• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Visualizing carboxyl-terminal domain of RNA polymerase II recruitment by FET fusion protein condensates with DNA curtains

    2022-06-09 04:18:54LinyuZuoJiaweiDingZhiQi
    Biophysics Reports 2022年2期

    Linyu Zuo,Jiawei Ding,Zhi Qi ?

    1 Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China

    Abstract Many recent references show that living cells can form some membrane-less organelles by liquid—liquid phase separation (LLPS) of biomolecules, like proteins and nucleic acids. LLPS has been confirmed to link with many important biological functions in living cells, and one of the most important functions of biomolecular condensates is in the field of RNA transcription. Many studies confirm that mammalian RNA polymerase II (Pol II) molecules containing the CTD with different phosphorylation level are purposed to shuttle between initiation condensates and elongation condensates of RNA transcription. Traditional ensemble assays often experience difficulties in quantitively and directly recording the transient recruitment of Pol II CTD. Novel single-molecule approach — DNA curtains can be used to directly visualize biomolecular condensates formation and also recruitment of RNA polymerase II (Pol II) carboxyl-terminal domain (CTD) at the target sites in solution and in real time. This method can offer the potential for new insights into the mechanism of gene transcription. Here, we highlight the detailed protocol of DNA curtains method for studying LLPS.

    Keywords Liquid—liquid phase separation (LLPS), Biomolecular condensates, Single-molecule biophysics, DNA curtains, In vitro transcription assay

    INTRODUCTION

    The membrane acts as a selective boundary to separate different organelles physically in the cell. However,there are also many membrane-less organelles with specific functions, such as P body, stress granule, Cajal body, which are resulted from liquid—liquid phase separation (LLPS) in vivo (Andersonet al. 2015;Brangwynne et al. 2009; Matera 2003; Zhu and Brangwynne 2015). The term LLPS is commonly used in biology referring to the macromolecules in solvent segregated into a concentrated liquid phase from a dilute macromolecules-depleted phase. Since the last century the theoretical hypothesis has been proposed that the biomolecules inside the cell though with a relatively low concentration are able to undergo phase separation in the presence of macromolecular crowding and drive the cytoplasm compartmentalization (Walter and Brooks 1995).

    Before LLPS was widely applied to explain biomolecular phenomena, several methods had been used to depict the liquid properties of membrane-less organelles, for example, living cell imaging by timelapse fluorescence microscopy recorded the fission and fusion events of Cajal bodies (Platani et al. 2000), while fluorescence recovery after photobleaching (FRAP)(Reits and Neefjes 2001) and fluorescence correlation spectroscopy (FCS) (Peng et al. 2020) techniques help demonstrated the high mobility and exchange dynamics of the proteins inside promyelocytic leukemia protein (PML) nuclear bodies (Weidtkamp-Peterset al. 2008), nuclear speckles (Kruhlak et al.2000; Lamond and Spector 2003; Phair and Misteli 2000), and polycomb (Ficz et al. 2005). It was not until 2009 that the concept of phase separation was starting to link with biological studies, when the pioneering study described the liquid-like properties and phase separation driven formation of P-bodies(Brangwynne2009), and later the condensates inside the nucleoli (Brangwynne2011).Afterwards, the reconstitution experiments using purified biomolecules have set the paradigm of studying LLPS(Kato2012; Li2012).The early studies have established the definite standard for the LLPS of biomolecules: the roundness of the condensates, the fission and fusion events of the condensates, and the high mobility and exchange dynamics of the molecules inside the condensates measured by FRAP experiment (Boeynaems2018;Mcswiggen2019). These references let us know that these biomolecular condensates formations are mediated by two main factors, which are multivalent interactions among biomolecules and proteins containing intrinsically disordered regions (IDRs) or low-complexity domains (LCDs) (Burke2015;Coletta2010; Li2012; Oldfield and Dunker 2014). Recent studies also indicate that RNA and DNA are crucial players in LLPS (Guo2021; Jain and Vale 2017; Schwartz2013; Zhou2019).

    In recent years, a booming number of studies have performed various assays trying to set up the association between the LLPS and biological functions in living cells (Alberti and Dormann 2019; Boija2021). One of the most important functions of biomolecular condensates is that LLPS provides new insights into the working mechanism of the eukaryotic transcription machinery (Boija2018; Cramer 2019;Hnisz2017; Sabari2018).

    We first review recentmethods to study LLPS and gene transcription (Table 1). First, Tjian and coworkers combined biochemistry assays, like luciferase assay and RT-qPCR and analyses, with different microscopy methods, like confocal fluorescence imaging and live-cell single-particle tracking (SPT), to study the biomolecular condensates of FET fusion proteins and gene transcription (Chong2018). They visualized the EWSLCD hubs formation by integrating an artificially synthetic Lac operator (LacO)array (~50,000 LacO repeats) into the cell genome. They found that EWSLCD hubs can recruit the major subunit of Pol II RPB1, strongly suggesting that FET fusion protein condensates are essential for transcription.Super-resolved imaging also helps visualization of the mediator colocalizing with Pol II and dynamic contacting with gene locus on the chromosome in live cells (Choet al. 2018). Second, the opto-genetic approaches are also strong tools to study LLPS and transcription in vivo. Brangwynne and coworkers used a novel optoDroplet system (Wei et al. 2020), which can optically control LLPS of IDR by using cryptochrome 2(Cry2) that can oligomerize under blue light treatment(Shin and Brangwynne 2017). They visualized the forming progress of the FET condensates after artificial nucleation in vivo, and these condensates can recruit pol II CTD, activating gene transcription.

