• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Approach to estimationof vehicle-road longitudinal friction coefficient

    2013-09-17 06:00:36SongXiangLiXuZhangWeigongChenWeiXuQimin

    Song Xiang Li Xu Zhang Weigong Chen Wei Xu Qimin

    (School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China)

    W ith the implementation of active safety control systems,vehicles have become safer to drive with less involvement in fatal accidents.These active safety control systems can greatly profit from being made road-adaptive;i.e., the control algorithms can be modified to account for the external road conditions if the actual tire-road friction coefficient information is available in real time.The longitudinal tire-road friction coefficient is an essential parameter for the vehicle longitudinal active safety control systems.For example, in an adaptive cruise control(ACC)system,road condition information from the friction coefficient estimation can be used to adjust the longitudinal spacing headway from the preceding vehicle that the ACC vehicle should maintain.

    The tire-road friction coefficient must be estimated in real-time to meet the requirements of the vehicle longitudinal active safety control systems under normal driving conditions.So the method of tire-road friction coefficient estimation based on vehicle longitudinal dynamics is most feasible.

    The relationship between the normalized longitudinal tire force and the slip ratio is different under different road conditions,which is the basis of utilizing the vehicle longitudinal dynamics to estimate the tire-road friction coefficient[1].The most well known research in this area is on the use of slip-slope for friction coefficient identification[2-5].In this method, the normalized longitudinal force is considered proportional to the slip ratio at low slip ratios.The slope of the relationship between the normalized longitudinal force and the slip ratio at low slip ratios is called slip-slope.The basic idea behind the use of slipslope for friction coefficient estimation is that at low slip ratios,the tire-road friction coefficient is proportional to slip-slope.Thus, by estimating slip-slope, the tire-road friction coefficient can be estimated.But this method is only suitable for the condition of low slip ratios.The parameter estimation method is another commonly used method[6-7].But only at the large slip ratios, the estimation results will be close to the true value.Domestic researches[8-9]are based on the above two methods,the drawbacks as mentioned above also exist.Shim et al.[10]assumed a tire-road friction coefficient,and then the response of the vehicle is estimated based on the vehicle dynamics model.According to the differences between the estimated response and the actual vehicle response,the tire-road friction coefficient can be calculated.But the method is difficult to apply to complex road conditions since it requires a lot of experience.

    As mentioned above,the main problem of the tire-road friction coefficient estimation algorithms is that the algorithms cannot be applied to both high and low slip ratios simultaneously.To solve this problem,the recursive least squares(RLS)method with the forgetting factor and the extended Kalman filter(EKF)algorithm are employed to estimate the longitudinal tire-road friction coefficient in this paper.The method utilizes the relationship between the normalized longitudinal tire force and the slip ratio to identify the longitudinal tire-road friction coefficient μ,which can be applicable to for both the high and the low slip ratios,and the effectiveness and feasibility are verified by simulation.

    1 Proposed Method

    If only the longitudinal motion is considered and the lateral force is ignored,the normalized longitudinal tire force φ and the slip ratiosat each wheel can be represented as

    where ω is the angular wheel speed;ris the effective tire radius;vis the vehicle's absolute velocity;Fxis the longitudinal force from ground to wheel;andFzis the normal force.

    Fig.1 shows a typical relationship betweensand φ for various values of the tire-road friction coefficient.μ is the tire-road friction coefficient.

    Fig.1 s-φ curves with different friction coefficients

    In this paper,the friction coefficient is assumed to be the same at each wheel of the vehicle.By calculatingsand φ, the longitudinal tire-road friction coefficient μ can be estimated by the RLS method with the forgetting factor,which is based on the simplified magic formula tire model.Then the estimated μ and the tire model parameters are used as extended states.The EKF algorithm is employed to filter out the noise and adaptively adjust the tire model parameters.Then the final road longitudinal friction coefficient is accurately and robustly estimated.The flowchart of the estimation method is shown in Fig.2.

    Fig.2 Flowchart of estimation method

    2 Vehicle and Tire Models

    The longitudinal vehicle dynamics model can be written as

    wheremis the mass of the vehicle;axis the vehicle longitudinal acceleration;Dais the air resistance coefficient;Crollis the rolling resistance coefficient;andgis the acceleration of gravity.

    A simplified magic formula tire model[11]is adopted in this paper.whereBandCare the model parameters.

