• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Primal-Dual SGD Algorithm for Distributed Nonconvex Optimization

    2022-05-23 03:02:46XinleiYiShengjunZhangTaoYangTianyouChaiandKarlHenrikJohansson
    IEEE/CAA Journal of Automatica Sinica 2022年5期

    Xinlei Yi, Shengjun Zhang, Tao Yang, Tianyou Chai,, and Karl Henrik Johansson,

    Abstract—The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered. This problem is an important component of many machine learning techniques with data parallelism, such as deep learning and federated learning. We propose a distributed primal-dual stochastic gradient descent (SGD) algorithm, suitable for arbitrarily connected communication networks and any smooth(possibly nonconvex) cost functions. We show that the proposed algorithm achieves the linear speedup convergence rate nT)for general nonconvex cost functions and the linear speedup convergence rate O(1/(nT)) when the global cost function satisfies the Polyak-?ojasiewicz (P-?) condition, where T is the total number of iterations. We also show that the output of the proposed algorithm with constant parameters linearly converges to a neighborhood of a global optimum. We demonstrate through numerical experiments the efficiency of our algorithm in comparison with the baseline centralized SGD and recently proposed distributed SGD algorithms.

    I. INTRODUCTION

    Note that the algorithms proposed in the aforementioned references use at least gradient information of the cost functions, and sometimes even the second- or higher-order information. However, in many applications explicit expressions of the gradients are often unavailable or difficult to obtain. In this paper, we consider the case where each agent can only collect stochastic gradients of its local cost function and propose a distributed stochastic gradient descent (SGD)algorithm to solve (1). In general, SGD algorithms are suitable for scenarios where explicit expressions of the gradients are unavailable or difficult to obtain. For example, in some big data applications, such as empirical risk minimization, the actual gradient is calculated from the entire data set, which results in a heavy computational burden. A stochastic gradient can be calculated from a randomly selected subset of the data and is often an efficient way to replace the actual gradient.Other examples which SGD algorithms are suitable for include scenarios where data are arriving sequentially such as in online learning [10].

    A. Literature Review

    B. Main Contributions

    This paper provides positive answers for the above two questions. More specifically, the contributions of this paper are summarized as follows.

    i) We propose a distributed primal-dual SGD algorithm to solve the optimization problem (1). In the proposed algorithm,each agent maintains the primal and dual variable sequences and only communicates the primal variable with its neighbors.This algorithm is suitable for arbitrarily connected communication networks and any smooth (possibly nonconvex) cost functions.

    iv) We show in Theorems 4 and 5 that the output of our algorithm with constant parameters linearly converges to a neighborhood of a global optimum when the global cost function satisfies the P-? condition. Compared with [26],[46]–[49], which used the strong convexity assumption, we achieve the similar convergence result under weaker assumptions on the cost function.

    The detailed comparison of this paper with other related studies in the literature is summarized in Table I.

    C. Outline

    The rest of this paper is organized as follows. Section II presents the novel distributed primal-dual SGD algorithm.

    TABLE I COMPARISON OF THIS PAPER TO SOME RELATED WORKS

    II. DISTRIBUTED PRIMAL-DUAL SGD ALGORITHM

    This corresponds to our proposed distributed primal-dual SGD algorithm, which is presented in pseudo-code as Algorithm 1.

    Algorithm 1 Distributed Primal-Dual SGD Algorithm 1: Input: parameters , , .xi,0 ∈Rp vi,0=0p, ?i ∈[n]2: Initialize: and .{αk} {βk} {ηk}?(0,+∞)3: for do i=1,...,n k=0,1,...4: for in parallel do xi,k Ni xj,k j ∈Ni 5: Broadcast to and receive from ;gi(xi,k,ξi,k)6: Sample stochastic gradient ;7: Update by (6a);xi,k+1 8: Update by (6b).9: end for 10: end for{xk}vi,k+1 11: Output: .