    Table 1 A summary of methods to study LLPS and transcription

    The in vivo imaging of the LLPS can demonstrate the dynamic properties of biomolecular condensates and the spatial association of different biomolecules under a physiological state. However, the in vivo studies are less convincing in the causality of cellular events. The reconstitution of biomolecular condensates in vitro provides direct evidence for the formation and function of phase separated droplets or gels. We next review recent in vitro methods to study LLPS and gene transcription (Table 1). First, McKnight and coworkers built up a hydrogel assay to study the molecular interactions in the condensates (Kato et al. 2012). They can prepare hydrogels of FET proteins, indicating the biomolecular condensate formation. They observed the hydrogels of TAF15 and FUS can recruit Pol II CTD(Kwon et al. 2013). Pol II CTD colocalizing with FUS LCD condensates is demonstrated by Fawzi and his colleagues using nuclear magnetic resonance (NMR)spectroscopy, as a proof of the liquid property of the FUSPol II CTD condensate (Burke et al. 2015). Second, by mixing reconstituted mammalian transcription system with mediator and other transcriptional activators,Young and coworkers directly observed that the transcription machinery and DNA templates were concentrated into droplets, and also quantified the production of RNA through RT-qPCR (Henninger et al.2021). However, this method has a problem in confirming whether nascent RNA transcripts are actually a consequence of the droplet formation or not.Third, Qi and coworkers (Zuo et al. 2021) applied a highthroughput single-molecule technique — DNA curtains(Greeneet al. 2010; Zhaoet al. 2017), to directly visualize the condensate formation of the fusion proteins at the target sites (Fig. 1). These condensates can also recruit Pol II CTD at the target sites (Fig. 2),activating gene transcription in vitro.

    Fig. 1 EWS-FLI1 molecules form biomolecular condensates at target sites. A Design sketch of DNA Curtains. B Schematic of visualizing EWS-FLI1 condensates on DNA Curtains. C—G Wide-field TIRFM images showing the green signals of YOYO-1 indicating Lambda DNAs with 25× GGAA motifs before protein injection (i) and magenta signals of mCherry-labeled molecules after protein injection (ii).Panels D—G provide control experiments for the mCherry-EWS-FLI1 puncta in Panel C. H Boxplot of the puncta intensity at the 25×GGAA target sites of EWS-FLI1 (cyan) and FLI1-DBD (black) versus protein concentration. Adapted with permission from Zuo et al.(2021)

    Fig. 2 EWS-FLI1 condensates can recruit Pol II CTD to the 25× GGAA target sites. A Strategy for detecting loci-specific Pol II CTD recruitment by EWSFLI1 condensates. DNA substrate was Lambda DNA containing 25× GGAA binding sites. B—D Wide field TIRFM images of protein condensates formed on DNA after the 1st round of EWS-FLI1 or FLI1-DBD incubation and 2nd round of Pol II CTD incubation with 488 nm laser on only (i) and 561 nm laser on only (ii), white arrows indicate colocalized EWS-FLI1 puncta and Pol II CTD.B 2 μmol/L EWS-FLI1 in 25 mmol/L KCl buffer. C 2 μmol/L EWS-FLI1 in 150 mmol/L KCl buffer. D Control experiment using 2 μmol/L FLI1-DBD. E The Pol II CTD recruitment efficiency, where lanes 1—3 refer to Panels B—D. Adapted with permission from Zuo et al. (2021)

    In this work, we highlight the detailed protocol of DNA curtains method for studying LLPS. We describe how to use DNA curtains to observe FET fusion protein condensates at DNA target loci, and also how these EWS-FLI1 condensates recruit Pol II CTD to the specific target sites.

    DNA CURTAINS

    DNA curtains (Zhaoet al. 2017), which is a highthroughput single-molecule method, was first developed by Dr. Eric Greene and his research team at Columbia University. This method is designed to visualize protein—nucleic acid interactions in vitro, and has already been applied to study many biological questions. For example, the target search mechanism of CRISPR-Cas9 system (Sternberg et al. 2014), and the displacement of DNA-binding proteins by DNA helicase(Finkelsteinet al. 2010). The detailed information about experimental design and typical data and results were explained in the previous review (Greene et al.2010; Qi and Greene 2016; Zhao et al. 2017).

    PREPARATION OF DNA CURTAINS

    Materials

    EWS-FLI1 and Pol II CTD-mCherry in vitro purification

    ( 1 ) EWS-FLI1 fused with msfGFP or SNAP tag at N-terminal and CTD-mCherry were cloned into pRSF-His vector reconstituted from pRSF-Duet plasmid, respectively. Then the plasmid was transfected to E. Coli BL21 (DE3) strain and grew on the LB plate overnight.

    ( 2 ) Pick several single colonies into 5 mL LB medium and grow overnight, then transfer it to 1 L LB medium and shake to cultivate at 37 °C in a 2-L flask until the ODreaches 0.6—0.8. Add 0.5 mmol/L IPTG into the medium and shake it at 18 °C for 16—20 h. For the expression of CTD, the temperature should be set to 16 °C.

    ( 3 ) Centrifuge to harvest the cells at 3500 g for 25 min and store frozen at -80 °C. 2 L cell pellets were suspended with 60 mL Buffer A containing 50 mmol/L Tris-HCl (pH 7.4), 1 mol/L KCl, 1 mol/L urea, 10 mmol/L imidazole, 1.5 mmol/L β-ME, 5% glycerol, and PMSF protease inhibitor, sonicated for 10 min. Lysates were cleared by centrifugation at 18,000 g for 30 min.

    ( 4 ) Load the supernatant of lysates onto 5 mL preequilibrated Ni-NTA resin, later wash the resin with 25 mL Buffer A containing 40 mmol/L imidazole,then elute the proteins with Buffer A containing 500 mmol/L imidazole. Finally, the EWS-FLI1 proteins were stored at -80 °C in Buffer A after further purification by gel filtration with a Superdex 200 column. For CTD purification, Buffer A should be changed to 40 mmol/L Tris-HCl (pH 7.4) and 500 mmol/L NaCl. Protein samples were stored in 500 mmol/L NaCl, at -20 °C as 50% glycerol stock after purification.