    3 Road Friction Coefficient Preliminarily Estimated based on RLS

    3.1 Longitudinal slip ratio calculation

    The effective tire radiusris calculated as

    whereruis the undeformed radius of the tire;rsis the static tire radius and it can be described asrs=ru-Fz/kt,ktis the vertical tire stiffness.The longitudinal slip ratio can be calculated by Eq.(1).

    3.2 Normalized longitudinal tire force calculation

    Eq.(3)can be rewritten as

    whereFxfandFxrare the traction forces of the front and the rear wheels.The total vehicle longitudinal forceFxcan be obtained by Eq.(6).

    The normal forces at the front and rear tires can be calculated as follows:

    whereFzfandFzrare the normal forces at the front and the rear tires;aandbare the distances from the center of gravity to the front and the rear axles.

    The relationship betweensand φ for the front and rear tires can be written as

    3.3 Preliminary estimates of μ

    Assuming that the front and rear tires are under the same road surface condition,which is true for many driving situations,the total longitudinal force is

    Eq.(10)can be rewritten into a standard parameter identification format as

    wherekdenotes the discrete time;y(k)=Fxis the system output;θ(k)=μ is the unknown parameter of interest;φ(k)={Fzfsin[Carctan(Bsf)]+Fzrsin[Carctan(Bsr)]}is the measured regression vector;e(k)is the identification error.Then the only unknown parameter θ(k)=μ can be identified in real-time using the RLS method with the forgetting factor as follows:

    1)Measure the system outputy(k)and calculate the regression vector φ(k).

    2)Calculate the identification errore(k),

    3)Calculate the updated gain vector K(k)as

    And calculate the covariance matrix N(k)by

    The parameter λ is called the forgetting factor, which is used to effectively reduce the influence of old data which may no longer be relevant to the model, and,therefore, prevents a covariance wind-up problem.

    4)Update the parameter estimate vector θ(k),

    The road friction coefficient μ can be preliminary estimated in real-time.

    4 Longitudinal Tire-Road Friction Coefficient

    Identification based on EKF

    In the tire-road friction coefficient estimation process described above,the model parametersBandCare assumed to be known and constant.However, during vehicle operation,BandCcannot be directly measured and they are time-varying,which may affect the accuracy of the estimation of the tire-road friction coefficient.In order to real-time updateBandC, and filter μ, the EKF model is established based on the longitudinal dynamic model using Eq.(3).

    The discretized state equation and measurement equation can be written as

    wherekrefers to the discrete-time step;the state vector X={v,μ,B,C}T;the measurement vector Z={ax,v,μ}T;W and V are the system and measurement noise vectors,respectively;f(·)andh(·)are the nonlinear system and measurement functions which can be deduced from Eq.(3).

    Assuming that the system and measurement noises to be Gaussian with a zero mean and their covariance matrices are Q and R,respectively,the EKF process consists of the following two phases.

    1)Time update:

    2)Measurement update:

    where I is the identity matrix;A and H are the Jacobian matrices of the system functionf(·)and the measurement functionh(·)with respect to X;i.e.,

    The model parametersBandC,estimated by the EKF,are feedbacks to the tire model,so the estimated values by the RLS can be updated in real-time.Therefore,the estimation accuracy of the tire-road friction coefficient can be improved,and the estimated values can respond to the road state changes.The μ output by the EKF is the final estimation result.

    5 Simulation Results and Discussion

    To evaluate the performance of the proposed estimation method of the longitudinal friction coefficient,numerical simulations are performed using Carsim in Matlab/Simulink.According to Ref.[12],the initial values of model parametersBandCare 14 and 1.3,respectively.The forgetting factor λ is set to be 0.995.The proposed algorithm is validated under the high and the low slip ratio conditions with the tire-road friction coefficient changing,and the estimation results are compared with the conventional slip-slope algorithm.Simulation results show that the proposed algorithm can be applied to both the high and the low slip ratios;the estimation results are accurate and robust,and they can quickly respond to the changes in road conditions.

    5.1 Simulation under low slip ratio condition

    The main vehicle parameters used in the simulations are:kt=230 N/mm,m=1 220 kg,rs=310.8 mm,rw=304 mm,a=1.04 mm,b=1.56 mm.Fig.3 and Fig.4 are the simulation results.The figures show that the values of the slip ratio are small,and the proposed method can quickly identify the road friction coefficient with high accuracy;the error is less than 0.1.From Fig.4,we can see that the proposed method can converge to the true value within 2 s when the tire-road friction coefficient jumps,which meets the real-time requirements.