    A. Find Stationary Points

    B. Find Global Optimum

    Remark 4:It should be highlighted the P-? constantνis not used to design the algorithm parameters. Therefore, the constantνdoes not need to be known in advance. Similar convergence result as stated in (19) was achieved by the distributed SGD algorithms proposed in [26], [46]–[49] when each local cost function is strongly convex, which obviously is stronger than the P-? condition assumed in Theorem 4. In addition to the strong convexity condition, in [26], it was also assumed that each local cost function is Lipschitz-continuous.Some information related to the Lyapunov function and global parameters, which may be difficult to get, were furthermore needed to design the stepsize. Moreover, in [46]–[49], the strong convexity constant was needed to design the stepsize and in [48], [49], ap-dimensional auxiliary variable, which is used to track the global gradient, was communicated between agents. The potential drawbacks of the results stated in Theorem 4 are that i) we consider undirected graphs rather than directed graphs as considered in [49]; and ii) we do not analyze the robustness level to gradient noise as [46] did. We leave the extension to the (time-varying) directed graphs and the robustness level analysis as future research directions.

    Note that the unbiased assumption, i.e., Assumption 5, can be removed, as shown in the following.

    IV. SIMULATIONS

    In this section, we evaluate the performance of the proposed distributed primal-dual SGD algorithm through numerical experiments. All algorithms and agents are implemented and simulated in MATLAB R2018b, run on a desktop with Intel Core i5-9600K processor, Nvidia RTX 2070 super, 32 GB RAM, Ubuntu 16.04.

    A. Neural Networks

    We consider the training of neural networks (NN) for image classification tasks of the database MNIST [59]. The same NN is adopted as in [28] for each agent and the communication graph is generated randomly. The graph is shown in Fig. 1 and the corresponding Laplacian matrixLis given in (22). The corresponding mixing matrixWis constructed by Metropolis weights, which is given in (23).

    Fig. 1. Connection topology.

    Each local neural network consists of a single hidden layer of 50 neurons, followed by a sigmoid activation layer,followed by the output layer of 10 neurons and another sigmoid activation layer. In this experiment, we use a subset of MNIST data set. Each agent is assigned 2500 data points randomly, and at each iteration, only one data point is picked up by the agent following a uniform distribution.

    We compare our proposed distributed primal-dual SGD algorithm with time-varying and fixed parameters (DPDSGD-T and DPD-SGD-F) with state-of-the-art algorithms:distributed momentum SGD algorithm (DM-SGD) [23],distributed SGD algorithm (D-SGD-1) [26], [27], distributed SGD algorithm (D-SGD-2) [28], D2[36], distributed stochastic gradient tracking algorithm (D-SGT-1) [37], [49],distributed stochastic gradient tracking algorithm (D-SGT-2)[38], [48], and the baseline centralized SGD algorithm (CSGD). We list all the parameters1Note: the parameter names are different in each paper.we choose in the NN experiment for each algorithm in Table II.

    TABLE II PARAMETERS IN EACH ALGORITHM IN NN EXPERIMENT

    We demonstrate the result in terms of the empirical risk function [60], which is given as

    Fig. 2 shows that the proposed distributed primal-dual SGD algorithms with time-varying parameters converges almost as fast as the distributed SGD algorithm in [26], [27] and faster than the distributed SGD algorithms in [28], [36]–[38], [48],[49] and the centralized SGD algorithm. Note that our algorithm converges slower than the distributed momentum SGD algorithm [23]. This is reasonable since that algorithm is an accelerated algorithm with extra requirement on the cost functions, i.e., the deviations between the gradients of local cost functions are bounded, and it requires each agent to communicate threep-dimensional variables with its neighbors at each iteration. The slopes of the curves are however almost the same. The accuracy of each algorithm is given in Table III.

    Fig. 2. Empirical risk.