    Liposomes preparation

    ( 1 ) Clean a 2 mL glass vial with ddHO and ethanol(99%), and then dry it thoroughly in a drying oven.

    ( 2 ) Rinse a 250 μL glass syringe with chloroform, and then transfer 200 μL lipid master mix (1 g DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) (Avanti,Cat. 850375P), 100 mg PEGylated lipids (18:1 PEG2 000 DOPE, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt)) (Avanti, Cat.870273P), and 25 mg biotinylated lipids (18:1 Biotinyl Cap DOPE, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl) (sodium salt)) (Avanti, Cat. 870273P) dissolved in 10 mL chloroform) into the glass vial.

    ( 3 ) Use nitrogen gas (99% purity) to evaporate the chloroform very gently with continuously rotating the vial in one direction until no liquid is in the vial and put the glass vial in a vacuum drying oven for 16—24 h or even longer.

    ( 4 ) Add 2 mL fresh lipid buffer (10 mmol/L Tris-HCl(pH 7.5) and 100 mmol/L NaCl) into the glass vial,and incubate it at the room temperature for more than 2 h. Vortex the solution for several times and transfer it to a 5 mL polypropylene culture tube.The solution would be cloudy at this time.

    ( 5 ) Sonicate the solution on ice with a micro-tip sonicator (750 W, VCX750, SONICS & MATERIALS,INC) to form small unilamellar vesicles. The protocol is: 20% amplitude, 6 s on, 6 s off, 6 cycles,30% amplitude, 6 s on, 6 s off, 3 cycles, 40% amplitude, 10 s.

    ( 6 ) Filter the liposomes with a 0.22 μm nylon syringe filter, and then aliquot and store it at 4 °C for one month.

    Biotinylated Lambda DNA with microsatellite sequence preparation

    ( 1 ) Microsatellite DNA containing 25× EWS-FLI1 target sites is inserted into Lambda DNA (NEB, Cat.N3013S) XhoI/NheI sites. The ligation product is packaged into MaxPlax? Lambda Packaging Extracts (Epicentre, Cat. MP5120). After the phage plaque grows bigger, transfer it into LB and cocultivate with E. Coli cells, and harvest the cells by centrifugation, then purify Lambda DNA from the supernatant.

    ( 2 ) Mix 50 μL Lambda DNA, 1 μL Biotin primer(5’-(Phos)-AGG TCG CCG CCC-BIOTEG-3’)(100 μmol/L), 54 μL ddHO together, and then heat the mix at 65 °C for 5 min and cool down to the room temperature on the bench.

    ( 3 ) Add 12 μL 10× T4 ligase buffer and 3 μL T4 ligase to the solution, and then incubate the sample at the room temperature for several hours or overnight.

    ( 4 ) Add 60 μL Buffer A (30% (m/v) PEG8000 and 30 mmol/L MgCl) to the solution (120 μL), and then rotate the sample at 4 °C for 20—24 h.

    ( 5 ) Centrifuge the sample at 18,000 g for 5 min and then remove the supernatant.

    ( 6 ) Use 180 μL 70% precooled ethanol to wash the pellet, and repeat the previous step for one time.

    ( 7 ) Dry the pellet at the room temperature, and then use 100 μL TE150 buffer to dissolve the DNA.

    Methods

    In this session, we will introduce DNA curtains in detail.For the accessibility of this technique, we think at this stage it can only be done with collaboration with experts equipped with this technology and instruments.We really hope in the near future, it is possible to set up such instruments by ordinary users easily.

    DNA curtains flowcell preparation

    ( 1 ) Prepare a DNA curtains flowcell containing zig-zag nanofabricated barriers, and install the input and output tubes. The detailed protocol was in the previous references (Greeneet al. 2010; Qi and Greene 2016; Zhao et al. 2017).

    ( 2 ) Use a 3-mL syringe containing 2.5 mL lipid buffer to wash the flowcell, and also carefully check no bubble in the flowcell.

    ( 3 ) Prepare 1 mL liposome solution (40 μL liposome stock and 960 μL lipid buffer). Inject one third of the solution slowly into the flowcell, and then incubate for 5 min. Repeat this step for another two times.

    ( 4 ) Wash the flowcell with 2.5 mL lipid buffer slowly,and then incubate at the room temperature for 30 min (“healing”).

    ( 5 ) Prepare 30 mL BSA buffer (40 mmol/L Tris-HCl(pH 7.5), 2 mmol/L MgCl, 1 mmol/L DTT, and 0.5 mg/mL BSA (Sigma, Cat. A7030)). Wash the flowcell with 2.5 mL BSA buffer from the output direction.

    ( 6 ) Inject an 800 μL streptavidin buffer (10 μL 1 mg/mL streptavidin (Thermo, Cat. 5888) stock and 790 μL BSA buffer) into the flowcell from the input tubing, and then incubate for 10 min. Repeat this step for another time.

    ( 7 ) Rinse the flowcell with a 2.5 mL BSA buffer to remove the free streptavidin.

    ( 8 ) Add 2.5 μL DNA sample containing Biotin labeled Lambda DNA substrates into a 998 μL BSA buffer.Inject one fourth volume of Lambda DNA substrates slowly to the flowcell, and then incubate for 5 min. Repeat this step for another three times.

    ( 9 ) Turn on the prism typed total internal reflection fluorescence microscopy (TIRFM) (Collinset al.2014; Greene et al. 2010; Zhao et al. 2017) during the injections in Step 8. Wash the tubing with 10 mL ddHO. Rinse the prism as well as the tubing connector with ddHO, Hellmanex (2%), and ethanol (99%). Prepare an imaging buffer:40 mmol/L Tris-HCl (pH 7.5), 2 mmol/L MgCl,1 mmol/L DTT, 150 mmol/L KCl, 0.5 nmol/L YOYO-1 (Invitrogen, Cat. Y3601), and 0.5 mg/mL BSA. Set up the flowcell on the microscope stage and connect it to the microfluidic system.