    Fig.3 Simulation results of low slip ratios.(a)Slip ratio;(b)Tire-road friction coefficient

    Fig.4 Simulation results of low slip ratios with friction coefficient changing.(a)Slip ratio;(b)Tire-road friction coefficient

    5.2 Simulation under high slip ratio condition

    The conventional slip-slope algorithm is no longer suitable for the high slip ratio condition because the relationship betweensand φ is not linear.Fig.5 and Fig.6 are the simulation results.The figures show that estimation results by the slip-slope algorithm produce a great error.The proposed method can quickly identify the road friction coefficient with high accuracy at high slip ratios and quickly respond to the changes in road conditions.

    6 Conclusion

    Simulation results show that the proposed algorithm can quickly and accurately estimate the tire-road friction coefficient under both the high and the low slip ratio conditions,which can meet the requirements of the vehicle longitudinal active safety system.And the proposed method only needs the existing sensors in commercial vehicles,so the proposed method is suitable for on-board applications with low computational complexity.

    The key of the proposed algorithm is to obtain an accurates-φ curve.Thes-φ curve can be obtained by the bench test,but the friction conditions on an actual road is different from the bench test,and the accuracy of the realtime tire-road friction coefficient is also reduced due to the high dynamic characteristics and noises.So the further work must focus on buildings-φ relationships in different roads by a lot of vehicle tests on the common road,and then the proposed method can be applied to practice and achieves mass-market applications.

    Fig.5 Simulation results of high slip ratios.(a)Slip ratio;(b)Friction coefficient estimated by the proposed method;(c)Friction coefficient estimated by the slip-slope method

    Fig.6 Simulation results of high slip ratios with friction coefficient changing.(a)Slip ratio;(b)Friction coefficient estimated by the proposed method;(c)Friction coefficient estimated by the slip-slope method

    [1]Rajamani R,Piyabongkarn D,Lew J Y,et al.Tire-road friction-coefficient estimation[J].IEEE Control System Magazine,2010,30(4):54-69.

    [2]Wang J,Alexander L,Rajamani R.Friction estimation on highway vehicles using longitudinal measurements[J].Journal of Dynamic Systems,Measurement,and Control,2004,126(2):265-275.

    [3]Lee C,Hedrick K,Yi K.Real-time slip-based estimation of maximum tire-road friction coefficient[J].IEEE/ASME Transactions on Mechatronics,2004,9(2):454-458.

    [4]Ahn C,Peng H,Tseng H E.Robust estimation of road friction coefficient using lateral and longitudinal vehicle dynamics[J].Vehicle System Dynamics,2012,50(6):961-985.

    [5]Li K,Misener J A,Hedrick K.On-board road condition monitoring system using slip-based tire-road friction estimation and wheel speed signal analysis[J].Journal of Multi-Body Dynamics,2007,221(1):129-146.

    [6]Tanelli M,Piroddi L,Savaresi S M.Real-time identification of tire-road friction conditions[J].IET ControlTheory Applications,2009,3(7):891-906.

    [7]Villagra J,d'Andréa-Novel B,F(xiàn)liess M,et al.A diagnosis-based approach for tire-road forces and maximum friction estimation [J].Control Engineering Practice,2009,19(2):174-184.

    [8]Wu Lijun,Wang Yuejian,Li Keqiang.Estimation method of road adhesion coefficient for vehicle longitudinal safety assistant system [J].Automotive Engineering,2009,31(3):239-243.(in Chinese)

    [9]Yu Zhuoping,Zuo Jianling,Zhang Lijun.A summary on the development status quo of tire-road friction coefficient estimation techniques[J].Automotive Engineering,2006,28(6):546-549.(in Chinese)

    [10]Shim T,Margolis D.Model-based road friction estimation[J].Vehicle System Dynamics,2004,41(4):249-276.

    [11]Bian Mingyuan.Simplified tire model for longitudinal road friction estimation[J].Journal of Chongqing University of Technology:Natural Science,2012,26(1):1-5.(in Chinese)

    [12]Gustafsson F.Automotive safety systems,replacing costly sensors with software algorithms[J].IEEE Signal Processing Magazine,2009,26(4):32-47.