    TABLE III ACCURACY ON EACH ALGORITHM IN NN EXPERIMENT

    B. Convolutional Neural Networks

    Let us consider the training of a convolutional neural networks (CNN) model. We build a CNN model for each agent with five 3×3 convolutional layers using ReLU as activation function, one average pooling layer with filters of size 2×2, one sigmoid layer with dimension 360, another sigmoid layer with dimension 60, one softmax layer with dimension 10. In this experiment, we use the whole MNIST data set. We use the same communication graph as in the above NN experiment. Each agent is assigned 6000 data points randomly. We set the batch size as 20, which means at each iteration, 20 data points are chosen by the agent to update the gradient, which is also following a uniform distribution.For each algorithm, we do 10 epochs to train the CNN model.

    We compare our algorithms DPD-SGD-T and DPD-SGD-F with the fastest ones for the neural networks case, i.e., DMSGD [23], D-SGD-1 [26], [27], and C-SGD. We list all the parameters we choose in the CNN experiment for each algorithm in Table IV.

    We demonstrate the training loss and the test accuracy of each algorithm in Figs. 3 and 4 respectively. Here we use Categorical Cross-Entropy loss, which is a softmax activation plus a Cross-Entropy loss. We can see that our algorithms perform almost the same as the DM-SGD and better than the D-SGD-1 and the centralized C-SGD. The accuracy of each algorithm is given in Table V.

    TABLE IV PARAMETERS IN EACH ALGORITHM IN CNN EXPERIMENT

    Fig. 3. CNN training loss.

    Fig. 4. CNN accuracy.

    TABLE V ACCURACY ON EACH ALGORITHM IN CNN EXPERIMENT

    V. CONCLUSIONS

    In this paper, we studied distributed nonconvex optimization. We proposed a distributed primal-dual SGD algorithm and derived its convergence rate. More specifically, the linear