    (10) Flush the DNA sample into the flowcell with a flow rate of 0.03 mL/min for 10 min after the injections in Step 8. DNA can diffuse to the region containing the nanofabricated barriers, which can block and extend DNA in a 10-min incubation. Afterwards,stop the flow for another 30-min incubation. The incubation time is flexible.

    Inject EWS-FLI1 into the flowcell

    ( 1 ) Finish all the 10 steps in the last section.

    ( 2 ) Search and mark the position of the nanofabrication pattern under the bright field.

    ( 3 ) Stain DNA by YOYO-1 at 0.4 mL/min flow rate for 10 min.

    ( 4 ) Prepare the EWS-FLI1 solution: dilute mCherry-EWS-FLI1 to 500 nmol/L in 100 μL and inject it into a 50-μL extra loop, and use the blank working buffer to load the sample into the flowcell with 0.4 mL/min flow. Start data acquisition before protein injection, set up the laser power as 20% for 488 nm and 561 nm, and the real laser powers before the prism are 9.9 mW and 16.0 mW. Turn on the laser to start the data acquisition. 100-ms frames are collected at 2-s intervals. Turn off the 488 nm laser after mCherry signals appear in the chamber to avoid signal leaking of YOYO-1.

    ( 5 ) The mCherry-EWS-FLI1 samples will reach the flowcell after 30 s from the input tubing, and the mCherry signal would cover the first half of Lambda DNA also 2—3 puncta could be seen at the second half of the DNA containing the cloned 25× GGAA binding sites (Fig. 1).

    ( 6 ) Turn off the flow and incubate for 10 min (Fig. 2A).DNA together with the proteins will shrink back to the barrier and talk with nearby molecules. Turn on the flow at 0.4 mL/min to acquire data in different frames with 2-s intervals.

    Pol II CTD recruitment on DNA curtains

    ( 1 ) Repeat the procedure in the last section but replace the mCherry labeled EWS-FLI1 with SNAP-EWSFLI1. Green puncta could be seen after flushing the SNAP-EWS-FLI1 into the chamber indicated the fusion proteins have already concentrated on DNA.

    ( 2 ) When 10-min incubation finish, inject 1 μmol/L CTD-mCherry from 50 μL loop with 1 mL/min flow and stop the flow as the protein flushing into the chamber. Incubate it for 10 min.

    ( 3 ) Wash out the free CTD-mCherry with blank buffer at 0.4 mL/min for 3 min, then start data acquisition with 2-s intervals in different frames and switch the flow on and off to check whether the magenta signals of mCherry appear on DNA (Fig. 2).Here the laser power of 488 nm and 561 nm should be set up at 20% and 50% (28.5 mW).

    ( 4 ) Count the number of magenta puncta that colocalize with green puncta and also can move with DNA, and the total number of extended DNA molecules in the wide-field image in three repeated experiments. We define the proportion of magenta puncta in the total DNA number as Pol II CTD recruitment efficiency (Fig. 2E).

    DATA INTERPRETATION OF DNA CURTAINS

    We can use DNA curtains to study FET fusion protein condensates and gene transcription (Zuo et al. 2021).

    EWS-FLI1 molecules form biomolecular condensates at target sites

    Single EWS-FLI1 molecule can bind to the specific and also non-specific sites of DNA, and a high concentration of EWS-FLI1 can undergo LLPS at target binding loci(Fig. 1). Design sketch of DNA curtains and schematic of visualizing EWS-FLI1 condensates on DNA curtains were shown in Fig. 1A and 1B. The typical data of DNA curtains are wide-field TIRFM images (Fig. 1C—1G).Before protein injection, the TIRFM image of DNA curtains show many parallel green-color lines, and each of these lines represents a Lambda DNA substrate. DNA was stained by YOYO-1, showing the green color. After mCherry-tagged EWS-FLI1 molecules were injected into the flowcell, protein binding information appeared in the wide-field TIRFM image. Interestingly, highintensity magenta puncta were shown at the 25× GGAA target site (Fig. 1C(ii)). We can also quantitatively measure the puncta intensity as a function of protein concentration (the blue curve in Fig. 1H), and we found that the puncta intensity increased dramatically when EWS-FLI1 concentration increased. As control experiments, FLI1DBD showed a completely different behavior (Fig. 1D and 1H). These data suggested LCD—LCD interactions mainly contribute to the cluster of EWS-FLI1, and the high-intensity puncta in Fig. 1C(ii)are the biomolecular condensates of EWS-FLI1. Only mCherry (Fig. 1E), EWSLCD (Fig. 1F), and EWS-FLI1 mutant R2L2 that cannot bind to DNA (Fig. 1G) were also conducted as control experiments. This kind of DNA curtains experiments can be used to examine biomolecular condensates forming at target sites.