    亚洲av国产av综合av卡| 九色亚洲精品在线播放| videos熟女内射| 高清视频免费观看一区二区| 最新的欧美精品一区二区| 日韩中文字幕视频在线看片| 亚洲综合精品二区| 新久久久久国产一级毛片| 啦啦啦 在线观看视频| 日韩大码丰满熟妇| 青春草亚洲视频在线观看| 亚洲精品国产av成人精品| 老熟女久久久| 在线天堂最新版资源| 少妇人妻 视频| 久久97久久精品| 久久精品久久久久久久性| 国产淫语在线视频| 久久免费观看电影| av天堂久久9| 最近的中文字幕免费完整| 日韩视频在线欧美| 老鸭窝网址在线观看| 少妇人妻久久综合中文| 国产免费一区二区三区四区乱码| 韩国精品一区二区三区| 午夜福利在线免费观看网站| 七月丁香在线播放| 老司机深夜福利视频在线观看 | 青春草亚洲视频在线观看| 97人妻天天添夜夜摸| 国产日韩欧美在线精品| 交换朋友夫妻互换小说| 男女边吃奶边做爰视频| 最近2019中文字幕mv第一页| 久久亚洲国产成人精品v| 亚洲国产欧美一区二区综合| 欧美日韩亚洲国产一区二区在线观看 | 欧美人与性动交α欧美精品济南到| 制服人妻中文乱码| 婷婷色av中文字幕| 大香蕉久久网| 性少妇av在线| 亚洲综合精品二区| 欧美97在线视频| 免费女性裸体啪啪无遮挡网站| 99热网站在线观看| 女性被躁到高潮视频| 欧美精品高潮呻吟av久久| 你懂的网址亚洲精品在线观看| 99热网站在线观看| av女优亚洲男人天堂| 欧美精品高潮呻吟av久久| 免费观看人在逋| 色吧在线观看| 夜夜骑夜夜射夜夜干| 波多野结衣av一区二区av| 成人亚洲精品一区在线观看| 国产精品亚洲av一区麻豆 | 美女大奶头黄色视频| 熟女少妇亚洲综合色aaa.| 久久久久网色| 亚洲成人国产一区在线观看 | 观看美女的网站| 欧美亚洲日本最大视频资源| 久久毛片免费看一区二区三区| 性高湖久久久久久久久免费观看| 中文字幕人妻丝袜一区二区 | 多毛熟女@视频| 国产日韩一区二区三区精品不卡| 久久97久久精品| 中文乱码字字幕精品一区二区三区| 一级a爱视频在线免费观看| 婷婷成人精品国产| tube8黄色片| 亚洲国产欧美网| 免费日韩欧美在线观看| 国产一级毛片在线| 精品亚洲成国产av| 看十八女毛片水多多多| 日韩制服骚丝袜av| 成年人午夜在线观看视频| 久久狼人影院| 汤姆久久久久久久影院中文字幕| 久久影院123| 日韩中文字幕欧美一区二区 | 男人操女人黄网站| 精品久久久精品久久久| 国产精品国产av在线观看| 久久免费观看电影| 久久久久人妻精品一区果冻| 男人舔女人的私密视频| 在线看a的网站| 欧美中文综合在线视频| 丰满饥渴人妻一区二区三| 深夜精品福利| 色婷婷av一区二区三区视频| 国产黄色视频一区二区在线观看| 亚洲男人天堂网一区| 亚洲一卡2卡3卡4卡5卡精品中文| 9191精品国产免费久久| 精品国产一区二区三区四区第35| 交换朋友夫妻互换小说| 亚洲国产精品一区三区| 日日爽夜夜爽网站| tube8黄色片| av网站免费在线观看视频| 黑人猛操日本美女一级片| 亚洲三区欧美一区| 天天添夜夜摸| 欧美中文综合在线视频| 女的被弄到高潮叫床怎么办| 中文字幕另类日韩欧美亚洲嫩草| 日韩中文字幕视频在线看片| 久久精品久久久久久久性| 九草在线视频观看| 女人精品久久久久毛片| 国产乱来视频区| 不卡视频在线观看欧美| 亚洲一级一片aⅴ在线观看| 国产精品嫩草影院av在线观看| 精品一品国产午夜福利视频| 国产精品国产三级专区第一集| www.