    a级一级毛片免费在线观看| 一夜夜www| 搡老妇女老女人老熟妇| 欧美丝袜亚洲另类 | 久久久久久久精品吃奶| xxxwww97欧美| 一区二区三区国产精品乱码| 午夜福利高清视频| 88av欧美| 久久久久国内视频| 国产综合懂色| 国产精品久久久人人做人人爽| 亚洲av免费在线观看| 99国产综合亚洲精品| 国产真实乱freesex| 蜜桃亚洲精品一区二区三区| 日韩欧美在线乱码| 一进一出抽搐gif免费好疼| 精品国产美女av久久久久小说| 国产高清有码在线观看视频| 成年免费大片在线观看| 成人一区二区视频在线观看| 亚洲精品在线美女| 波多野结衣高清作品| 久久天躁狠狠躁夜夜2o2o| 国产精品亚洲av一区麻豆| 人妻丰满熟妇av一区二区三区| 小说图片视频综合网站| 午夜免费观看网址| 午夜免费激情av| 亚洲久久久久久中文字幕| 熟妇人妻久久中文字幕3abv| 村上凉子中文字幕在线| 精品免费久久久久久久清纯| 午夜福利成人在线免费观看| 少妇熟女aⅴ在线视频| 国产男靠女视频免费网站| 19禁男女啪啪无遮挡网站| 久久九九热精品免费| 成人18禁在线播放| 亚洲色图av天堂| 一级a爱片免费观看的视频| 亚洲狠狠婷婷综合久久图片| 夜夜夜夜夜久久久久| 国产激情偷乱视频一区二区| 国产三级中文精品| 国产一区二区亚洲精品在线观看| 一级作爱视频免费观看| 欧美高清成人免费视频www| 悠悠久久av| 18禁国产床啪视频网站| 男人和女人高潮做爰伦理| 天堂影院成人在线观看| 精品国产超薄肉色丝袜足j| 国产精品久久久久久精品电影| 搡老妇女老女人老熟妇| 亚洲精品乱码久久久v下载方式 | 国产淫片久久久久久久久 | 小蜜桃在线观看免费完整版高清| 男人舔奶头视频| 亚洲精品粉嫩美女一区| 别揉我奶头~嗯~啊~动态视频| 亚洲在线观看片| 99视频精品全部免费 在线| 一区福利在线观看| 亚洲精品久久国产高清桃花| 亚洲av成人精品一区久久| 亚洲人成网站在线播放欧美日韩| 国产精品免费一区二区三区在线| 十八禁人妻一区二区| 亚洲精品乱码久久久v下载方式 | 99久久精品国产亚洲精品| 中文字幕av在线有码专区| 亚洲成人久久性| 亚洲熟妇熟女久久| 亚洲人与动物交配视频| 成人欧美大片| 国产男靠女视频免费网站| 国产精品自产拍在线观看55亚洲| 久久草成人影院| 欧美+日韩+精品| 欧美日本亚洲视频在线播放| 男女之事视频高清在线观看| www.熟女人妻精品国产| 精品一区二区三区人妻视频| 一个人免费在线观看的高清视频| 国产成人av教育| 看片在线看免费视频| 欧美一区二区精品小视频在线| 天堂√8在线中文| 真人一进一出gif抽搐免费| 午夜精品一区二区三区免费看| 精品一区二区三区视频在线观看免费| 欧美性猛交黑人性爽| 无人区码免费观看不卡| 午夜免费男女啪啪视频观看 | 成熟少妇高潮喷水视频| 久久香蕉精品热| 久久久久久久久大av| 欧美成人一区二区免费高清观看| 国产av一区在线观看免费| 麻豆成人av在线观看| 免费av毛片视频| a在线观看视频网站| 国产 一区 欧美 日韩| 国产极品精品免费视频能看的| 亚洲18禁久久av| 久久午夜亚洲精品久久| 日日摸夜夜添夜夜添小说| 成人国产一区最新在线观看| 51午夜福利影视在线观看| 亚洲人成网站在线播| 老熟妇乱子伦视频在线观看| 中文字幕人妻丝袜一区二区| 两人在一起打扑克的视频| 欧美日韩国产亚洲二区| 久久这里只有精品中国| 久久久色成人| 成人永久免费在线观看视频| 国产精品久久久久久精品电影| 午夜免费激情av| 