    EWS-FLI1 condensates can recruit Pol II CTD to the 25× GGAA target sites

    The strategy for detecting loci-specific Pol II CTD recruitment by EWSFLI1 condensates was shown in Fig. 2A. Here, we designed a two-step DNA curtains experiment. In the 1step, 2 μmol/L dark EWS-FLI1 was injected into the flowcell and the sample was incubated in the flowcell for 10 min. The aim of this step is to establish EWS-FLI1 condensates at the 25×GGAA target site, like the protocol in the last section.Next, in the 2step, we injected 1 μmol/L the N-terminal heptapeptide repeat 1—26 of the human Pol II CTD34 tagged with mCherry (termed Pol II CTD-mCherry) into the chamber for a 210-min incubation.Finally, we turned on the flow and performed the data acquisition. For the data acquisition, we first used the 488-nm laser to record YOYO-1 signals, and then turned off the 488-nm laser and turned on the 561-nm laser to record mCherry signals. This protocol can guarantee that no any YOYO-1 signals can leak into the mCherry signal channel, and all mCherry signals come from Pol II CTD-mCherry. In Fig. 2B(ii), we observed many mCherry signals. Here, DNA curtains method has a great advantage to distinguish whether the fluorescent signals in the flowcell bind to DNA or just randomly stick to the flowcell surface. We can let DNA substrates shrink back by turning off the buffer flow,and those fluorescent signals that can also shrink back with DNA can be confirmed to bind to DNA. In Fig. 2B, we used white arrows to point to puncta of Pol II CTDN26-mCherry that bound to DNA. To confirm these puncta are also colocalized with EWS-FLI1 condensates, we conducted a control experiment by using FLI1DBD (Fig. 2D). As FLI1DBD cannot undergo LLPS at the 25× GGAA repeat, in comparison to the experiment of EWS-FLI1 (Fig. 2B), we only observed few white arrows, proving that the puncta of Pol II CTDN26-mCherry (white arrows) colocalized with EWS-FLI1 condensates in Fig. 2B. By counting the white arrows, we can calculate the Pol II CTD recruitment efficiency inFig. 2E. We also found the salt concentration can also affect the Pol II CTD recruitment efficiency (Fig. 2C and 2E). This kind of two-step DNA curtains experiments can be used to examine the Pol II CTD recruitment capacity of biomolecular condensates.

    CONCLUSION

    The burgeoning diversified fluorescence labeling and imaging methods have been accelerating LLPS studies in the biological field. LLPS has been confirmed to link with many important biological functions in living cells(Alberti and Dormann 2019; Boija et al. 2021), and one of the most important functions of biomolecular condensates is in the field of RNA transcription (Boija et al. 2018; Cramer 2019; Hnisz et al. 2017; Sabari et al.2018). In this work, we review recent experimental in vivo and in vitro methods for studying LLPS and gene transcription and highlight the detailed protocol of DNA curtains method (Zuo et al. 2021). Taken together, the DNA curtains method about LLPS and gene transcription can help us understand the biophysical mechanism of LLPS features, and the new and useful experimental tools mentioned in this work can also be used for cancer therapeutic development in the near future.

    Acknowledgements This work was supported by the National Natural Science Foundation of China (32088101 and 31670762).Compliance with Ethical Standards

    Conflict of interest Linyu Zuo, Jiawei Ding and Zhi Qi declare that they have no conflict of interest.

    Human and animal rights and informed consent This article does not contain any studies with human or animal subjects performed by any of the authors.

