• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization of liquid-liquid phase separation using super-resolution and single-molecule imaging

    2022-06-08 09:22:28HongchenZhangShipengShaoYujieSun
    Biophysics Reports 2022年1期

    Hongchen Zhang,Shipeng Shao?,Yujie Sun?

    1 State Key Laboratory of Membrane Biology & Biomedical Pioneering Innovation Center (BIOPIC) & School of Future Technology, Peking University, Beijing 100871, China

    2 School of Life Sciences, Peking University, Beijing 100871, China

    3 Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University,Beijing 100029, China

    Abstract Liquid-liquid phase separation (LLPS) is an emerging phenomenon involved in various biological processes. The formation of phase-separated condensates is crucial for many intrinsically disordered proteins to fulfill their biological functions. Using the recombinant protein to reconstitute the formation of condensates in vitro has become the standard method to investigate the behavior and function of LLPS.Meanwhile, there is an urgent need to characterize the LLPS in living cells. Importantly, condensates formed through LLPS at physical relevant concentrations are often smaller than the optical diffraction limit, which makes precise characterization and quantification inaccurate due to the scatter of light.The booming development of super-resolution optical microscopy enables the visualization of multiple obscured subcellular components and processes, which is also suitable for the LLPS research. In this protocol, we provide step-by-step instructions to help users take advantage of super-resolution imaging to depict the morphology and quantify the molecule number of endogenous condensates in living cells using RNA Pol II as an example. This streamlined workflow offers exceptional robustness, sensitivity, and precision, which could be easily implemented in any laboratory with an inverted total internal reflection microscope. We expect that super-resolution microscopy will contribute to the investigation of both large and tiny condensates under physiological and pathological conditions and lead our understanding of the mechanism of LLPS to a higher and deeper layer.

    Keywords Liquid-liquid phase separation, Super-resolution imaging, Single-molecule imaging

    INTRODUCTION

    In addition to canonical membrane-bound organelles,such as endoplasmic reticulum (ER) and mitochondria,cells also take advantage of many membrane-less organelles to compartmentalize and concentrate specific molecules, including nucleolus (Feric et al.2016), Cajal bodies (Razin and Gavrilov 2020), stress granules (Guillen-Boixet et al. 2020), and P-bodies(Protter et al. 2018). These structures play diverse roles in various biological processes and are also increasingly implicated in protein aggregation diseases(Tsang et al. 2020). The underlying mechanism that assembles membrane-less organelles is found to be liquid-liquid phase separation (LLPS). LLPS has been recognized as a novel mechanism in organizing cellular structure and functions. The driving force for LLPS is normally based on weak, transient, and multivalent interactions, including interactions between proteins with multiple repeat domains and a long stretch of intrinsically disordered regions (IDRs) (Shin and Brangwynne 2017). Dependent on the interaction strength, the size of the liquid droplets varies from several hundred nanometers to several micrometers(Zhang et al. 2022). For giant droplets, such as stress granules, conventional wide-field fluorescence imaging can easily distinguish and characterize them (Fig. 1A).However, for small droplets that are beyond the diffraction limit, conventional imaging techniques are unable to fulfill the purpose for precise quantification(Fig. 1B). Although multiple techniques such as attaching Cry2 to IDR have been developed to amplify condensate sizes of LLPS (Shin et al. 2017), it is more appropriate to study the condensate under physiological conditions. Super-resolution imaging and single-molecule imaging may shed light on the functional interrogations of intracellular physicochemical parameters at the nanoscale.

    Fig. 1 Both giant and tiny condensates co-exist in living cells.A Representative fluorescence images of stress granules in HeLa cells under heat shock conditions (42 °C, 0.5 h). Stress granules were labeled using the antibody against G3BP1. Scale bars, 5 μm.B Representative fluorescence images of transcription factory in HeLa cells. Transcription factories were labeled using the antibody against RNA Pol II S2 phosphorylation. Scale bars, 2 μm

    Development of LLPS characterization using superresolution imaging methods

    The emergence of super-resolution microscopy has enabled our understanding of cell biology in a more detailed manner. The single-molecule localizationbased super-resolution imaging microscopy (SMLM) is especially powerful due to its high resolution and quantitative property. SMLM is fundamentally based on the fact that the spatial coordinates of single fluorophores or emitters can be determined with high precision if nearby fluorophores do not emit in the same frame. Photo-activated localization microscopy(PALM) and stochastic optical reconstruction microscopy (STORM), as two commonly used SMLM techniques, were invented in 2006 (Betzig et al. 2006;Hess et al. 2006; Rust et al. 2006). With a lateral spatial resolution of 10-30 nm and axial resolution of about 50 nm, these techniques have been applied in the analysis of many biological studies, including phaseseparated condensates (Azaldegui et al. 2021; Fasciani et al. 2020). SMLM allows the localization of every single molecule within small condensates that is smaller than the optical diffract limit. Additionally,SMLM also provides the dynamic information of molecules in LLPS condensates, which is extremely useful to characterize the diffusion behaviors of molecules in the condensed phase and dilute phase. For example, recent investigations in bacteria uncovered that membrane-less organelles formed through LLPS might play a crucial role in the organization of bacterial cells. Super-resolution imaging and single-molecule imaging technique have been used to characterize the biochemical functions and assembly mechanisms of these compartments within diffraction-limited foci in bacteria (Azaldegui et al. 2021). Moreover, the role of LLPS in transcription regulation has been reported extensively in recent years (Boija et al. 2018; Cai et al.2019; Guo et al. 2019; Lu et al. 2018, 2020). However, it is challenging to directly observe the formation of LLPS condensate during transcription because these condensates are formed through weak and multivalent interaction between the transcription apparatus of low concentration. Using STORM, the detail about how mixed-lineage leukemia 4 (MLL4) contributes to the assembly of transcriptional condensates through LLPS has been reported (Fasciani et al. 2020).

    Here, we provide a detailed protocol about how to label, image, and analyze LLPS condensates using SMLM. We expect that this protocol will facilitate the investigation of the morphology, material properties,and dynamics of LLPS condensates.

