在线看片| 韩国av在线不卡| 亚洲一码二码三码区别大吗| 成人漫画全彩无遮挡| tube8黄色片| 欧美日韩一级在线毛片| 最近的中文字幕免费完整| 免费高清在线观看日韩| 成人影院久久| 国产精品麻豆人妻色哟哟久久| 免费人妻精品一区二区三区视频| 亚洲自偷自拍图片 自拍| 岛国毛片在线播放| 久久久久精品国产欧美久久久 | 国产福利在线免费观看视频| 国产99久久九九免费精品| 国产成人系列免费观看| 欧美日韩福利视频一区二区| 侵犯人妻中文字幕一二三四区| 免费观看人在逋| av国产精品久久久久影院| 一级爰片在线观看| 国产欧美日韩综合在线一区二区| 19禁男女啪啪无遮挡网站| 两个人免费观看高清视频| 一区二区av电影网| 另类精品久久| 汤姆久久久久久久影院中文字幕| 亚洲一区中文字幕在线| 国产有黄有色有爽视频| 久久97久久精品| 1024香蕉在线观看| xxx大片免费视频| 日日啪夜夜爽| 99热国产这里只有精品6| 天堂俺去俺来也www色官网| 久久99一区二区三区| 色播在线永久视频| 亚洲精品美女久久久久99蜜臀 | 大片电影免费在线观看免费| 国产深夜福利视频在线观看| 亚洲美女黄色视频免费看| 一级a爱视频在线免费观看| 男女之事视频高清在线观看 | 色综合欧美亚洲国产小说| 亚洲伊人色综图| 99香蕉大伊视频| 悠悠久久av| 黄片无遮挡物在线观看| 亚洲精品第二区| 纵有疾风起免费观看全集完整版| 精品国产国语对白av| 久久久久久久久久久免费av| 老汉色∧v一级毛片| 色精品久久人妻99蜜桃| 午夜91福利影院| 欧美激情极品国产一区二区三区| 两个人看的免费小视频| 国产成人午夜福利电影在线观看| 午夜激情久久久久久久| 免费黄频网站在线观看国产| 国产麻豆69| 飞空精品影院首页| 免费观看a级毛片全部| 亚洲熟女毛片儿| 午夜日本视频在线| 最近的中文字幕免费完整| 最近最新中文字幕大全免费视频 | 欧美人与性动交α欧美软件| 国产av精品麻豆| 好男人视频免费观看在线| 国产一区二区激情短视频 | 啦啦啦 在线观看视频| 国产成人av激情在线播放| 精品人妻在线不人妻| 一级片'在线观看视频| 午夜影院在线不卡| 各种免费的搞黄视频| 极品少妇高潮喷水抽搐| 久久这里只有精品19| av线在线观看网站| 亚洲美女视频黄频| 天天躁夜夜躁狠狠躁躁| 成人黄色视频免费在线看| 亚洲国产欧美日韩在线播放| 如日韩欧美国产精品一区二区三区| 亚洲精品在线美女| 亚洲精品,欧美精品| 亚洲三区欧美一区| 免费人妻精品一区二区三区视频| 一级a爱视频在线免费观看| 一级片免费观看大全| 亚洲一区中文字幕在线| 亚洲七黄色美女视频| 最近手机中文字幕大全| 在线天堂最新版资源| 亚洲欧美清纯卡通| 亚洲第一区二区三区不卡| 超碰成人久久| 国产成人精品久久久久久| 亚洲四区av| 51午夜福利影视在线观看| 我要看黄色一级片免费的| 99精国产麻豆久久婷婷| 午夜福利影视在线免费观看| 精品国产露脸久久av麻豆| 一区二区三区乱码不卡18| 中文字幕另类日韩欧美亚洲嫩草| 咕卡用的链子| 欧美xxⅹ黑人| 老司机深夜福利视频在线观看 | 日韩中文字幕欧美一区二区 | 午夜老司机福利片| 亚洲国产精品国产精品| 成人国产av品久久久| 久久精品亚洲熟妇少妇任你| 51午夜福利影视在线观看| 成年人午夜在线观看视频| 欧美精品一区二区大全| 狂野欧美激情性bbbbbb| 免费高清在线观看视频在线观看| 热re99久久精品国产66热6| 如日韩欧美国产精品一区二区三区| 老汉色∧v一级毛片| 少妇人妻 视频| 十八禁高潮呻吟视频| 亚洲免费av在线视频| 亚洲国产毛片av蜜桃av| 狂野欧美激情性xxxx| 精品一品国产午夜福利视频| 欧美少妇被猛烈插入视频| 国产毛片在线视频| 久久99热这里只频精品6学生| 99国产精品免费福利视频| 高清不卡的av网站| 亚洲av日韩精品久久久久久密 | 午夜激情久久久久久久| 欧美变态另类bdsm刘玥| 91老司机精品| 黄色一级大片看看| 人妻人人澡人人爽人人| 亚洲欧美精品自产自拍| 国产精品一区二区精品视频观看| 国产精品国产三级专区第一集| 婷婷成人精品国产| 一区在线观看完整版| 国产在线一区二区三区精| 中文字幕色久视频| 少妇被粗大的猛进出69影院| 天堂8中文在线网| 久久久国产精品麻豆| 大片免费播放器 马上看| 免费女性裸体啪啪无遮挡网站| 五月天丁香电影| 久久免费观看电影| 超碰97精品在线观看| 亚洲国产av新网站| 国产亚洲精品第一综合不卡| 熟女少妇亚洲综合色aaa.| 国产成人午夜福利电影在线观看| 人人妻人人添人人爽欧美一区卜| 欧美日本中文国产一区发布| 久久精品国产综合久久久| 纵有疾风起免费观看全集完整版| 国产亚洲av高清不卡| 日本午夜av视频| 波多野结衣av一区二区av| 男女高潮啪啪啪动态图|