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    全区人妻精品视频| 精品久久久精品久久久| 久久久久久久国产电影| 亚洲久久久国产精品| 成人毛片a级毛片在线播放| 亚洲av成人精品一二三区| 色视频在线一区二区三区| 2021少妇久久久久久久久久久| 国产爽快片一区二区三区| 伦精品一区二区三区| 伊人亚洲综合成人网| 亚洲精品色激情综合| 91久久精品国产一区二区成人| 亚洲人与动物交配视频| 秋霞伦理黄片| 国内少妇人妻偷人精品xxx网站| 各种免费的搞黄视频| 久久午夜福利片| 欧美成人精品欧美一级黄| 尾随美女入室| 黄片无遮挡物在线观看| 综合色丁香网| 如何舔出高潮| 国产精品.久久久| 亚洲精品乱码久久久久久按摩| 一边亲一边摸免费视频| 黄色视频在线播放观看不卡| 精品一区二区三卡| 亚洲国产精品一区二区三区在线| 大片电影免费在线观看免费| 黄色视频在线播放观看不卡| 亚洲无线观看免费| 亚洲真实伦在线观看| 激情五月婷婷亚洲| 麻豆乱淫一区二区| 极品少妇高潮喷水抽搐| 热re99久久精品国产66热6| 亚洲精品自拍成人| 91aial.com中文字幕在线观看| 少妇人妻一区二区三区视频| 免费播放大片免费观看视频在线观看| 深夜a级毛片| 国产一区二区在线观看av| 日韩伦理黄色片| 国产伦精品一区二区三区视频9| 日本wwww免费看| 视频区图区小说| 亚洲av福利一区| 国产精品一区二区在线不卡| 91精品国产国语对白视频| 女性被躁到高潮视频| 天堂俺去俺来也www色官网| 亚洲不卡免费看| 在线观看一区二区三区激情| 亚洲无线观看免费| 亚洲欧美一区二区三区黑人 | 啦啦啦啦在线视频资源| 久久鲁丝午夜福利片| 欧美日韩在线观看h| 国产精品女同一区二区软件| 亚洲欧美日韩另类电影网站| 久久毛片免费看一区二区三区| 国产永久视频网站| 久久午夜综合久久蜜桃| 美女视频免费永久观看网站| 在线精品无人区一区二区三| h日本视频在线播放| 晚上一个人看的免费电影| 日韩欧美精品免费久久| av不卡在线播放| av女优亚洲男人天堂| 日韩一区二区三区影片| 久久精品国产a三级三级三级| 80岁老熟妇乱子伦牲交| 久久久久国产网址| 天堂中文最新版在线下载| 日本色播在线视频| 久久久久视频综合| 国产日韩一区二区三区精品不卡 | 99久久精品热视频| 亚洲婷婷狠狠爱综合网| 夜夜爽夜夜爽视频| 久久久午夜欧美精品| 成人18禁高潮啪啪吃奶动态图 | 自线自在国产av| 成人免费观看视频高清| 亚洲国产欧美在线一区| 少妇熟女欧美另类| 日日摸夜夜添夜夜添av毛片| 观看av在线不卡| 久久97久久精品| 丝瓜视频免费看黄片| 国产精品一区二区在线观看99| 亚洲国产av新网站| 在线 av 中文字幕| 蜜桃在线观看..| 街头女战士在线观看网站| 国产综合精华液| 晚上一个人看的免费电影| h日本视频在线播放| 欧美bdsm另类| 国产亚洲5aaaaa淫片| 新久久久久国产一级毛片| av女优亚洲男人天堂| 如何舔出高潮| 久久狼人影院| 99re6热这里在线精品视频| 黄色配什么色好看| 天堂中文最新版在线下载| 国产亚洲5aaaaa淫片| 日日撸夜夜添| 亚洲精品国产色婷婷电影| av国产久精品久网站免费入址| 少妇 在线观看| 国产深夜福利视频在线观看| 国产色婷婷99| 99国产精品免费福利视频| 亚洲第一区二区三区不卡| 久久免费观看电影| 欧美日韩视频精品一区| 欧美精品国产亚洲| 午夜久久久在线观看| 午夜免费鲁丝| 性色avwww在线观看| 亚洲欧美日韩另类电影网站| 高清在线视频一区二区三区| 日韩一区二区视频免费看| 久久久久久久久久成人| 一级毛片黄色毛片免费观看视频| 日韩av在线免费看完整版不卡| 少妇人妻 视频| 亚洲内射少妇av| 亚洲高清免费不卡视频| 久久久久国产精品人妻一区二区| 亚洲性久久影院| 日韩中字成人| 99久久精品国产国产毛片| 午夜免费观看性视频| 国产精品国产三级专区第一集| 偷拍熟女少妇极品色| 特大巨黑吊av在线直播| 免费观看av网站的网址| av天堂久久9| 性色av一级| 免费看光身美女| 亚洲怡红院男人天堂| 精品久久久精品久久久| 国产在线男女| 日韩精品有码人妻一区| 精品久久久精品久久久| 久久av网站| 26uuu在线亚洲综合色| 成人无遮挡网站| 99热这里只有是精品50| 伊人亚洲综合成人网| 国产日韩一区二区三区精品不卡 | 国产黄色视频一区二区在线观看| 免费看光身美女| 国产成人91sexporn| 美女cb高潮喷水在线观看| 国产免费又黄又爽又色| 成人毛片60女人毛片免费| 久久ye,这里只有精品| 美女视频免费永久观看网站| .国产精品久久| 亚州av有码| 久久久久国产精品人妻一区二区| 久久久国产精品麻豆| 中文精品一卡2卡3卡4更新| 国产黄色视频一区二区在线观看| 九草在线视频观看| 久久久国产一区二区| 99热全是精品| 夫妻性生交免费视频一级片| 亚洲精品国产成人久久av| 三级国产精品片| 在线精品无人区一区二区三| 日日撸夜夜添| 少妇熟女欧美另类| 人体艺术视频欧美日本| 亚洲欧洲日产国产| 国产无遮挡羞羞视频在线观看| 国产精品.