    Applications and advantages of the protocol

    This tutorial protocol provides a step-by-step guide of the imaging of LLPS condensates using STORM from sample preparation to images analysis. Using this protocol, we can depict the morphology and quantify the molecule number of endogenous condensates in living cells with high stability, precision, and reproducibility. Although we used RNA Pol II as an example here, this method can be easily adapted to image other protein condensates in cells in the same way.

    Limitations of the protocol

    The method for super-resolution imaging offers a high spatial resolution but is limited in the throughput. It only permits the imaging of one type of protein condensate at the acquiring time. The imaging process also takes a long time to capture enough single molecules, which also limits the throughput. Owing to the principle of STORM, it can not be used to address the molecular dynamics within the condensates in fixed cells. But single molecules tracking in living cells can solve this problem.

    MATERIALS AND EQUIPMENT

    Biological materials

    ? Adherent Cell. We have used human HeLa S6 and other mammalian cell lines, for super-resolution and single-molecule imaging. The cell lines used should be regularly checked to ensure they are authentic and are not infected with mycoplasma.

    Reagents

    ? Distilled, deionized HO (ddHO, Promega, cat. no.P1197)

    ? 10% (v/v) Triton-X100 (Sigma-Aldrich, cat. no.X100)

    ? Primary antibody to an epitope of interest, e.g.,recombinant Anti-RNA polymerase II CTD repeat YSPTSPS (phospho S2) antibody [EPR18855-87]-ChIP Grade (abcam, cat. no. ab238146, dilution 1:100), anti-G3BP1 (CST, E9G1M, Rabbit mAb, cat.no. #61559, 1:100 dilution)

    ? Secondary antibodies, Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody-Alexa Fluor 647(ThermoFisher, cat. no. A-21244, dilution 1:100)

    ? Growth medium DMEM (GIBCO, cat. no. 11995065)supplemented with 10% (v/v) FBS, 1% penicillin and streptomycin (ThermoFisher, cat. no.10378016).

    ? Bovine serum albumin (Sigma-Aldrich, cat. no.A1933)

    ? PBS (ThermoFisher, cat. no. 10010002)

    ? Lipofectamine 3000 (ThermoFisher, cat. no.L3000015)

    ? Trypsin-EDTA (ThermoFisher, cat. no. 25300120)

    ? Glucose oxidase (Sigma-Aldrich, cat. no. 345386)

    ? Catalase (Sigma-Aldrich, cat. no. C3515)

    ? Glucose (Sigma-Aldrich, cat. no. D9434)

    ? Dulbecco’s PBS (DPBS, Sigma-Aldrich, cat. no.D8537-1l)

    ? Oxygen scavenger system: consists of 0.5 mg/mL glucose oxidase, 40 μg/mL catalase, 10 % (w/v)glucose in phosphate buffer (pH 7.4)

    ? Paraformaldehyde (PFA, TAAB, cat. no. P001)

    [CAUTION!] PFA is toxic, irritant, flammable, and corrosive. It is hazardous on skin or eye contact or inhalation. Wear gloves and use it in a fume hood.

    ? Glutaraldehyde (GA, Sigma-Aldrich, cat. no. G5882)

    [CAUTION!] GA is toxic, irritant, flammable, and corrosive. It is hazardous on skin or eye contact or inhalation. Wear gloves and use it in a fume hood.

    ? Poly-L-lysine, succinylated (Sigma-Aldrich, cat. no.P3513)

    ? Qdot 655 ITK Amino (PEG) Quantum Dots(ThermoFisher, cat. no. Q21521MP)

    Equipment

    ? Standard UV-visible spectrophotometer (Thermo Scientific, NanoDrop2000,)

    ? Inverted fluorescence microscope (Olympus IX-71)

    ? Standard equipment for mammalian cell culture

    ? Horizontal rotator (ThermoFisher)

    ? Aspirator with COincubator (ThermoFisher)

    ? Coverslips (ThermoFisher, cat. no. S17525B)

    ? Six-well plate

    ? Microcentrifuge

    ? Microwave oven

    ? 35 mm glass-bottom Petri-dishes with 10 mm Bottom Well (CellVis, cat. no. D35-10-1.5-N)

    ? PES Syringe Filter, 0.22 um, 13 mm (BioVision, cat.no. M4329)

    ? Orbital shaker (Biosan OS-10)

    ? Pipette Pasteur

    ? Oil-immersion objective (100×, PlanApo 1.45 NA,Olympus)

    ? Irradiation lasers: 647 nm (Cube 640-100C,Coherent), 561 nm (Sapphire 568 LP, Coherent),488 nm (Sapphire 488 LP, Coherent), 405 nm (Cube 405-100C, Coherent)

    ? Acousto-optical tunable filter (AOTF, AAOptics) for laser line selection

    ? Delay and pulse generator (Stanford Research Systems)

    ? Neutral density filter to adjust laser intensity(Edmund Optics)

    ? Single-mode fiber (Linos)

    ? Fiber coupler (Linos)

    ? Band-pass / long-pass filters to spectrally separate fluorescence signal (Semrock, Chroma, AHF Analysentechnik)

    ? RazorEdge 647 Long-pass filter

    ? Laser clean-up filter (Semrock, Chroma, AHF Analysentechnik)

    ? Electron multiplying charged-coupled device camera (Ixon; Andor)

    ? Large Chip (Ixon DU897, 512 × 512 pixels with 16 μm pixel size, Andor)

    ? Software to control camera (Andor Solis, Andor)

    Buffer

    ? Fixation buffer (make freshly)

    PFA: [Stock] = 8%, [Final] = 2.8%, V = 1.75 mL

    GA: [Stock] = 8%, [Final] = 0.04%, V = 0.0025 mL 1× PBS: V = 3.25 mL

    ? PBST buffer (make freshly)

    Triton X-100: [Stock] = 10%, [Final] = 0.5%,V =0.5 mL

    ? Blocking buffer (make freshly)

    BSA: [Stock] = 10%, [Final] = 5%, V = 1 mL

    Triton X-100: [Stock] = 10%, [Final] = 0.5%,V =0.1 mL

    1× PBS: V = 0.9 mL

    ? Standard imaging buffer (STIB) for STORM imaging

    Tris/HCl (pH 8.0): [Stock] = 1 mol/L, [Final] =100 mmol/L, V = 3 mL

    NaCl: [Stock] = 5 mol/L, [Final] = 20 mmol/L, V =0.12 mL

    Glucose: [Stock] = 30%, [Final] = 10%, V = 10 mL

    ddHO: V = 16.88 mL

    [CRITICAL STEP] Filter the buffer using a 0.22 μm filter to remove bacterial and dust. Vacuum to remove the Oin the buffer.

