• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Primal-Dual SGD Algorithm for Distributed Nonconvex Optimization

    2022-05-23 03:02:46XinleiYiShengjunZhangTaoYangTianyouChaiandKarlHenrikJohansson
    IEEE/CAA Journal of Automatica Sinica 2022年5期

    Xinlei Yi, Shengjun Zhang, Tao Yang, Tianyou Chai,, and Karl Henrik Johansson,

    Abstract—The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered. This problem is an important component of many machine learning techniques with data parallelism, such as deep learning and federated learning. We propose a distributed primal-dual stochastic gradient descent (SGD) algorithm, suitable for arbitrarily connected communication networks and any smooth(possibly nonconvex) cost functions. We show that the proposed algorithm achieves the linear speedup convergence rate nT)for general nonconvex cost functions and the linear speedup convergence rate O(1/(nT)) when the global cost function satisfies the Polyak-?ojasiewicz (P-?) condition, where T is the total number of iterations. We also show that the output of the proposed algorithm with constant parameters linearly converges to a neighborhood of a global optimum. We demonstrate through numerical experiments the efficiency of our algorithm in comparison with the baseline centralized SGD and recently proposed distributed SGD algorithms.

    I. INTRODUCTION

    Note that the algorithms proposed in the aforementioned references use at least gradient information of the cost functions, and sometimes even the second- or higher-order information. However, in many applications explicit expressions of the gradients are often unavailable or difficult to obtain. In this paper, we consider the case where each agent can only collect stochastic gradients of its local cost function and propose a distributed stochastic gradient descent (SGD)algorithm to solve (1). In general, SGD algorithms are suitable for scenarios where explicit expressions of the gradients are unavailable or difficult to obtain. For example, in some big data applications, such as empirical risk minimization, the actual gradient is calculated from the entire data set, which results in a heavy computational burden. A stochastic gradient can be calculated from a randomly selected subset of the data and is often an efficient way to replace the actual gradient.Other examples which SGD algorithms are suitable for include scenarios where data are arriving sequentially such as in online learning [10].

    A. Literature Review

    B. Main Contributions

    This paper provides positive answers for the above two questions. More specifically, the contributions of this paper are summarized as follows.

    i) We propose a distributed primal-dual SGD algorithm to solve the optimization problem (1). In the proposed algorithm,each agent maintains the primal and dual variable sequences and only communicates the primal variable with its neighbors.This algorithm is suitable for arbitrarily connected communication networks and any smooth (possibly nonconvex) cost functions.

    iv) We show in Theorems 4 and 5 that the output of our algorithm with constant parameters linearly converges to a neighborhood of a global optimum when the global cost function satisfies the P-? condition. Compared with [26],[46]–[49], which used the strong convexity assumption, we achieve the similar convergence result under weaker assumptions on the cost function.

    The detailed comparison of this paper with other related studies in the literature is summarized in Table I.

    C. Outline

    The rest of this paper is organized as follows. Section II presents the novel distributed primal-dual SGD algorithm.

    TABLE I COMPARISON OF THIS PAPER TO SOME RELATED WORKS

    II. DISTRIBUTED PRIMAL-DUAL SGD ALGORITHM

    This corresponds to our proposed distributed primal-dual SGD algorithm, which is presented in pseudo-code as Algorithm 1.

    Algorithm 1 Distributed Primal-Dual SGD Algorithm 1: Input: parameters , , .xi,0 ∈Rp vi,0=0p, ?i ∈[n]2: Initialize: and .{αk} {βk} {ηk}?(0,+∞)3: for do i=1,...,n k=0,1,...4: for in parallel do xi,k Ni xj,k j ∈Ni 5: Broadcast to and receive from ;gi(xi,k,ξi,k)6: Sample stochastic gradient ;7: Update by (6a);xi,k+1 8: Update by (6b).9: end for 10: end for{xk}vi,k+1 11: Output: .