日韩大尺度精品在线看网址| 在线观看av片永久免费下载| 天天添夜夜摸| 少妇的丰满在线观看| 又黄又爽又免费观看的视频| 美女高潮喷水抽搐中文字幕| aaaaa片日本免费| 国产伦一二天堂av在线观看| 一进一出好大好爽视频| 美女 人体艺术 gogo| 搡老熟女国产l中国老女人| 亚洲国产精品sss在线观看| 亚洲欧美一区二区三区黑人| 真实男女啪啪啪动态图| 亚洲成人久久性| 亚洲av电影在线进入| 美女高潮的动态| www日本在线高清视频| 久久精品夜夜夜夜夜久久蜜豆| 最近最新免费中文字幕在线| 中文字幕高清在线视频| 男人舔女人下体高潮全视频| 亚洲精品美女久久久久99蜜臀| 18美女黄网站色大片免费观看| 男女那种视频在线观看| 午夜福利高清视频| 18禁在线播放成人免费| 欧美日韩亚洲国产一区二区在线观看| 国产一区二区三区视频了| 亚洲精品国产精品久久久不卡| 免费在线观看成人毛片| 国产精品亚洲一级av第二区| 天堂√8在线中文| 日本撒尿小便嘘嘘汇集6| 又黄又爽又免费观看的视频| 国产一区二区在线av高清观看| 99热6这里只有精品| 国产伦在线观看视频一区| 午夜a级毛片| 黄片大片在线免费观看| 国产亚洲精品一区二区www| 色噜噜av男人的天堂激情| 免费看十八禁软件| netflix在线观看网站| 3wmmmm亚洲av在线观看| 久久久久九九精品影院| 一级毛片高清免费大全| 午夜福利欧美成人| 久久天躁狠狠躁夜夜2o2o| 怎么达到女性高潮| 在线观看一区二区三区| 国产精品美女特级片免费视频播放器| 欧美乱色亚洲激情| 精品国产三级普通话版| 嫁个100分男人电影在线观看| 看片在线看免费视频| 在线视频色国产色| 一边摸一边抽搐一进一小说| 久久久久免费精品人妻一区二区| 他把我摸到了高潮在线观看| 51国产日韩欧美| 91在线观看av| 97超视频在线观看视频| 好男人在线观看高清免费视频| 国内久久婷婷六月综合欲色啪| 每晚都被弄得嗷嗷叫到高潮| 丝袜美腿在线中文| 精品久久久久久久人妻蜜臀av| 少妇人妻一区二区三区视频| 1024手机看黄色片| 老司机深夜福利视频在线观看| 久久99热这里只有精品18| 精品欧美国产一区二区三| 亚洲成av人片在线播放无| av欧美777| 十八禁人妻一区二区| 18+在线观看网站| 一区福利在线观看| xxxwww97欧美| 麻豆久久精品国产亚洲av| 乱人视频在线观看| 怎么达到女性高潮| 九九久久精品国产亚洲av麻豆| av女优亚洲男人天堂| 特级一级黄色大片| 国产私拍福利视频在线观看| 亚洲精品456在线播放app | 国产毛片a区久久久久| 亚洲av免费在线观看| 欧美丝袜亚洲另类 | 日韩国内少妇激情av| 免费av毛片视频| 亚洲人成伊人成综合网2020| 久久精品91蜜桃| 国内毛片毛片毛片毛片毛片| 日韩大尺度精品在线看网址| 国产一区二区在线观看日韩 | 免费av不卡在线播放| 有码 亚洲区| 99热这里只有精品一区| 99国产极品粉嫩在线观看| 精品久久久久久久末码| 国产午夜精品论理片| 日韩欧美三级三区| 欧美中文综合在线视频| 99国产极品粉嫩在线观看| 日韩欧美精品免费久久 | 男女午夜视频在线观看| 真人一进一出gif抽搐免费| 免费看光身美女| 国产精品一区二区三区四区久久| 亚洲国产中文字幕在线视频| 最好的美女福利视频网| 久久久国产成人免费| 欧美精品啪啪一区二区三区| 90打野战视频偷拍视频| 精品一区二区三区av网在线观看| 午夜a级毛片| 热99re8久久精品国产| 老司机在亚洲福利影院| 