    Glucose oxidase: [Final] = 60 mg/mL, W = 120 mg

    ? GLOX (glucose oxidase and catalase) (4 °C, 1-2 weeks)

    Catalase: [Final] = 6 mg/mL, W = 12 mg

    Glycerol: [Stock] = 80%, [Final] = 40%, V = 1 mL

    1× PBS: V = 1.5 mL

    [CRITICAL STEP] Centrifuge at maximum speed for 1 min. Use the yellow supernatant for imaging buffer.Aliquot 200 μL. The color of the mixture is determined by different Lot. No. of the catalase.

    ? Final STORM imaging buffer (make freshly)

    STIB: V = 1.96 mL

    β-ME: [Stock] = 14.4 mol/L, [Final] = 14.4 mmol/L,V = 0.02 mL

    GLOX: V = 0.02 mL

    [CRITICAL STEP] Make fresh and use within 30-60 min.

    Software

    ? Image J, free download at https://imagej.net/software/fiji/

    ? ThunderSTORM (Ovesny et al. 2014), free download at https://zitmen.github.io/thunderstorm/

    ? MATLAB, available at https://ww2.mathworks.cn/products/matlab.html

    ? SR-Tesseler (Levet et al. 2015), free download at https://github.com/flevet/SR-Tesseler/releases/

    ? Rstudio, free download at https://www.rstudio.com/

    ? The customed MATLAB scripts used in this protocol can be downloaded from https://zenodo.org/record/5906981#.YfFmov77QuU

    PROCEDURE

    Step 1: Sample preparation

    For the labeling of droplets in fixed cells with antibodies (Alexa 647), follow the steps in Step 1.1(RPB1 as an example). For labeling of droplets in living cells with a fluorescent protein (mMaple3 as an example), see Step 1.2.

    Step 1.1 Fixed cells with antibodies

    Step 1.1.1: One day before experiments, passage cells into 35 mm glass-bottom Petri-dishes or chambered cover glass.

    Step 1.1.2: Wash cells twice with 1× PBS, add PFA to a final concentration of 4% (v/v) and incubate for 10 min at room temperature (RT, 20 °C) to fix the cells.

    [CAUTION!] Wear appropriate protective equipment and avoid contact with skin or eyes.

    Step 1.1.3: Wash the cells twice with 1× PBS to remove residual PFA. Aspirate PBS and add 200 μL Triton X-100 at a concentration of 0.5% (v/v) in 1× PBS to each dish,then incubate again at RT for 10 min.

    Step 1.1.4: Rinse twice with 1× PBS.

    Step 1.1.5: Prepare the blocking buffer containing 5%(v/v) BSA and 0.5% (v/v) Triton X-100 in 1× PBS. Add 200 μL blocking buffer to each chamber and incubate for 30 min at room temperature (20 °C).

    [? TROUBLESHOOTING]

    Step 1.1.6: Remove the blocking solution and dissolve antibody in blocking buffer containing 5% (v/v) BSA and 0.5% (v/v) Triton X-100 in 1× PBS at different concentrations, (1:100, 1:200, 1:500 and 1:1000).Incubate for 1-2 h at room temperature (20 °C) or 4 °C overnight.

    [? TROUBLESHOOTING]

    Step 1.1.7: Exchange the antibody solution in each chamber with PBST and incubate for 5 min at room temperature (20 °C). Repeat this step twice.

    Step 1.1.8: Add secondary fluorescently labeled antibody dissolved in blocking buffer (200 μL) to each sample at different dilutions and incubate for 30-60 min in the dark at room temperature (20 °C).

    [? TROUBLESHOOTING]

    Step 1.1.9: Rinse twice with PBS.

    Step 1.1.10: Post-fix the cells with fixation buffer.

    [CAUTION!] Wear appropriate protective equipment and avoid contact with skin or eyes.

    Step 1.1.11: Rinse twice with 1× PBS.

    Step 1.2.1: Block the surface of the dish with the poly-L-lysine solution for 30-60 min.

    Step 1.2.2: Wash the dishes with 1× PBS three times.

    Step 1.2.3: Transfer cells into a poly-L-lysine treated dish one day before transfection.

    Step 1.2.4: Transfect cells with a vector encoding the protein of interest fusion with a fluorescent protein(mMaple3) using Lipofectamine 3000 according to the protocol given by the supplier and incubate cells overnight in a growth medium.

    [? TROUBLESHOOTING]

    Step 1.2.5: Wash cells twice with 1× PBS, add PFA to a final concentration of 4% (/) and incubate for 10 min at room temperature (RT, 20 °C) to fix the cells.

    Step 1.2.6: Wash the cells twice with 1× PBS to remove residual PFA.

    Step 2: Microscope setup

    Step 2.1: Turn on all the lasers, adjust to a low laser power (1-2 mW), and block beams using appropriate shutters in the excitation path. Allow gas lasers to warm up for 20 min.

    [CAUTION!] Avoid direct laser eyes and wear goggles.

    Step 2.2: Measure laser power in focus after the polychromic mirror before entering the objective.Determine homogeneously irradiated area by imaging the fluorescence signal of a fluorophore or QD solution(~10mol/L) on the EMCCD camera to calculate the irradiation intensity in kW/cm.

    Step 2.3: Set the experimental procedure. Adjusting the storage path, naming the file, adjusting the EMCCD procedure, and setting the control program of the shutter.

    Step 2.4: Remove the PBS, and 10 μL of silica beads(resuspend in PBS 1:200 0.5% (/)) were added per sample and incubated at RT for 0.5-2 h.

    Step 2.5: Violent shock for 5 min and remove the superfluous silica beads. Ideally, there are 3-10 silica beads in a 256 × 256 pixel view.

    Step 2.6: Use 2 mL final STORM imaging buffer to replace the PBS. For PALM imaging with a fluorescent protein, use cold PBS instead of STIB.

    [CRITICAL STEP] STIB should be made fresh and used within 60 min. If the image acquisition time is longer than 60 min, re-prepare the fresh STIB.