    A. Find Stationary Points

    B. Find Global Optimum

    Remark 4:It should be highlighted the P-? constantνis not used to design the algorithm parameters. Therefore, the constantνdoes not need to be known in advance. Similar convergence result as stated in (19) was achieved by the distributed SGD algorithms proposed in [26], [46]–[49] when each local cost function is strongly convex, which obviously is stronger than the P-? condition assumed in Theorem 4. In addition to the strong convexity condition, in [26], it was also assumed that each local cost function is Lipschitz-continuous.Some information related to the Lyapunov function and global parameters, which may be difficult to get, were furthermore needed to design the stepsize. Moreover, in [46]–[49], the strong convexity constant was needed to design the stepsize and in [48], [49], ap-dimensional auxiliary variable, which is used to track the global gradient, was communicated between agents. The potential drawbacks of the results stated in Theorem 4 are that i) we consider undirected graphs rather than directed graphs as considered in [49]; and ii) we do not analyze the robustness level to gradient noise as [46] did. We leave the extension to the (time-varying) directed graphs and the robustness level analysis as future research directions.

    Note that the unbiased assumption, i.e., Assumption 5, can be removed, as shown in the following.

    IV. SIMULATIONS

    In this section, we evaluate the performance of the proposed distributed primal-dual SGD algorithm through numerical experiments. All algorithms and agents are implemented and simulated in MATLAB R2018b, run on a desktop with Intel Core i5-9600K processor, Nvidia RTX 2070 super, 32 GB RAM, Ubuntu 16.04.

    A. Neural Networks

    We consider the training of neural networks (NN) for image classification tasks of the database MNIST [59]. The same NN is adopted as in [28] for each agent and the communication graph is generated randomly. The graph is shown in Fig. 1 and the corresponding Laplacian matrixLis given in (22). The corresponding mixing matrixWis constructed by Metropolis weights, which is given in (23).

    Fig. 1. Connection topology.

    Each local neural network consists of a single hidden layer of 50 neurons, followed by a sigmoid activation layer,followed by the output layer of 10 neurons and another sigmoid activation layer. In this experiment, we use a subset of MNIST data set. Each agent is assigned 2500 data points randomly, and at each iteration, only one data point is picked up by the agent following a uniform distribution.

    We compare our proposed distributed primal-dual SGD algorithm with time-varying and fixed parameters (DPDSGD-T and DPD-SGD-F) with state-of-the-art algorithms:distributed momentum SGD algorithm (DM-SGD) [23],distributed SGD algorithm (D-SGD-1) [26], [27], distributed SGD algorithm (D-SGD-2) [28], D2[36], distributed stochastic gradient tracking algorithm (D-SGT-1) [37], [49],distributed stochastic gradient tracking algorithm (D-SGT-2)[38], [48], and the baseline centralized SGD algorithm (CSGD). We list all the parameters1Note: the parameter names are different in each paper.we choose in the NN experiment for each algorithm in Table II.

    TABLE II PARAMETERS IN EACH ALGORITHM IN NN EXPERIMENT

    We demonstrate the result in terms of the empirical risk function [60], which is given as

    Fig. 2 shows that the proposed distributed primal-dual SGD algorithms with time-varying parameters converges almost as fast as the distributed SGD algorithm in [26], [27] and faster than the distributed SGD algorithms in [28], [36]–[38], [48],[49] and the centralized SGD algorithm. Note that our algorithm converges slower than the distributed momentum SGD algorithm [23]. This is reasonable since that algorithm is an accelerated algorithm with extra requirement on the cost functions, i.e., the deviations between the gradients of local cost functions are bounded, and it requires each agent to communicate threep-dimensional variables with its neighbors at each iteration. The slopes of the curves are however almost the same. The accuracy of each algorithm is given in Table III.

    Fig. 2. Empirical risk.

    TABLE III ACCURACY ON EACH ALGORITHM IN NN EXPERIMENT

    B. Convolutional Neural Networks

    Let us consider the training of a convolutional neural networks (CNN) model. We build a CNN model for each agent with five 3×3 convolutional layers using ReLU as activation function, one average pooling layer with filters of size 2×2, one sigmoid layer with dimension 360, another sigmoid layer with dimension 60, one softmax layer with dimension 10. In this experiment, we use the whole MNIST data set. We use the same communication graph as in the above NN experiment. Each agent is assigned 6000 data points randomly. We set the batch size as 20, which means at each iteration, 20 data points are chosen by the agent to update the gradient, which is also following a uniform distribution.For each algorithm, we do 10 epochs to train the CNN model.