久久久精品欧美日韩精品| 99久久成人亚洲精品观看| 久久久久亚洲av毛片大全| 日韩欧美精品免费久久 | 搡老岳熟女国产| 久久久国产成人免费| 成年版毛片免费区| 精品免费久久久久久久清纯| 99久久99久久久精品蜜桃| 日本 av在线| 一进一出抽搐动态| 国产极品精品免费视频能看的| 最近最新中文字幕大全免费视频| 欧美日本视频| 国产三级黄色录像| 亚洲人成网站高清观看| 一进一出好大好爽视频| 亚洲国产中文字幕在线视频| 美女大奶头视频| 国产淫片久久久久久久久 | 日韩欧美 国产精品| 99国产精品一区二区蜜桃av| 欧美+日韩+精品| 变态另类丝袜制服| 制服人妻中文乱码| av欧美777| 日本撒尿小便嘘嘘汇集6| 亚洲精品在线美女| 性色avwww在线观看| 搞女人的毛片| 精品久久久久久久毛片微露脸| 亚洲第一电影网av| eeuss影院久久| 国产精品美女特级片免费视频播放器| 欧美日韩黄片免| 一个人观看的视频www高清免费观看| 中文字幕av在线有码专区| 99热只有精品国产| 国内久久婷婷六月综合欲色啪| 日本与韩国留学比较| 久久午夜亚洲精品久久| 日韩中文字幕欧美一区二区| 一区二区三区免费毛片| 国产精品乱码一区二三区的特点| 黄色视频,在线免费观看| 国产成人a区在线观看| 在线观看一区二区三区| 色综合欧美亚洲国产小说| 99久久久亚洲精品蜜臀av| 亚洲精品影视一区二区三区av| 久久久久免费精品人妻一区二区| 噜噜噜噜噜久久久久久91| 黑人欧美特级aaaaaa片| 精品国产美女av久久久久小说| 国产精品久久久久久久久免 | 成人三级黄色视频| 国产精品 国内视频| 成人欧美大片| 少妇的逼好多水| 久久久久精品国产欧美久久久| 亚洲成人中文字幕在线播放| www国产在线视频色| 又粗又爽又猛毛片免费看| 成人无遮挡网站| 欧美日韩瑟瑟在线播放| 搡老妇女老女人老熟妇| 国产探花极品一区二区| 欧美一区二区亚洲| 日韩欧美在线乱码| 综合色av麻豆| 亚洲av中文字字幕乱码综合| 99在线人妻在线中文字幕| 久久久久精品国产欧美久久久| 3wmmmm亚洲av在线观看| 色综合欧美亚洲国产小说| 男女午夜视频在线观看| 国产视频内射| 日本五十路高清| 在线观看日韩欧美| 91久久精品电影网| 1024手机看黄色片| 悠悠久久av| 国产亚洲av嫩草精品影院| 老熟妇乱子伦视频在线观看| 欧美午夜高清在线| 国产精品久久电影中文字幕| 成人三级黄色视频| 欧美一级毛片孕妇| 久久人人精品亚洲av| bbb黄色大片| 人妻夜夜爽99麻豆av| 18禁裸乳无遮挡免费网站照片| 日韩精品中文字幕看吧| 69人妻影院| 亚洲中文日韩欧美视频| 亚洲国产欧洲综合997久久,| 久久久精品大字幕| 久久这里只有精品中国| 日本在线视频免费播放| 热99在线观看视频| 成人18禁在线播放| 午夜免费观看网址| 制服人妻中文乱码| 岛国视频午夜一区免费看| 国产高清videossex| 国产不卡一卡二| 免费在线观看成人毛片| 亚洲真实伦在线观看| 午夜福利视频1000在线观看| 亚洲成av人片在线播放无| 老汉色av国产亚洲站长工具| 成人欧美大片| 色综合站精品国产| 久久精品国产综合久久久| 久久久久久国产a免费观看| 免费在线观看日本一区| 床上黄色一级片| 中文字幕久久专区| 国产一区二区在线av高清观看| 看免费av毛片| 亚洲av免费在线观看| 最近最新中文字幕大全电影3| 久久这里只有精品中国| 99久国产av精品| 亚洲国产精品999在线| xxxwww97欧美| 