    [? TROUBLESHOOTING]

    Step 2.7: Place experimental samples, use the oilimmersion objective and adjust the laser according to Table 1.

    Table 1 Ideal working and output laser power

    Step 3: Image acquisition

    Adjust the focus so that the sample is in the focal plane,move the mirror toward TIRF geometry at a certain point, and turn on the infrared focus lock. To find the optimal conditions for imaging, the selected cells should have ideal structures and at least three silica beads around.

    [? TROUBLESHOOTING]

    For the labeling of droplets in fixed cells with antibodies, follow the steps in Step 3.2.1 (with RPB1 as an example). For labeling of droplets in living cells with a fluorescent protein (mMaple3), see Step 3.2.2.

    Step 3.2.1 Antibody-labeled sample

    Step 3.2.1.1: Capture the conventional image in the 647 nm channel. It is ideal to capture 100-200 frames of conventional images to get the average image.

    Step 3.2.1.2: Before performing 647-brightfield experiments, increase irradiation intensity to the max(1000 mW) for a few minutes to transfer the majority of fluorophores to the OFF state. Ideally, only a sparse subset of fluorophores resides in the ON state.

    [? TROUBLESHOOTING]

    Step 3.2.1.3: Capture the 647 STORM image without the 405 nm laser. Adjust the Laser power so that thesingle-molecule signal can be resolved and the photobleach effect is minimized.

    Step 3.2.1.4: Remove the sample, and wash with 1×PBS three times. For long-term storage, wash with ddHO three times. Remove the liquid and store the dish at 4 °C.

    The sequence and exposure conditions for antibodylabeled proteins are listed in Table 2.

    Step 3.2.2 Fluorescent protein-labeled sample

    Step 3.2.2.1: Capture the conventional image in the 488 nm channel. It is ideal to capture 100-200 frames of conventional images to get the average image.

    Step 3.2.2.2: Before performing 561 nm brightfield experiments, increase irradiation intensity to the max(1000 mW) for a few minutes to bleach the majority of activated fluorescent proteins.

    [? TROUBLESHOOTING]

    Step 3.2.2.3: Capture the 561 nm STORM image with the 405 nm laser simultaneously. Adjust the 561 nm laser power so that the single-molecule signal can be resolved and the photo-bleach effect is minimized.

    [CRITICAL STEP] For the activation of fluorescent protein using the 405 nm laser, increase the laser power gradually to ensure the approximate number of molecules was activated during image acquisition.

    Step 3.2.2.4: Remove the sample, and wash with 1×PBS three times. For long-term storage, wash with ddHO three times. Remove the liquid and store the dish at 4 °C.

    The sequence and exposure conditions for fluorescent protein-labeled proteins are listed in Table 3.

    Table 2 The sequence and exposure conditions for antibody-labeled proteins

    Table 3 The sequence and exposure conditions for fluorescent protein-labeled proteins

    Step 4: Image analysis and quantification

    Use Image J Plugin ThunderSTORM to automatedly process, analyze, and visualize data acquired by singlemolecule localization microscopy methods such as PALM and STORM (Fig. 2).

    Fig. 2 Data processing for super-resolution images of small condensates. Each frame of the single-molecule raw image was first filtered using a wavelet filter and then localized using Gaussian fitting. This process was repeated for each frame until all the frames have been processed. After single-molecule localization and image reconstruction, drift correction using cross-correlation was applied to correct the drift during image acquiring

    Step 4.1: Install ImageJ and download the latest version of ThunderSTORM (https://zitmen.github.io/thunderstorm/). For installation, copy the downloaded file into ImageJ's plugin subdirectory and run ImageJ.

    Step 4.2: Load the single-molecule localization dataset through ImageJ File→Open or direct drag and drop the data file from the file explorer to ImageJ.

    Step 4.3: Set the camera pixel size, the conversion factor between photons and digital units, the base-level offset of the camera digitizer, and EM gain of the camera through Plugins→ThunderSTORM→Camera setup.These parameters are important for fitting and estimation of localization accuracy.

    Step 4.4: With the data opened in ImageJ windows,select Plugins→ThunderSTORM→Run analysis to start the analysis process. The default options provided by this plugin can achieve very satisfactory results on various samples and datasets. If we want to get a better result or we have a special dataset that is different from the default parameter, there is a lot of freedom to set the processing parameters. Then press OK to start the image localization process. During the data analysis, an instant preview of the rendering image result is shown, which keeps updating during the whole analysis process.

    Step 4.5: The visualized super-resolution image and the table of localized molecules will appear after the analysis process. We then correct the drift using crosscorrelation. A drift curve will appear when the correction is finished. Importantly, it is always suggested to perform the drift correction for STORM images as the image acquisition takes tens of minutes to hours, which will cause motion blur if keep uncorrected.

    [? TROUBLESHOOTING]

    Step 4.6: Visualize the super-resolution image through Plugins→ThunderSTORM→Visualization. This will create a new, high-resolution image based on the previously obtained sub-diffraction molecular coordinates. Several visualization methods have been implemented in this plugin and choose one suitable for our datasets. Save the super-resolution images in any image format (TIF, JPEG, PNG) provided by ImageJ. If we close the data table during the image process accidentally, we can reopen it through Plugins→ThunderSTORM→ Import/Export→Show results table.

    Step 4.7: Exporting the table of results in various file formats for further analysis, such as CSV, XSL, XML,YAML, JSON, Google protocol buffer, and Tagged Spot File (TSF) format. The exported results can be postprocessed and visualized by other localization software.Plugins→ThunderSTORM→Import/Export→Export results.

    Step 5: Condensate identification and segmentation

    We use SR-Tesseler to identify and segment LLPS condensates from PALM and STORM images (Fig. 3).

    Step 5.1: Download the latest version of SR-Tesseler and install it following the instruction.

    Step 5.2: Transfer the data exported from ThunderSTORM (csv format) to ASCII file in the following format.Header: [Nbplanes, Nbdetections]; List of detections; [x y intensity frame sigma] (sigma is optional).

    [CRITICAL STEP] For the comparative of condensates between the different groups, such as localization per condensate, condensate number per cell,it is critical to resample the single-molecule dataset to ensure each group has the same localization number. In our RNA Pol II example, we randomly choose 100,000 molecules for each group.