    We compare our algorithms DPD-SGD-T and DPD-SGD-F with the fastest ones for the neural networks case, i.e., DMSGD [23], D-SGD-1 [26], [27], and C-SGD. We list all the parameters we choose in the CNN experiment for each algorithm in Table IV.

    We demonstrate the training loss and the test accuracy of each algorithm in Figs. 3 and 4 respectively. Here we use Categorical Cross-Entropy loss, which is a softmax activation plus a Cross-Entropy loss. We can see that our algorithms perform almost the same as the DM-SGD and better than the D-SGD-1 and the centralized C-SGD. The accuracy of each algorithm is given in Table V.

    TABLE IV PARAMETERS IN EACH ALGORITHM IN CNN EXPERIMENT

    Fig. 3. CNN training loss.

    Fig. 4. CNN accuracy.

    TABLE V ACCURACY ON EACH ALGORITHM IN CNN EXPERIMENT

    V. CONCLUSIONS

    In this paper, we studied distributed nonconvex optimization. We proposed a distributed primal-dual SGD algorithm and derived its convergence rate. More specifically, the linear

    只有这里有精品99| 在线天堂最新版资源| 日本黄色片子视频| 免费看美女性在线毛片视频| 久久久久久伊人网av| 久久99蜜桃精品久久| 夜夜看夜夜爽夜夜摸| 国内精品一区二区在线观看| 久久久欧美国产精品| 国产高清三级在线| 成年av动漫网址| 欧美xxxx性猛交bbbb| 欧美成人a在线观看| 亚洲18禁久久av| 热99在线观看视频| av播播在线观看一区| 永久免费av网站大全| 日本黄色视频三级网站网址| 白带黄色成豆腐渣| 又黄又爽又刺激的免费视频.| 久久草成人影院| 最近2019中文字幕mv第一页| 好男人在线观看高清免费视频| 欧美激情在线99| 成人午夜高清在线视频| 国产黄片视频在线免费观看| 国产精品一区二区三区四区久久| 国产伦精品一区二区三区视频9| 亚洲真实伦在线观看| 中文亚洲av片在线观看爽| 人人妻人人澡人人爽人人夜夜 | 噜噜噜噜噜久久久久久91| 99在线人妻在线中文字幕| 亚洲av男天堂| 日韩欧美精品v在线| 22中文网久久字幕| 成人亚洲欧美一区二区av| 欧美人与善性xxx| 亚洲欧美成人精品一区二区| 成人综合一区亚洲| 国产高清三级在线| 蜜桃亚洲精品一区二区三区| 国产亚洲一区二区精品| 中文字幕精品亚洲无线码一区| 国产亚洲av嫩草精品影院| 女人十人毛片免费观看3o分钟| 69人妻影院| 国模一区二区三区四区视频| 国产黄a三级三级三级人| 人人妻人人澡欧美一区二区| 成人三级黄色视频| 精品一区二区三区人妻视频| 美女脱内裤让男人舔精品视频| 国产av码专区亚洲av| 亚洲国产精品合色在线| 免费av观看视频| 日本一本二区三区精品| 成人av在线播放网站| 