久久久| 亚洲精品色激情综合| 久久人人爽人人片av| 一个人看视频在线观看www免费| 99久久精品热视频| 人妻系列 视频| 亚洲成色77777| 亚洲欧洲日产国产| 久久精品国产a三级三级三级| 国产在线免费精品| 在线天堂最新版资源| 国产欧美日韩一区二区三区在线 | 插阴视频在线观看视频| 赤兔流量卡办理| 少妇丰满av| 男人和女人高潮做爰伦理| a级片在线免费高清观看视频| 哪个播放器可以免费观看大片| 国模一区二区三区四区视频| 久久久欧美国产精品| 日韩不卡一区二区三区视频在线| 三级国产精品片| 夫妻性生交免费视频一级片| 人人妻人人添人人爽欧美一区卜| 久久这里有精品视频免费| 日韩精品有码人妻一区| 国产精品一二三区在线看| 黑丝袜美女国产一区| 欧美少妇被猛烈插入视频| 亚洲国产成人一精品久久久| 天天躁夜夜躁狠狠久久av| 啦啦啦视频在线资源免费观看| 男女无遮挡免费网站观看| 亚洲精品日韩av片在线观看| 亚洲精品成人av观看孕妇| 国产精品一区二区在线观看99| 久久久精品94久久精品| tube8黄色片| 黄片无遮挡物在线观看| a 毛片基地| 性高湖久久久久久久久免费观看| 国产高清国产精品国产三级| 老女人水多毛片| 只有这里有精品99| 国产精品一区www在线观看| 少妇高潮的动态图| 日本猛色少妇xxxxx猛交久久| 亚洲精品国产av蜜桃| 交换朋友夫妻互换小说| av国产久精品久网站免费入址| 18+在线观看网站| 女人精品久久久久毛片| 久久久久久久大尺度免费视频| 高清黄色对白视频在线免费看 | 日本免费在线观看一区| 日日摸夜夜添夜夜爱| 日韩精品免费视频一区二区三区 | 黄色日韩在线| 精品少妇久久久久久888优播| 国产免费又黄又爽又色| 亚洲av男天堂| 丰满饥渴人妻一区二区三| 人妻一区二区av| 成人国产av品久久久| 女性被躁到高潮视频| 欧美精品亚洲一区二区| 内地一区二区视频在线| 欧美人与善性xxx| 亚洲一区二区三区欧美精品| 亚洲内射少妇av| 亚洲四区av| 一个人免费看片子| 肉色欧美久久久久久久蜜桃| 亚洲国产欧美在线一区| 亚洲四区av| 一级爰片在线观看| 国产成人精品无人区| 大码成人一级视频| 一本大道久久a久久精品| 91成人精品电影| 美女脱内裤让男人舔精品视频| 菩萨蛮人人尽说江南好唐韦庄| 黄色毛片三级朝国网站 | 成人特级av手机在线观看| 亚洲图色成人| 国产精品无大码| 国产亚洲精品久久久com| 麻豆成人av视频| 爱豆传媒免费全集在线观看| 国产深夜福利视频在线观看| 成人黄色视频免费在线看| 亚洲国产色片| 最近中文字幕2019免费版| 久久影院123| 99热这里只有是精品50| 十分钟在线观看高清视频www | 久久热精品热| 一本久久精品| 人人妻人人澡人人爽人人夜夜| 国产亚洲最大av| 国产色爽女视频免费观看| 免费观看a级毛片全部| 国产精品一区www在线观看| 波野结衣二区三区在线| 久久久久人妻精品一区果冻| 国产伦精品一区二区三区四那| 免费播放大片免费观看视频在线观看| 欧美3d第一页| 亚洲激情五月婷婷啪啪| 精品人妻熟女av久视频| 人妻夜夜爽99麻豆av| 一二三四中文在线观看免费高清| 日日摸夜夜添夜夜添av毛片| 黑人猛操日本美女一级片| 亚洲国产毛片av蜜桃av| 少妇丰满av| 国产精品国产三级国产专区5o| 免费观看av网站的网址| 99九九在线精品视频 | 成人无遮挡网站| 日韩,欧美,国产一区二区三区| 中国国产av一级| 成人综合一区亚洲| 亚州av有码| 久久精品国产a三级三级三级| 亚洲欧美精品专区久久| 色视频www国产| 日韩欧美 国产精品| 能在线免费看毛片的网站| 国产一区二区三区综合在线观看 | 丰满人妻一区二区三区视频av| 狠狠精品人妻久久久久久综合| 日本与韩国留学比较| a 毛片基地| 制服丝袜香蕉在线| 亚洲av免费高清在线观看| 美女脱内裤让男人舔精品视频| 中文字幕av电影在线播放| 国产精品不卡视频一区二区| 国产精品三级大全| 一级毛片aaaaaa免费看小| 国产成人91sexporn| 极品教师在线视频| 五月伊人婷婷丁香| 中文字幕免费在线视频6| 国产精品偷伦视频观看了| 色婷婷久久久亚洲欧美| 久久久欧美国产精品| 波野结衣二区三区在线| 久久狼人影院| 亚洲精品亚洲一区二区| 国产日韩一区二区三区精品不卡 | 欧美少妇被猛烈插入视频| 免费看日本二区| 老司机影院毛片| av免费在线看不卡| 麻豆成人午夜福利视频| 亚洲,欧美,日韩| 精品国产一区二区久久| 中文字幕精品免费在线观看视频 | 9色porny在线观看| 纯流量卡能插随身wifi吗| 免费观看在线日韩| 青春草亚洲视频在线观看| 99久久人妻综合| 日韩欧美 国产精品| 久久99热这里只频精品6学生| 国产色爽女视频免费观看| 亚洲伊人久久精品综合| av线在线观看网站| 国内揄拍国产精品人妻在线| 老熟女久久久| 日韩不卡一区二区三区视频在线| 免费黄网站久久成人精品| 国产精品无大码| 99热全是精品| 亚洲真实伦在线观看| 狂野欧美激情性bbbbbb| 男女边摸边吃奶| 国产淫片久久久久久久久| 夜夜看夜夜爽夜夜摸| 国产免费一区二区三区四区乱码| av福利片在线观看| 精品少妇内射三级| 九九在线视频观看精品| 亚洲精品国产av成人精品| 国产av精品麻豆| 91久久精品国产一区二区成人| 免费大片黄手机在线观看| 日日摸夜夜添夜夜爱| 精品人妻熟女毛片av久久网站| 观看美女的网站| 日日摸夜夜添夜夜添av毛片| 国产视频首页在线观看| 久久毛片免费看一区二区三区| 九色成人免费人妻av| 成人美女网站在线观看视频| 大码成人一级视频| 美女中出高潮动态图| 亚洲自偷自拍三级| 久久这里有精品视频免费| 国产亚洲欧美精品永久| 久久婷婷青草| 久久久精品94久久精品| 欧美+日韩+精品| 国产伦精品一区二区三区视频9| 极品教师在线视频| 草草在线视频免费看| 蜜桃久久精品国产亚洲av| 国产黄频视频在线观看| 天堂俺去俺来也www色官网| 最新的欧美精品一区二区| 在线免费观看不下载黄p国产| a级毛片在线看网站| 亚洲精品第二区| 亚洲精品自拍成人| 亚洲av综合色区一区| a级毛片在线看网站| 亚洲欧美中文字幕日韩二区| 日韩av在线免费看完整版不卡| 熟女人妻精品中文字幕| 免费人妻精品一区二区三区视频| 在线免费观看不下载黄p国产| 亚洲激情五月婷婷啪啪| 国产乱来视频区| 这个男人来自地球电影免费观看 | 久久久国产欧美日韩av| 亚洲第一区二区三区不卡| 