亚洲精品一区av在线观看| 97超级碰碰碰精品色视频在线观看| 好男人电影高清在线观看| 男人和女人高潮做爰伦理| 国产亚洲精品久久久久久毛片| 午夜老司机福利剧场| 亚洲专区国产一区二区| 日韩高清综合在线| 国产99白浆流出| 亚洲最大成人手机在线| 亚洲中文字幕日韩| 美女cb高潮喷水在线观看| 三级男女做爰猛烈吃奶摸视频| 色播亚洲综合网| 免费无遮挡裸体视频| 69人妻影院| 欧美绝顶高潮抽搐喷水| 男女之事视频高清在线观看| 手机成人av网站| 69av精品久久久久久| 成人永久免费在线观看视频| 女人十人毛片免费观看3o分钟| 伊人久久精品亚洲午夜| 欧美成人性av电影在线观看| 少妇高潮的动态图| 岛国在线免费视频观看| h日本视频在线播放| 欧美zozozo另类| 欧美精品啪啪一区二区三区| 日韩av在线大香蕉| 国产精品98久久久久久宅男小说| 18禁裸乳无遮挡免费网站照片| 99视频精品全部免费 在线| 桃红色精品国产亚洲av| 亚洲成人久久性| 亚洲成人久久爱视频| 久久精品人妻少妇| 亚洲一区高清亚洲精品| 啦啦啦免费观看视频1| 欧美成人免费av一区二区三区| 五月伊人婷婷丁香| 国内久久婷婷六月综合欲色啪| 91麻豆精品激情在线观看国产| 观看免费一级毛片| 日本精品一区二区三区蜜桃| 成人一区二区视频在线观看| 最近视频中文字幕2019在线8| 亚洲无线观看免费| 免费人成视频x8x8入口观看| 在线天堂最新版资源| 亚洲五月婷婷丁香| 精品电影一区二区在线| 免费在线观看成人毛片| 国产真实伦视频高清在线观看 | 精品熟女少妇八av免费久了| 男女午夜视频在线观看| 成熟少妇高潮喷水视频| 18禁国产床啪视频网站| 成人一区二区视频在线观看| 国产精品精品国产色婷婷| 国产伦在线观看视频一区| 两个人视频免费观看高清| 老熟妇乱子伦视频在线观看| 禁无遮挡网站| 欧美+亚洲+日韩+国产| 黄色片一级片一级黄色片| 伊人久久大香线蕉亚洲五| 最新在线观看一区二区三区| 国产真人三级小视频在线观看| 亚洲国产精品久久男人天堂| 欧美黑人欧美精品刺激| 一区二区三区国产精品乱码| 亚洲av一区综合| 欧美日韩瑟瑟在线播放| 色精品久久人妻99蜜桃| 国内精品美女久久久久久| 国产成人aa在线观看| 亚洲精品一区av在线观看| 亚洲av不卡在线观看| 国产主播在线观看一区二区| 午夜精品一区二区三区免费看| 免费搜索国产男女视频| 亚洲av二区三区四区| 桃红色精品国产亚洲av| 欧美+亚洲+日韩+国产| 首页视频小说图片口味搜索| 热99在线观看视频| 精品一区二区三区av网在线观看| 嫩草影院精品99| 欧美日韩国产亚洲二区| 亚洲精品影视一区二区三区av| 精品国产亚洲在线| 51国产日韩欧美| 日韩欧美精品v在线| 熟女少妇亚洲综合色aaa.| 精品国产美女av久久久久小说| 久久久精品大字幕| 俄罗斯特黄特色一大片| av福利片在线观看| 午夜精品久久久久久毛片777| 日本五十路高清| 亚洲av不卡在线观看| 91麻豆精品激情在线观看国产| 精品国内亚洲2022精品成人| 免费大片18禁| 手机成人av网站| 日本一二三区视频观看| 日韩免费av在线播放| 成年免费大片在线观看| www.