    Step 5.3: Launch SR-Tesseler.exe and then two windows will pop up: a Console (for application messages) and a Viewer.

    Step 5.4: Click on the open icon to open singlemolecule data and select the localization file generated from the previous step.

    Step 5.5: When the loading process is finished, the super-resolution image is displayed in the SR-Tesseler Viewer window and a control window with many display options is shown.

    Step 5.6: Then click the Create polygon button, the Vorono? diagram can be computed on the initial detection dataset.

    Step 5.7: Create the object by adjusting the density factor (of δ), selecting and adjusting the minimum area(in pixel2) and the number of localizations of the objects,and a cut distance (in pixel) if needed.

    Step 5.8: Export the object information as an Excel file in the data directory clicking the Export stats button for further analysis.

    Anticipated results

    Generally, after following this protocol, we could get the super-resolution images of LLPS condensates under different conditions with high resolution (Fig. 4A and 4B). Additionally, we can further analyze the statistical information of molecules within condensated from different groups. This information included localization per condensate, condensate number per cell,condensated area (Fig. 4C and 4D).

    Fig. 3 Condensate identification and quantification using super-resolution imaging. A Vorono?-based segmentation of condensates using SR-Tesseler. Zoomed images were displayed at the bottom for more detailed information. Every single molecule has a polygon defined by its neighboring molecules. Edges of Vorono? polygons are located equidistant from the nearest two molecules. When a new molecule is added, this bisector is cut by the bisectors computed between the old molecules and the new ones. Each new molecule was computed to plot the Vorono? diagram repeatedly until all the molecules were counted. Then a threshold relative to the average localization density was set to segment the clusters of molecules within one condensate. B Create polygons in SR-Tesseler. C Parameters used to define condensates in SR-Tesseler

    Fig. 4 Super-resolution imaging of transcription factory induced by optogenetics. A Schematic diagram of light-induced condensation enhancement. The largest subunit of RNA Pol II (RPB1) was fused with Cry2 to induce cluster formation. Blue light activation of Opto-RPB1 leads to rapid phase separation in living cells. B Representative wide-field and STORM images of Cry2-RPB1 before and after blue light illumination. The transcription factory was labeled using the antibody against RPB1. Scale bars, 2 μm. Zoomed scale bars, 100 nm.C, D Cluster analysis of RPB1 under the light on and light off conditions. Localization per condensate (C) and condensate number per cell(D) were shown. Data are presented as mean ± SD. Individual data points correspond to the average value for one cell. n = 20 cells for dark condition, 34 cells for light condition pooled from three independent experiments. The paired two-tailed Student’s t-test was used to compare the data (C and D). Significant differences are labeled as ****p < 0.0001. Boxplots: 25th to 75th percentiles, median, 1.5× interquartile as whiskers (C)

    In the example of light-induced transcription factory formation, we have proved that blue light illumination can enhance RNA Pol II LLPS when RPB1 was fused with light response module Cry2. In the dark state,although we could observe some RPB1 clusters, most of the molecules were dispersed. After light induction,nearly all RPB1 molecules enter the condensate,indicating the power of the super-resolution imaging technique in quantifying the subtle change of tiny condensate in cells.

    TIMING

    Step 1: Sample preparation (~6 h)Step 2: Microscope setup (1-2 h)

    Step3: Image acquisition (0.5-2 h for one image)

    Step 4: Image analysis and quantification (0.2-0.5 h for one image)

    Step 5: Condensate identification and segmentation(~0.5 h for one image)

    [?TROUBLESHOOTING]

    Troubleshooting advice can be found in Table 4.

    Table 4 Troubleshooting table

    Compliance with Ethical Standards

    Conflict of interest Hongchen Zhang, Shipeng Shao and Yujie Sun declare that they have no conflict of interest.

    Human and animal rights and informed consent This article does not contain any studies with human or animal subjects performed by any of the authors.