熟女人妻精品国产| 又黄又粗又硬又大视频| 午夜激情av网站| 日韩av在线免费看完整版不卡| 久久久久国产一级毛片高清牌| 无限看片的www在线观看| 国产精品蜜桃在线观看| 蜜桃在线观看..| 人成视频在线观看免费观看| 99久久精品国产亚洲精品| 亚洲国产精品一区三区| 国产精品熟女久久久久浪| 性色av一级| 丝瓜视频免费看黄片| 欧美日韩亚洲综合一区二区三区_| 成年女人毛片免费观看观看9 | 九色亚洲精品在线播放| 99re6热这里在线精品视频| 国产国语露脸激情在线看| 中文字幕精品免费在线观看视频| 亚洲男人天堂网一区| 两性夫妻黄色片| 亚洲精品av麻豆狂野| 在线观看人妻少妇| 日韩人妻精品一区2区三区| 我的亚洲天堂| 日日啪夜夜爽| 免费高清在线观看视频在线观看| 午夜日韩欧美国产| 国产午夜精品一二区理论片| 亚洲av成人精品一二三区| 老司机深夜福利视频在线观看 | 巨乳人妻的诱惑在线观看| 久久天躁狠狠躁夜夜2o2o | 欧美日韩亚洲高清精品| 男女免费视频国产| 国精品久久久久久国模美| 亚洲国产毛片av蜜桃av| 十八禁人妻一区二区| 黄色毛片三级朝国网站| 97在线人人人人妻| 国产av码专区亚洲av| 精品国产一区二区三区久久久樱花| 午夜激情av网站| 久久精品久久久久久久性| 天天躁夜夜躁狠狠躁躁| 中文字幕制服av| 成人亚洲精品一区在线观看| 国产男人的电影天堂91| 老汉色∧v一级毛片| av有码第一页| 啦啦啦在线观看免费高清www| 丝袜美足系列| 伦理电影免费视频| 欧美日韩一级在线毛片| 亚洲精品国产一区二区精华液| 久久热在线av| av卡一久久| 国语对白做爰xxxⅹ性视频网站| 下体分泌物呈黄色| 中文字幕亚洲精品专区| 国产免费又黄又爽又色| 日本黄色日本黄色录像| 日韩av在线免费看完整版不卡| 少妇人妻久久综合中文| 人人妻人人添人人爽欧美一区卜| av国产久精品久网站免费入址| 免费看av在线观看网站| 日韩一区二区视频免费看| 久久国产精品大桥未久av| 日本色播在线视频| 夫妻午夜视频| 日本欧美国产在线视频| 18禁动态无遮挡网站| 欧美乱码精品一区二区三区| 丁香六月欧美| 亚洲五月色婷婷综合| 一边摸一边做爽爽视频免费| 极品少妇高潮喷水抽搐| www.av在线官网国产| 日韩av不卡免费在线播放| 国产97色在线日韩免费| 亚洲精品国产av成人精品| www.自偷自拍.com| www.av在线官网国产| 亚洲精品,欧美精品| 一级毛片电影观看| 最近的中文字幕免费完整| 一级爰片在线观看| 亚洲欧美精品自产自拍| 亚洲伊人久久精品综合| 国产成人a∨麻豆精品| 亚洲专区中文字幕在线 | 伊人亚洲综合成人网| 欧美日韩亚洲国产一区二区在线观看 | 国产在线视频一区二区| 国产极品天堂在线| 精品第一国产精品| 狠狠精品人妻久久久久久综合| 黑丝袜美女国产一区| 中文精品一卡2卡3卡4更新| 男人爽女人下面视频在线观看| 久久精品国产a三级三级三级| 国产一区二区激情短视频 | 少妇精品久久久久久久| 成人亚洲欧美一区二区av| 日本午夜av视频| 最新在线观看一区二区三区 | 精品国产超薄肉色丝袜足j| 悠悠久久av| videosex国产| 成人手机av| 大片电影免费在线观看免费| av卡一久久| 人人妻,人人澡人人爽秒播 | videos熟女内射| 国产av精品麻豆| 成人三级做爰电影| 中文乱码字字幕精品一区二区三区| 少妇被粗大的猛进出69影院| 日韩大码丰满熟妇| 亚洲 欧美一区二区三区| 久久精品国产a三级三级三级| 国产熟女欧美一区二区| av网站在线播放免费| 