色视频.com| 高潮久久久久久久久久久不卡| 午夜福利免费观看在线| 免费无遮挡裸体视频| tocl精华| 精品人妻1区二区| 欧美日韩亚洲国产一区二区在线观看| 岛国视频午夜一区免费看| 久久久久久久久中文| 狠狠狠狠99中文字幕| 亚洲人成网站在线播放欧美日韩| 热99re8久久精品国产| 啦啦啦免费观看视频1| 最新美女视频免费是黄的| 99在线人妻在线中文字幕| 欧美乱色亚洲激情| a在线观看视频网站| 欧美+亚洲+日韩+国产| 色av中文字幕| 日韩欧美免费精品| 麻豆成人av在线观看| 亚洲成人久久爱视频| 18禁黄网站禁片免费观看直播| 国产又黄又爽又无遮挡在线| 一个人免费在线观看的高清视频| 国产黄片美女视频| 日韩有码中文字幕| 18禁黄网站禁片免费观看直播| 国产aⅴ精品一区二区三区波| 亚洲精品粉嫩美女一区| 日韩精品中文字幕看吧| 1024手机看黄色片| 精品久久久久久,| 久久久久精品国产欧美久久久| 国产一区二区亚洲精品在线观看| 国产毛片a区久久久久| 一本一本综合久久| 亚洲欧美日韩无卡精品| 久久人妻av系列| 黄色视频,在线免费观看| 欧美日韩精品网址| 操出白浆在线播放| 欧美bdsm另类| 欧美最黄视频在线播放免费| 亚洲欧美一区二区三区黑人| 成年女人看的毛片在线观看| 国产精品亚洲av一区麻豆| 色吧在线观看| 搡老熟女国产l中国老女人| 日韩欧美精品免费久久 | 久久久精品欧美日韩精品| h日本视频在线播放| 可以在线观看的亚洲视频| 久久精品国产自在天天线| 国产色婷婷99| 欧美一区二区亚洲| 久久精品91蜜桃| 首页视频小说图片口味搜索| 久久中文看片网| 国产亚洲精品av在线| 日韩欧美精品免费久久 | 欧美性感艳星| 亚洲人成网站在线播放欧美日韩| 亚洲成a人片在线一区二区| 午夜福利欧美成人| 美女被艹到高潮喷水动态| а√天堂www在线а√下载| 国产一区二区三区视频了| 免费看日本二区| 欧美黑人欧美精品刺激| 亚洲va日本ⅴa欧美va伊人久久| 亚洲最大成人手机在线| 美女大奶头视频| 啦啦啦观看免费观看视频高清| 精品免费久久久久久久清纯| 不卡一级毛片| 色av中文字幕| 国产三级黄色录像| av福利片在线观看| 免费在线观看成人毛片| 高清日韩中文字幕在线| 亚洲成av人片在线播放无| 天天躁日日操中文字幕| 欧美又色又爽又黄视频| 观看免费一级毛片| 免费观看人在逋| 色哟哟哟哟哟哟| 欧美日韩亚洲国产一区二区在线观看| 老汉色av国产亚洲站长工具| 又黄又爽又免费观看的视频| 亚洲国产色片| 精品久久久久久,| 国产高清三级在线| 69人妻影院| 久久久久久九九精品二区国产| 熟女少妇亚洲综合色aaa.| 国产三级黄色录像| 日本成人三级电影网站| 国产视频内射| 18禁国产床啪视频网站| 老司机深夜福利视频在线观看| 最近在线观看免费完整版| 午夜福利欧美成人| 少妇的逼水好多| 国产成人影院久久av| 无遮挡黄片免费观看| 高潮久久久久久久久久久不卡| 99国产精品一区二区蜜桃av| 又粗又爽又猛毛片免费看| 级片在线观看| 一个人免费在线观看电影| 我的老师免费观看完整版| 内地一区二区视频在线| 露出奶头的视频| 亚洲人成网站在线播放欧美日韩| 久久精品国产99精品国产亚洲性色| 亚洲国产欧洲综合997久久,| 欧美日韩精品网址| 99久久精品国产亚洲精品| 88av欧美| 亚洲色图av天堂| 亚洲成a人片在线一区二区| 五月玫瑰六月丁香| 欧美日韩精品网址| 亚洲成a人片在线一区二区| 亚洲18禁久久av| 国产乱人伦免费视频| 桃色一区二区三区在线观看| 精品国产美女av久久久久小说| 无限看片的www在线观看| 久久久色成人| 婷婷六月久久综合丁香| 久久精品国产综合久久久| 国产精品嫩草影院av在线观看 | 国产精品98久久久久久宅男小说| 夜夜夜夜夜久久久久| 久久精品影院6| 又紧又爽又黄一区二区| 99久国产av精品|