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    亚洲精品久久久久久婷婷小说| 男女国产视频网站| 这个男人来自地球电影免费观看 | 波多野结衣一区麻豆| 精品国产一区二区三区四区第35| 亚洲专区中文字幕在线 | 男的添女的下面高潮视频| 亚洲av日韩在线播放| 亚洲人成77777在线视频| a级片在线免费高清观看视频| 国产一区有黄有色的免费视频| 欧美 日韩 精品 国产| 少妇人妻精品综合一区二区| 日韩免费高清中文字幕av| 日本爱情动作片www.在线观看| 国产成人av激情在线播放| 成人18禁高潮啪啪吃奶动态图| 国产精品人妻久久久影院| 午夜老司机福利片| 两性夫妻黄色片| 日韩av不卡免费在线播放| 人成视频在线观看免费观看| 国产熟女欧美一区二区| 成人免费观看视频高清| 国产精品.久久久| 男女床上黄色一级片免费看| 国产伦理片在线播放av一区| 成人午夜精彩视频在线观看| 免费黄频网站在线观看国产| 熟妇人妻不卡中文字幕| 黄色 视频免费看| 亚洲精品中文字幕在线视频| 婷婷成人精品国产| 亚洲精品在线美女| 亚洲欧美激情在线| 水蜜桃什么品种好| 青春草国产在线视频| av女优亚洲男人天堂| 一本久久精品| 精品国产国语对白av| 日韩成人av中文字幕在线观看| 成人影院久久| 午夜福利视频精品| 久久97久久精品| 最近中文字幕高清免费大全6| 免费看不卡的av| 精品人妻一区二区三区麻豆| 婷婷色av中文字幕| 亚洲国产成人一精品久久久| 免费黄网站久久成人精品| 99久久人妻综合| 久久国产精品男人的天堂亚洲| 中文字幕制服av| 免费黄网站久久成人精品| 人人妻,人人澡人人爽秒播 | 国产精品欧美亚洲77777| 欧美精品av麻豆av| 欧美另类一区| 丰满迷人的少妇在线观看| 久久ye,这里只有精品| 国产成人av激情在线播放| 午夜91福利影院| 精品少妇内射三级| 99久国产av精品国产电影| 天天躁日日躁夜夜躁夜夜| 国产成人免费无遮挡视频| 一本久久精品| 久久久久网色| 最近2019中文字幕mv第一页| 少妇 在线观看| 男人爽女人下面视频在线观看| 欧美国产精品va在线观看不卡| 热99国产精品久久久久久7| 国产 精品1| 青春草国产在线视频| 久久久久久久大尺度免费视频| 妹子高潮喷水视频| 另类精品久久| 欧美 日韩 精品 国产| 乱人伦中国视频| 飞空精品影院首页| 妹子高潮喷水视频| 丁香六月天网| 精品国产一区二区三区四区第35| 国产一卡二卡三卡精品 | 19禁男女啪啪无遮挡网站| 黄片播放在线免费| 久久精品亚洲av国产电影网| 99香蕉大伊视频| 国产黄频视频在线观看| 一区二区av电影网| 啦啦啦在线观看免费高清www| 国产精品欧美亚洲77777| 欧美中文综合在线视频| av网站在线播放免费| 久久影院123| 欧美日韩视频高清一区二区三区二| 日本猛色少妇xxxxx猛交久久| 丰满迷人的少妇在线观看| 久久97久久精品| 一区二区三区乱码不卡18| 秋霞在线观看毛片| 久久精品久久久久久久性| h视频一区二区三区| 精品国产露脸久久av麻豆| 这个男人来自地球电影免费观看 | 国语对白做爰xxxⅹ性视频网站| 亚洲精品国产av成人精品| 午夜福利影视在线免费观看| 日韩 亚洲 欧美在线| 午夜精品国产一区二区电影| 中文字幕亚洲精品专区| 日韩制服丝袜自拍偷拍| 国产xxxxx性猛交| 国产xxxxx性猛交| 国产色婷婷99| 精品国产一区二区三区四区第35| 熟女av电影| 成人免费观看视频高清| 久久精品国产亚洲av高清一级| 亚洲一区二区三区欧美精品| 日本一区二区免费在线视频| 日本猛色少妇xxxxx猛交久久| 两个人看的免费小视频| 中文字幕av电影在线播放| 午夜日韩欧美国产| 亚洲精品国产av成人精品| 久久久久精品性色| 国产成人欧美| 免费黄网站久久成人精品| 日日啪夜夜爽| 日韩电影二区| 亚洲国产精品999| 五月开心婷婷网| 肉色欧美久久久久久久蜜桃| 亚洲国产精品一区二区三区在线| 一区在线观看完整版| 18禁裸乳无遮挡动漫免费视频| 欧美另类一区| 久久97久久精品| a级毛片黄视频| 婷婷成人精品国产| 伊人久久大香线蕉亚洲五| 国产精品久久久人人做人人爽| 日韩熟女老妇一区二区性免费视频| 夫妻午夜视频| 欧美日韩视频高清一区二区三区二| 欧美日韩国产mv在线观看视频| 久久久久精品性色| 啦啦啦啦在线视频资源| 搡老岳熟女国产| 久久av网站| 男女免费视频国产| 国产精品无大码| 一边亲一边摸免费视频| 久久综合国产亚洲精品| 色婷婷久久久亚洲欧美| 久久久久国产精品人妻一区二区| 亚洲精品一区蜜桃| 成年动漫av网址| 久久精品国产亚洲av涩爱| 精品免费久久久久久久清纯 | 国产欧美日韩一区二区三区在线| 新久久久久国产一级毛片| 亚洲人成网站在线观看播放| 国产欧美亚洲国产| 在线天堂最新版资源| 香蕉国产在线看| 色综合欧美亚洲国产小说| 啦啦啦中文免费视频观看日本| 亚洲综合精品二区| 欧美成人午夜精品| 欧美 日韩 精品 国产| 男人添女人高潮全过程视频| 国产伦理片在线播放av一区| 人体艺术视频欧美日本| 婷婷色综合大香蕉| 欧美中文综合在线视频| 男男h啪啪无遮挡| 成年人午夜在线观看视频| 久久久久久久国产电影| 黄片小视频在线播放| 满18在线观看网站| 成人国产麻豆网| 国产精品女同一区二区软件| 国产精品熟女久久久久浪| 国产精品一二三区在线看| 精品亚洲成国产av| 一区二区日韩欧美中文字幕| 亚洲av日韩精品久久久久久密 | 一级爰片在线观看| 黄片小视频在线播放| 国产伦人伦偷精品视频| 国产黄频视频在线观看| 国产精品人妻久久久影院| 国产一区二区 视频在线| 一本大道久久a久久精品| 另类精品久久| 国产免费又黄又爽又色| 国产探花极品一区二区| 男的添女的下面高潮视频| 国产97色在线日韩免费| 男女国产视频网站| av卡一久久| 