亚洲人与动物交配视频| 亚洲成人久久爱视频| 国产真实乱freesex| 国产人妻一区二区三区在| 美女cb高潮喷水在线观看| 欧美成人一区二区免费高清观看| 六月丁香七月| 午夜老司机福利剧场| 久久精品国产99精品国产亚洲性色| 免费在线观看成人毛片| 午夜激情欧美在线| 国产美女午夜福利| 成人鲁丝片一二三区免费| 成人亚洲精品av一区二区| 精品久久久久久久久久久久久| 日本一本二区三区精品| av专区在线播放| 亚洲国产日韩欧美精品在线观看| 中文资源天堂在线| 欧美+日韩+精品| 一个人看的www免费观看视频| 免费av不卡在线播放| 精品国产露脸久久av麻豆 | 午夜福利成人在线免费观看| 久久久久久久久久久丰满| 亚洲美女搞黄在线观看| 高清在线视频一区二区三区 | 国产精品国产高清国产av| 国产白丝娇喘喷水9色精品| 国产淫语在线视频| 久久久成人免费电影| 热99在线观看视频| 舔av片在线| 欧美另类亚洲清纯唯美| 国产精品一及| 日韩欧美三级三区| 国产欧美另类精品又又久久亚洲欧美| 亚洲伊人久久精品综合 | 九九热线精品视视频播放| 久久久久久久久久黄片| 成人国产麻豆网| 午夜a级毛片| 91久久精品电影网| 人妻制服诱惑在线中文字幕| 欧美+日韩+精品| 97超碰精品成人国产| 国产激情偷乱视频一区二区| 久久久久久久亚洲中文字幕| 亚洲在线观看片| 中文在线观看免费www的网站| 精品99又大又爽又粗少妇毛片| 亚洲欧美中文字幕日韩二区| 日本一二三区视频观看| 嫩草影院入口| 嫩草影院入口| 两个人视频免费观看高清| 好男人视频免费观看在线| 校园人妻丝袜中文字幕| 97在线视频观看| av又黄又爽大尺度在线免费看 | 综合色av麻豆| 日本猛色少妇xxxxx猛交久久| av又黄又爽大尺度在线免费看 | 超碰av人人做人人爽久久| 青春草亚洲视频在线观看| 波多野结衣高清无吗| 插逼视频在线观看| 亚洲国产高清在线一区二区三| 插逼视频在线观看| 在线a可以看的网站| 在线a可以看的网站| 亚洲国产精品合色在线| 国产伦理片在线播放av一区| 亚洲最大成人中文| 国产精品久久久久久久电影| 在线a可以看的网站| 国产精品综合久久久久久久免费| 波野结衣二区三区在线| 国产爱豆传媒在线观看| 天堂中文最新版在线下载 | 国产精品乱码一区二三区的特点| 精品国内亚洲2022精品成人| 国产成人精品一,二区| 丝袜喷水一区| 午夜久久久久精精品| 欧美高清性xxxxhd video| 日本三级黄在线观看| 免费在线观看成人毛片| 欧美一区二区亚洲| 久久久精品欧美日韩精品| 18禁在线播放成人免费| or卡值多少钱| 成人漫画全彩无遮挡| av在线天堂中文字幕| 国产黄色小视频在线观看| 欧美不卡视频在线免费观看| 成人欧美大片| 极品教师在线视频| 中文在线观看免费www的网站| 国产久久久一区二区三区| 国产成人精品一,二区| 亚洲天堂国产精品一区在线| 中文在线观看免费www的网站| 久久久久久久国产电影| 特大巨黑吊av在线直播| 中文字幕亚洲精品专区| 久久精品夜色国产| 麻豆乱淫一区二区| 一本久久精品| 国产成人a∨麻豆精品| 岛国在线免费视频观看| 免费观看人在逋| 一边摸一边抽搐一进一小说| 毛片一级片免费看久久久久| 六月丁香七月| 简卡轻食公司| 成年免费大片在线观看| 99热6这里只有精品| 久久精品夜色国产| 国产成人aa在线观看| 久久精品国产99精品国产亚洲性色| 一级av片app| 免费观看精品视频网站| 99久久精品一区二区三区| 秋霞伦理黄片| 亚洲,欧美,日韩| 亚洲,欧美,日韩| 久久精品国产亚洲av涩爱| 国产黄片美女视频| 夫妻性生交免费视频一级片| 久久久久久久久久久免费av| 人人妻人人澡人人爽人人夜夜 | 成人特级av手机在线观看| 国产高清视频在线观看网站| 丰满乱子伦码专区| 美女xxoo啪啪120秒动态图| 一二三四中文在线观看免费高清| 亚洲高清免费不卡视频| 精品久久久久久久末码| 亚洲婷婷狠狠爱综合网| 国产免费视频播放在线视频 | 