美女国产高潮福利片在线看| avwww免费| 亚洲欧美精品自产自拍| 99久久精品国产亚洲精品| 国产免费一区二区三区四区乱码| 黑人巨大精品欧美一区二区蜜桃| 国产一区二区激情短视频 | 午夜免费观看性视频| 成人毛片60女人毛片免费| 国产精品免费大片| 国产精品一区二区精品视频观看| 精品人妻在线不人妻| 美女大奶头黄色视频| 青春草亚洲视频在线观看| 成年人午夜在线观看视频| 亚洲人成网站在线观看播放| 久久精品亚洲av国产电影网| 久久热在线av| 国产精品蜜桃在线观看| 在线天堂中文资源库| 免费人妻精品一区二区三区视频| 久久综合国产亚洲精品| 青春草国产在线视频| 亚洲欧美成人精品一区二区| 91aial.com中文字幕在线观看| av又黄又爽大尺度在线免费看| 黑人猛操日本美女一级片| 亚洲自偷自拍图片 自拍| 国产精品久久久久久精品古装| 亚洲,欧美精品.| 亚洲精品自拍成人| 男女国产视频网站| 久久久久久免费高清国产稀缺| 久久鲁丝午夜福利片| 亚洲欧美成人综合另类久久久| 久久国产亚洲av麻豆专区| 午夜福利视频在线观看免费| 精品国产乱码久久久久久男人| 国产激情久久老熟女| 一级a爱视频在线免费观看| 久久亚洲国产成人精品v| av福利片在线| 我要看黄色一级片免费的| 久久精品aⅴ一区二区三区四区| 青草久久国产| 日日爽夜夜爽网站| 在线观看人妻少妇| 老鸭窝网址在线观看| 欧美精品av麻豆av| 久久久久久久大尺度免费视频| 亚洲精品美女久久久久99蜜臀 | 少妇的丰满在线观看| 毛片一级片免费看久久久久| 成年女人毛片免费观看观看9 | 在现免费观看毛片| 欧美黑人欧美精品刺激| 少妇的丰满在线观看| 日韩一区二区三区影片| 久久久国产精品麻豆| av一本久久久久| 男人添女人高潮全过程视频| av又黄又爽大尺度在线免费看| 乱人伦中国视频| 制服诱惑二区| 老司机靠b影院| 只有这里有精品99| 性色av一级| 又大又爽又粗| 国产精品一二三区在线看| 久久久亚洲精品成人影院| 老司机影院成人| 精品国产乱码久久久久久男人| av卡一久久| www.av在线官网国产| 青青草视频在线视频观看| 免费看不卡的av| 亚洲国产欧美在线一区| 国产精品久久久久久久久免| 日韩一本色道免费dvd| 成年人午夜在线观看视频| 欧美黑人欧美精品刺激| 中文精品一卡2卡3卡4更新| 无遮挡黄片免费观看| 国产成人91sexporn| 亚洲专区中文字幕在线 | 丝袜喷水一区| 中文字幕色久视频| 男女无遮挡免费网站观看| 一本—道久久a久久精品蜜桃钙片| 伊人久久大香线蕉亚洲五| 99香蕉大伊视频| 超碰97精品在线观看| 18在线观看网站| 少妇 在线观看| 国产精品久久久久久人妻精品电影 | kizo精华| 中国国产av一级| 1024香蕉在线观看| 精品一区二区三区av网在线观看 | 国产精品三级大全| 午夜免费男女啪啪视频观看| 久久久久人妻精品一区果冻| 欧美黑人欧美精品刺激| 精品少妇久久久久久888优播| 欧美黑人欧美精品刺激| 亚洲色图综合在线观看| 久久久久久久久久久免费av| 丝袜美足系列| 香蕉丝袜av| 日韩免费高清中文字幕av| 国产熟女欧美一区二区| 在现免费观看毛片| 天天躁夜夜躁狠狠久久av| 97人妻天天添夜夜摸| 电影成人av| 亚洲欧美一区二区三区国产| 最新的欧美精品一区二区| 99热全是精品| 亚洲熟女精品中文字幕| 久久久久久人妻| 亚洲美女视频黄频| 精品亚洲成a人片在线观看| 99热网站在线观看| videos熟女内射| 