一二三四在线观看免费中文在| 女人高潮潮喷娇喘18禁视频| 精品少妇黑人巨大在线播放| 男女免费视频国产| 中文字幕人妻熟女乱码| 国产激情久久老熟女| 国产免费一区二区三区四区乱码| 亚洲精品成人av观看孕妇| 国产在线一区二区三区精| 亚洲在久久综合| 高清黄色对白视频在线免费看| 人人妻人人澡人人看| 伦理电影免费视频| 精品国产国语对白av| 婷婷色av中文字幕| 久久国产精品男人的天堂亚洲| 欧美xxⅹ黑人| av免费观看日本| 亚洲欧洲日产国产| 卡戴珊不雅视频在线播放| 久久精品久久久久久久性| avwww免费| 国产高清不卡午夜福利| 国产极品天堂在线| 色吧在线观看| 国产1区2区3区精品| 国产 精品1| 在线观看人妻少妇| 亚洲人成77777在线视频| 日本色播在线视频| 免费久久久久久久精品成人欧美视频| 日本欧美国产在线视频| 国产淫语在线视频| 一级毛片黄色毛片免费观看视频| av又黄又爽大尺度在线免费看| 欧美日韩av久久| 国产成人一区二区在线| 国产精品久久久久久人妻精品电影 | 亚洲精品在线美女| 国产精品国产av在线观看| 国产免费福利视频在线观看| 99香蕉大伊视频| 我的亚洲天堂| 99热全是精品| 巨乳人妻的诱惑在线观看| 看免费成人av毛片| 青草久久国产| av天堂久久9| 亚洲一区中文字幕在线| 日本欧美视频一区| 午夜福利在线免费观看网站| 亚洲欧美成人综合另类久久久| 久久ye,这里只有精品| 成人国产av品久久久| 久久ye,这里只有精品| 欧美乱码精品一区二区三区| 悠悠久久av| 国产探花极品一区二区| 免费人妻精品一区二区三区视频| 国产视频首页在线观看| 国产精品一区二区精品视频观看| 精品亚洲成a人片在线观看| 另类亚洲欧美激情| 欧美精品人与动牲交sv欧美| 啦啦啦在线观看免费高清www| 在线 av 中文字幕| 国产乱人偷精品视频| 黄色一级大片看看| av福利片在线| 精品少妇久久久久久888优播| 国产精品国产三级国产专区5o| 久久精品aⅴ一区二区三区四区| 大话2 男鬼变身卡| 夫妻午夜视频| 亚洲精品成人av观看孕妇| 日韩 欧美 亚洲 中文字幕| 男女下面插进去视频免费观看| 七月丁香在线播放| 丝袜美足系列| 国产精品蜜桃在线观看| 亚洲第一青青草原| 丝袜人妻中文字幕| 国产激情久久老熟女| 亚洲欧美精品综合一区二区三区| 美女午夜性视频免费| 亚洲人成77777在线视频| 日本vs欧美在线观看视频| 日韩欧美精品免费久久| 老熟女久久久| 国产成人精品福利久久| 别揉我奶头~嗯~啊~动态视频 | 考比视频在线观看| 亚洲一码二码三码区别大吗| 成人国语在线视频| 亚洲四区av| 免费黄频网站在线观看国产| 久久久国产精品麻豆| 日韩精品有码人妻一区| 啦啦啦视频在线资源免费观看| 亚洲精品国产区一区二| 国产又色又爽无遮挡免| 亚洲av日韩在线播放| 女人精品久久久久毛片| 一二三四中文在线观看免费高清| 三上悠亚av全集在线观看| 国产一区二区三区综合在线观看| 丝袜人妻中文字幕| av天堂久久9| 亚洲熟女毛片儿| 黄片小视频在线播放| 香蕉国产在线看| 久久 成人 亚洲| 老司机靠b影院| 国产免费现黄频在线看| 国产97色在线日韩免费| 亚洲综合精品二区| 女的被弄到高潮叫床怎么办| 99re6热这里在线精品视频| 欧美人与性动交α欧美精品济南到| 久久韩国三级中文字幕| 美女中出高潮动态图| 男女边摸边吃奶| 国产成人av激情在线播放| 女人被躁到高潮嗷嗷叫费观| 久久鲁丝午夜福利片| 大香蕉久久成人网| √禁漫天堂资源中文www| 一级a爱视频在线免费观看| 欧美人与善性xxx| 人人妻人人澡人人看| 在现免费观看毛片| 国产午夜精品一二区理论片| 电影成人av| 国产精品三级大全| 热re99久久精品国产66热6| 成人免费观看视频高清| 少妇人妻久久综合中文| 又黄又粗又硬又大视频| 日本欧美视频一区| 母亲3免费完整高清在线观看| 中文字幕最新亚洲高清| 国产欧美日韩一区二区三区在线| 成人免费观看视频高清| 国产成人欧美在线观看 | 国产亚洲欧美精品永久| 久久久久久免费高清国产稀缺| 精品国产乱码久久久久久男人| 精品第一国产精品| 精品一区二区三卡| 国产国语露脸激情在线看| 亚洲一区中文字幕在线| 18禁国产床啪视频网站| 桃花免费在线播放| 国产精品久久久久久久久免| 日韩人妻精品一区2区三区| 国产免费视频播放在线视频| 久久精品aⅴ一区二区三区四区| 在线观看免费午夜福利视频| www日本在线高清视频| 深夜精品福利| 菩萨蛮人人尽说江南好唐韦庄| 日本欧美国产在线视频| 亚洲精华国产精华液的使用体验| 亚洲国产欧美一区二区综合| 久久影院123| 欧美成人精品欧美一级黄| 波野结衣二区三区在线| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品熟女久久久久浪| 国产成人午夜福利电影在线观看| av免费观看日本| 国产成人a∨麻豆精品| 极品少妇高潮喷水抽搐| 免费观看av网站的网址| av网站在线播放免费| 另类精品久久| 欧美最新免费一区二区三区| 又粗又硬又长又爽又黄的视频| 婷婷成人精品国产| 国产有黄有色有爽视频| 777米奇影视久久| 建设人人有责人人尽责人人享有的| 久久狼人影院| 久久久亚洲精品成人影院| 91老司机精品| 亚洲国产成人一精品久久久| 肉色欧美久久久久久久蜜桃| 国产片内射在线| 狠狠精品人妻久久久久久综合| 欧美日韩一区二区视频在线观看视频在线| 中文字幕最新亚洲高清| 中文字幕制服av| 亚洲欧美精品自产自拍| 丰满乱子伦码专区| 悠悠久久av| 高清黄色对白视频在线免费看| 日本爱情动作片www.