成人特级av手机在线观看| 日本黄色片子视频| 22中文网久久字幕| 国语对白做爰xxxⅹ性视频网站| 精品一区二区三卡| 九九久久精品国产亚洲av麻豆| 少妇人妻精品综合一区二区| 亚洲中文av在线| 又粗又硬又长又爽又黄的视频| 观看免费一级毛片| 色哟哟·www| 欧美老熟妇乱子伦牲交| 国产av国产精品国产| h日本视频在线播放| 人妻人人澡人人爽人人| 永久免费av网站大全| 久久久久国产精品人妻一区二区| 欧美精品一区二区免费开放| 久久精品国产亚洲av天美| 最近最新中文字幕免费大全7| 夜夜爽夜夜爽视频| 国产精品一区二区在线不卡| 黄色一级大片看看| 人妻人人澡人人爽人人| 欧美精品人与动牲交sv欧美| 超碰97精品在线观看| av福利片在线| 精品人妻一区二区三区麻豆| 久久人人爽人人爽人人片va| av视频免费观看在线观看| 9色porny在线观看| 欧美最新免费一区二区三区| 亚洲四区av| 日韩av不卡免费在线播放| 免费看av在线观看网站| 一区二区av电影网| 欧美精品高潮呻吟av久久| 免费久久久久久久精品成人欧美视频 | 男人舔奶头视频| 国产精品一二三区在线看| 69精品国产乱码久久久| 久久久国产欧美日韩av| 成人特级av手机在线观看| 麻豆成人av视频| 少妇猛男粗大的猛烈进出视频| 欧美日韩一区二区视频在线观看视频在线| 丝袜脚勾引网站| 日本与韩国留学比较| 街头女战士在线观看网站| 三级国产精品片| 国产一区二区在线观看日韩| 国产色爽女视频免费观看| 多毛熟女@视频| 亚洲,欧美,日韩| 国产精品久久久久久av不卡| 成年美女黄网站色视频大全免费 | a级毛片免费高清观看在线播放| 在线观看免费视频网站a站| 午夜久久久在线观看| 亚洲欧美成人精品一区二区| av在线播放精品| 精品国产一区二区三区久久久樱花| av不卡在线播放| 精品人妻偷拍中文字幕| 久久精品久久久久久久性| av免费观看日本| 国产在线一区二区三区精| 又粗又硬又长又爽又黄的视频| 日韩在线高清观看一区二区三区| 国产免费视频播放在线视频| 国产精品久久久久久久电影| 国产日韩欧美视频二区| 国产熟女午夜一区二区三区 | 高清午夜精品一区二区三区| a 毛片基地| 免费人妻精品一区二区三区视频| 老熟女久久久| 男女边吃奶边做爰视频| 大香蕉久久网| 中文乱码字字幕精品一区二区三区| 免费人妻精品一区二区三区视频| 中文字幕免费在线视频6| 国产一区亚洲一区在线观看| 国产在线男女| 久久97久久精品| 国产一区二区三区综合在线观看 | 伦理电影免费视频| 国产爽快片一区二区三区| 美女大奶头黄色视频| 美女cb高潮喷水在线观看| 国产男女超爽视频在线观看| 日日爽夜夜爽网站| 熟女av电影| 精品一区在线观看国产| 一级毛片aaaaaa免费看小| 色吧在线观看| 久久久久久人妻| 日本午夜av视频| 国产无遮挡羞羞视频在线观看| 国产精品偷伦视频观看了| 人妻少妇偷人精品九色| 欧美xxⅹ黑人| 亚洲综合精品二区| .国产精品久久| 亚洲成人手机| 色94色欧美一区二区| 中文字幕av电影在线播放| 精品少妇黑人巨大在线播放| 高清不卡的av网站| 日本黄大片高清| 超碰97精品在线观看| 色吧在线观看| 国产伦理片在线播放av一区| 一级毛片我不卡| 日产精品乱码卡一卡2卡三| 久久精品久久久久久久性| 免费人妻精品一区二区三区视频| a级毛色黄片| 亚洲综合色惰| av专区在线播放| av一本久久久久| h视频一区二区三区| 久久人人爽av亚洲精品天堂| 插逼视频在线观看| 热re99久久精品国产66热6| 日韩大片免费观看网站| a级片在线免费高清观看视频| 久久韩国三级中文字幕| 国产成人精品无人区| 热re99久久精品国产66热6| 中国三级夫妇交换| 在线播放无遮挡| 日日爽夜夜爽网站| 成人毛片60女人毛片免费| 亚洲av综合色区一区| 我的女老师完整版在线观看| 亚洲精品一二三| 99久久综合免费| 在线观看av片永久免费下载| 狠狠精品人妻久久久久久综合| 精品午夜福利在线看| 亚洲,欧美,日韩| 日韩免费高清中文字幕av| 街头女战士在线观看网站| 国产精品麻豆人妻色哟哟久久| 日本av手机在线免费观看| 肉色欧美久久久久久久蜜桃| 丰满饥渴人妻一区二区三| 亚洲av.av天堂| 午夜福利,免费看| 久久国内精品自在自线图片| 街头女战士在线观看网站| 午夜影院在线不卡| av国产精品久久久久影院| 男女免费视频国产| 狠狠精品人妻久久久久久综合| 国产精品三级大全| 岛国毛片在线播放| 最近2019中文字幕mv第一页| 亚洲伊人久久精品综合| 91精品一卡2卡3卡4卡| 亚洲欧美清纯卡通| 一区在线观看完整版| 午夜影院在线不卡| 国产黄片视频在线免费观看| 久久久国产精品麻豆| 国产精品久久久久久精品电影小说| 婷婷色综合大香蕉| 日韩精品免费视频一区二区三区 | 久久99精品国语久久久| tube8黄色片| 91在线精品国自产拍蜜月| 在线看a的网站| 国产精品久久久久久久久免| 国产亚洲91精品色在线| 97超碰精品成人国产| 国模一区二区三区四区视频| 国产精品国产三级专区第一集| 新久久久久国产一级毛片| 综合色丁香网| av网站免费在线观看视频| 九九爱精品视频在线观看| 国产成人免费观看mmmm| 国产精品99久久久久久久久| 亚洲国产色片| 亚洲欧美成人综合另类久久久| kizo精华| 春色校园在线视频观看| av播播在线观看一区| 国产日韩欧美在线精品| 国产av国产精品国产| 亚洲激情五月婷婷啪啪| 老女人水多毛片| 中文字幕av电影在线播放| 天天躁夜夜躁狠狠久久av| 精品亚洲成国产av| 亚洲情色 制服丝袜| 国产成人精品久久久久久| 午夜精品国产一区二区电影| 我要看日韩黄色一级片| 寂寞人妻少妇视频99o| 99久久人妻综合| 综合色丁香网| 22中文网久久字幕| 精品亚洲乱码少妇综合久久|