一本—道久久a久久精品蜜桃钙片| 无遮挡黄片免费观看| 爱豆传媒免费全集在线观看| 丝袜喷水一区| 国产激情久久老熟女| 人妻 亚洲 视频| 伦理电影免费视频| 亚洲在久久综合| 久久99热这里只频精品6学生| 亚洲精品美女久久av网站| 亚洲,一卡二卡三卡| 国产成人精品福利久久| 日韩欧美精品免费久久| 高清黄色对白视频在线免费看| 亚洲一区中文字幕在线| a级毛片在线看网站| 少妇人妻精品综合一区二区| 91国产中文字幕| 亚洲成人一二三区av| 如日韩欧美国产精品一区二区三区| 亚洲精品中文字幕在线视频| 亚洲欧美成人综合另类久久久| 乱人伦中国视频| 亚洲免费av在线视频| 国产成人系列免费观看| 欧美另类一区| 99re6热这里在线精品视频| 看免费av毛片| 久久精品人人爽人人爽视色| 国产精品久久久久成人av| 国产福利在线免费观看视频| 秋霞在线观看毛片| 日本色播在线视频| 亚洲国产精品国产精品| 亚洲综合色网址| 午夜免费观看性视频| 搡老乐熟女国产| 在线精品无人区一区二区三| 毛片一级片免费看久久久久| 亚洲第一区二区三区不卡| 老司机亚洲免费影院| 久久久久久久久久久久大奶| 在线观看www视频免费| 超色免费av| 亚洲精品中文字幕在线视频| 国产一区二区在线观看av| 无遮挡黄片免费观看| 高清av免费在线| 国产成人午夜福利电影在线观看| 国产99久久九九免费精品| 亚洲成色77777| 一本大道久久a久久精品| 大话2 男鬼变身卡| 亚洲欧美激情在线| 99热国产这里只有精品6| 女人高潮潮喷娇喘18禁视频| 国产激情久久老熟女| 国产一卡二卡三卡精品 | 蜜桃在线观看..| 日本av手机在线免费观看| 国产一区二区激情短视频 | 久久国产亚洲av麻豆专区| 国产av精品麻豆| 国产片特级美女逼逼视频| 久久久亚洲精品成人影院| 在线观看www视频免费| 国产极品粉嫩免费观看在线| 国产成人系列免费观看| 国产高清国产精品国产三级| 19禁男女啪啪无遮挡网站| 亚洲国产最新在线播放| 国产女主播在线喷水免费视频网站| 亚洲五月色婷婷综合| av免费观看日本| 女人高潮潮喷娇喘18禁视频| √禁漫天堂资源中文www| 一级毛片黄色毛片免费观看视频| 免费在线观看视频国产中文字幕亚洲 | 久久国产精品男人的天堂亚洲| 国产亚洲欧美精品永久| 亚洲男人天堂网一区| 在线观看免费高清a一片| 欧美日韩一区二区视频在线观看视频在线| 一二三四在线观看免费中文在| 国产一区二区三区av在线| 黑人巨大精品欧美一区二区蜜桃| 大片电影免费在线观看免费| 欧美人与善性xxx| 王馨瑶露胸无遮挡在线观看| 美女大奶头黄色视频| 韩国高清视频一区二区三区| 汤姆久久久久久久影院中文字幕| 亚洲国产精品成人久久小说| 成年美女黄网站色视频大全免费| 我的亚洲天堂| 精品人妻在线不人妻| 大码成人一级视频| 99久久人妻综合| 欧美日韩一级在线毛片| 亚洲成人一二三区av| 久久99精品国语久久久| 久久久久国产精品人妻一区二区| 亚洲精品aⅴ在线观看| 国产精品熟女久久久久浪| 肉色欧美久久久久久久蜜桃| 亚洲国产最新在线播放| 久久久国产精品麻豆| 91精品伊人久久大香线蕉| 一级毛片我不卡| 人人妻人人澡人人爽人人夜夜| 亚洲精品av麻豆狂野| 不卡视频在线观看欧美| 青青草视频在线视频观看| 18禁国产床啪视频网站| 国产片内射在线| 亚洲精华国产精华液的使用体验| 久久久久精品国产欧美久久久 | 日本欧美国产在线视频| 美女脱内裤让男人舔精品视频| 视频区图区小说| 久久久久久久精品精品| 男女无遮挡免费网站观看| 菩萨蛮人人尽说江南好唐韦庄| 韩国高清视频一区二区三区| 婷婷色麻豆天堂久久| 久久精品亚洲熟妇少妇任你| 成年人免费黄色播放视频| 国产亚洲午夜精品一区二区久久| www.