在线观看| 国产一区有黄有色的免费视频| 汤姆久久久久久久影院中文字幕| 少妇猛男粗大的猛烈进出视频| 一级爰片在线观看| 日韩大码丰满熟妇| 少妇猛男粗大的猛烈进出视频| 青春草视频在线免费观看| 99精品久久久久人妻精品| 欧美人与性动交α欧美软件| 热99久久久久精品小说推荐| 中文字幕人妻熟女乱码| 国产精品久久久久久精品电影小说| 精品少妇黑人巨大在线播放| 国产精品亚洲av一区麻豆 | 女性生殖器流出的白浆| 可以免费在线观看a视频的电影网站 | 黑人巨大精品欧美一区二区蜜桃| 天堂中文最新版在线下载| 啦啦啦中文免费视频观看日本| 日韩一区二区视频免费看| 久久久久久久久久久久大奶| 亚洲婷婷狠狠爱综合网| 国产成人一区二区在线| 国产一区亚洲一区在线观看| 黄网站色视频无遮挡免费观看| 国产男女超爽视频在线观看| 高清av免费在线| 欧美日韩亚洲高清精品| 国产av精品麻豆| 成人影院久久| 久久精品国产a三级三级三级| av在线观看视频网站免费| 夜夜骑夜夜射夜夜干| 日本黄色日本黄色录像| 男女边吃奶边做爰视频| 黑人巨大精品欧美一区二区蜜桃| 一级,二级,三级黄色视频| 久久精品国产综合久久久| 久久天堂一区二区三区四区| 99热国产这里只有精品6| 欧美精品亚洲一区二区| 色94色欧美一区二区| 搡老乐熟女国产| 在线观看一区二区三区激情| 欧美精品一区二区免费开放| 久久97久久精品| 国产精品香港三级国产av潘金莲 | 国产乱人偷精品视频| 老汉色av国产亚洲站长工具| 最新在线观看一区二区三区 | www.熟女人妻精品国产| 亚洲国产精品国产精品| 国产 一区精品| 五月天丁香电影| 久久久久久久久久久免费av| 青春草亚洲视频在线观看| 波多野结衣av一区二区av| 日本一区二区免费在线视频| 丝袜脚勾引网站| 夫妻性生交免费视频一级片| 我的亚洲天堂| 国产成人午夜福利电影在线观看| 国产97色在线日韩免费| 欧美成人精品欧美一级黄| 麻豆av在线久日| 国产精品久久久久成人av| 90打野战视频偷拍视频| 我的亚洲天堂| 久久精品aⅴ一区二区三区四区| 亚洲av男天堂| 超碰97精品在线观看| 婷婷色麻豆天堂久久| 午夜福利影视在线免费观看| 日本黄色日本黄色录像| 欧美精品av麻豆av| 国产又爽黄色视频| 极品人妻少妇av视频| 999精品在线视频| 亚洲激情五月婷婷啪啪| 免费在线观看视频国产中文字幕亚洲 | 久久毛片免费看一区二区三区| 国产国语露脸激情在线看| 亚洲精品久久午夜乱码| 80岁老熟妇乱子伦牲交| 观看av在线不卡| 91精品伊人久久大香线蕉| 熟女av电影| www.精华液| 免费黄频网站在线观看国产| 人人妻人人澡人人看| 麻豆乱淫一区二区| 母亲3免费完整高清在线观看| 夜夜骑夜夜射夜夜干| 成年人免费黄色播放视频| 成人影院久久| 久久狼人影院| 国产成人91sexporn| 久久久久久久国产电影| 国产 一区精品| 一级黄片播放器| 美女脱内裤让男人舔精品视频| 少妇猛男粗大的猛烈进出视频| 午夜福利,免费看| 男女国产视频网站| 日韩精品免费视频一区二区三区| 亚洲精品乱久久久久久| 亚洲成人免费av在线播放| bbb黄色大片| 国产无遮挡羞羞视频在线观看| 一级,二级,三级黄色视频| 热99国产精品久久久久久7| 国产av精品麻豆| 91精品伊人久久大香线蕉| 久久鲁丝午夜福利片| 天堂8中文在线网| a级片在线免费高清观看视频| 午夜久久久在线观看| 国产亚洲精品第一综合不卡| 国产又色又爽无遮挡免| 日韩av免费高清视频| tube8黄色片| 亚洲免费av在线视频| 久久人人97超碰香蕉20202| 日韩伦理黄色片| 成年av动漫网址| 欧美日韩福利视频一区二区| 国产成人欧美| 两性夫妻黄色片| 另类精品久久| 超色免费av| 亚洲欧美激情在线| 丝袜人妻中文字幕| 亚洲欧美激情在线| 汤姆久久久久久久影院中文字幕| 侵犯人妻中文字幕一二三四区| 1024视频免费在线观看| 侵犯人妻中文字幕一二三四区| 男女边摸边吃奶| 侵犯人妻中文字幕一二三四区| 国产女主播在线喷水免费视频网站| 99久国产av精品国产电影| 天堂中文最新版在线下载| 亚洲四区av| 最近最新中文字幕大全免费视频 | 国语对白做爰xxxⅹ性视频网站| 欧美最新免费一区二区三区| 热re99久久国产66热| 五月开心婷婷网| 精品少妇内射三级| 色网站视频免费| 午夜福利影视在线免费观看| 国产精品av久久久久免费| 一二三四中文在线观看免费高清| 五月开心婷婷网| 国产免费视频播放在线视频| 日韩,欧美,国产一区二区三区| 国产精品女同一区二区软件| 人妻一区二区av| 黄片播放在线免费| 亚洲国产日韩一区二区| 天美传媒精品一区二区| 国产成人一区二区在线| 91老司机精品| 岛国毛片在线播放| 色播在线永久视频| 国产在线免费精品| 毛片一级片免费看久久久久| 国产精品一区二区在线观看99| 男男h啪啪无遮挡| 欧美最新免费一区二区三区| 99九九在线精品视频| 叶爱在线成人免费视频播放| 亚洲综合精品二区| 黄频高清免费视频| 亚洲一区中文字幕在线| 亚洲av中文av极速乱| 黄网站色视频无遮挡免费观看| 亚洲色图 男人天堂 中文字幕| 国产精品久久久久久精品古装| 操出白浆在线播放| 亚洲美女搞黄在线观看| e午夜精品久久久久久久| videos熟女内射| 亚洲综合色网址| 久热这里只有精品99| 制服人妻中文乱码| 99re6热这里在线精品视频| 亚洲 欧美一区二区三区| 亚洲av日韩精品久久久久久密 | 中国三级夫妇交换| 午夜影院在线不卡| 免费久久久久久久精品成人欧美视频| 久久毛片免费看一区二区三区| 国产高清国产精品国产三级| 亚洲成av片中文字幕在线观看| 久久青草综合色| 成人亚洲精品一区在线观看| 精品久久久精品久久久| 免费女性裸体啪啪无遮挡网站| 久久精品亚洲熟妇少妇任你| 母亲3免费完整高清在线观看| 一级黄片播放器| 免费在线观看黄色视频的| 新久久久久国产一级毛片| 色综合欧美亚洲国产小说| 午夜免费观看性视频| 久久影院123| 老汉色av国产亚洲站长工具| 王馨瑶露胸无遮挡在线观看| 肉色欧美久久久久久久蜜桃| 一边摸一边抽搐一进一出视频| 交换朋友夫妻互换小说| 麻豆精品久久久久久蜜桃| 日本午夜av视频|