自偷自拍.com| 别揉我奶头~嗯~啊~动态视频 | 1024视频免费在线观看| 一二三四在线观看免费中文在| 永久免费av网站大全| 色婷婷久久久亚洲欧美| 男女免费视频国产| 女性被躁到高潮视频| 男女下面插进去视频免费观看| 热99国产精品久久久久久7| 精品免费久久久久久久清纯 | 国产亚洲最大av| 免费看不卡的av| 丰满迷人的少妇在线观看| 国产伦理片在线播放av一区| 两个人看的免费小视频| 亚洲在久久综合| 国精品久久久久久国模美| 男女免费视频国产| 女人被躁到高潮嗷嗷叫费观| 欧美日韩亚洲国产一区二区在线观看 | 亚洲欧美色中文字幕在线| 两个人看的免费小视频| 狠狠婷婷综合久久久久久88av| 久久人人爽人人片av| 亚洲伊人久久精品综合| 宅男免费午夜| 中文字幕精品免费在线观看视频| 91aial.com中文字幕在线观看| 在线观看人妻少妇| 国产成人av激情在线播放| 黄频高清免费视频| 国产成人欧美| 又粗又硬又长又爽又黄的视频| 国产一区二区三区综合在线观看| 免费日韩欧美在线观看| 99精品久久久久人妻精品| 久久狼人影院| 午夜福利视频精品| 国产黄色免费在线视频| 精品亚洲成国产av| 精品第一国产精品| av.在线天堂| 亚洲精品中文字幕在线视频| 亚洲综合色网址| 欧美激情极品国产一区二区三区| 欧美日韩精品网址| 视频区图区小说| 国产午夜精品一二区理论片| 午夜91福利影院| 视频在线观看一区二区三区| 国产在线一区二区三区精| 在线观看国产h片| av.在线天堂| 亚洲国产欧美日韩在线播放| 亚洲国产中文字幕在线视频| 波野结衣二区三区在线| 亚洲三区欧美一区| 大码成人一级视频| 美女高潮到喷水免费观看| 最近2019中文字幕mv第一页| 日本vs欧美在线观看视频| 久久av网站| 亚洲自偷自拍图片 自拍| 欧美人与性动交α欧美精品济南到| 男女无遮挡免费网站观看| 国产成人a∨麻豆精品| 丝袜人妻中文字幕| 老熟女久久久| 国产精品女同一区二区软件| 满18在线观看网站| 丝瓜视频免费看黄片| 亚洲av电影在线观看一区二区三区| 欧美日韩综合久久久久久| 亚洲熟女毛片儿| 在线观看三级黄色| 看十八女毛片水多多多| 国产精品国产三级国产专区5o| 可以免费在线观看a视频的电影网站 | 精品午夜福利在线看| 国产成人精品福利久久| 久久人人爽人人片av| 可以免费在线观看a视频的电影网站 | svipshipincom国产片| 色网站视频免费| 日韩 亚洲 欧美在线| 亚洲天堂av无毛| 男女午夜视频在线观看| 午夜久久久在线观看| 亚洲精华国产精华液的使用体验| 久久久久久久精品精品| 久久国产精品大桥未久av| a 毛片基地| 亚洲美女黄色视频免费看| 日韩制服丝袜自拍偷拍| av又黄又爽大尺度在线免费看| 亚洲视频免费观看视频| 久久 成人 亚洲| 久久精品国产亚洲av高清一级| 亚洲精品成人av观看孕妇| 哪个播放器可以免费观看大片| 十八禁高潮呻吟视频| 欧美中文综合在线视频| 亚洲在久久综合| 一级毛片我不卡| 久久久亚洲精品成人影院| 欧美 日韩 精品 国产| 亚洲成国产人片在线观看| 两个人免费观看高清视频| 9色porny在线观看| 久久国产精品大桥未久av| 黄色视频在线播放观看不卡| 在线观看免费日韩欧美大片| 韩国精品一区二区三区| 午夜激情久久久久久久|