午夜免费男女啪啪视频观看| 国产高清不卡午夜福利| 永久免费av网站大全| 国内少妇人妻偷人精品xxx网站| 美女脱内裤让男人舔精品视频| 少妇高潮的动态图| 如何舔出高潮| 亚洲国产精品国产精品| 中文在线观看免费www的网站| 亚洲av成人精品一区久久| 18+在线观看网站| av在线亚洲专区| 老司机影院毛片| 亚洲国产高清在线一区二区三| 亚洲精品aⅴ在线观看| 高清午夜精品一区二区三区| 免费观看在线日韩| 两个人的视频大全免费| 国产极品天堂在线| 91午夜精品亚洲一区二区三区| 91aial.com中文字幕在线观看| 色噜噜av男人的天堂激情| 日本-黄色视频高清免费观看| .国产精品久久| 国产成人freesex在线| 免费观看在线日韩| 男人舔女人下体高潮全视频| 搡女人真爽免费视频火全软件| 久久99热这里只有精品18| 国产成人精品婷婷| 国产精品日韩av在线免费观看| 国产精品日韩av在线免费观看| 免费观看人在逋| 一级毛片我不卡| 国产精品美女特级片免费视频播放器| 美女内射精品一级片tv| 色视频www国产| 国产免费又黄又爽又色| 黄色配什么色好看| av天堂中文字幕网| 国产精品无大码| 少妇被粗大猛烈的视频| 精品一区二区免费观看| 爱豆传媒免费全集在线观看| 听说在线观看完整版免费高清| 日日干狠狠操夜夜爽| 国语对白做爰xxxⅹ性视频网站| 一级毛片久久久久久久久女| 99国产精品一区二区蜜桃av| 乱人视频在线观看| 日韩大片免费观看网站 | 日韩中字成人| 不卡视频在线观看欧美| 欧美日本视频| 国产一区有黄有色的免费视频 | 久久久久国产网址| 如何舔出高潮| 能在线免费看毛片的网站| 狠狠狠狠99中文字幕| 国产亚洲午夜精品一区二区久久 | 日韩av在线免费看完整版不卡| 欧美激情国产日韩精品一区| 精品久久久久久久人妻蜜臀av| 亚洲精品乱码久久久v下载方式| 精品一区二区三区视频在线| 99久久无色码亚洲精品果冻| 日韩成人av中文字幕在线观看| 欧美xxxx黑人xx丫x性爽| 欧美3d第一页| 天堂网av新在线| 中文资源天堂在线| www.av在线官网国产| 一个人看的www免费观看视频| 成人毛片a级毛片在线播放| 免费观看a级毛片全部| 长腿黑丝高跟| 免费观看性生交大片5| 午夜精品在线福利| 日本黄色片子视频| 欧美另类亚洲清纯唯美| 人人妻人人看人人澡| 高清视频免费观看一区二区 | 精品99又大又爽又粗少妇毛片| 国产精品麻豆人妻色哟哟久久 | 一级黄片播放器| 啦啦啦啦在线视频资源| 成人鲁丝片一二三区免费| 九九爱精品视频在线观看| 大又大粗又爽又黄少妇毛片口| 国产亚洲精品av在线| 美女脱内裤让男人舔精品视频| 午夜日本视频在线| 免费观看a级毛片全部| 久久99热这里只有精品18| 久久人人爽人人爽人人片va| 日本免费a在线| 99久国产av精品国产电影| 精品无人区乱码1区二区| 国产v大片淫在线免费观看| 国产色爽女视频免费观看| 18+在线观看网站| 亚洲,欧美,日韩| 国产免费一级a男人的天堂| 免费观看a级毛片全部| 最近最新中文字幕免费大全7| 国产av不卡久久| 日本免费a在线| 美女cb高潮喷水在线观看| 久热久热在线精品观看| 国产中年淑女户外野战色| 亚洲不卡免费看| 久久亚洲国产成人精品v| 日韩国内少妇激情av| 一区二区三区高清视频在线| 亚洲美女搞黄在线观看| 欧美一区二区亚洲| 国产单亲对白刺激| 真实男女啪啪啪动态图| 18+在线观看网站| 日本熟妇午夜| 天天一区二区日本电影三级| 亚洲成人精品中文字幕电影| АⅤ资源中文在线天堂| 熟女人妻精品中文字幕| 免费观看精品视频网站| 日韩av在线免费看完整版不卡| 男女边吃奶边做爰视频| 国产亚洲精品久久久com| 亚洲在线自拍视频| 亚洲中文字幕一区二区三区有码在线看| a级毛片免费高清观看在线播放| 国语对白做爰xxxⅹ性视频网站| 如何舔出高潮| 特大巨黑吊av在线直播| 色综合色国产| 国产精品福利在线免费观看| 精品久久久久久电影网 | 国产视频首页在线观看| 国产精品国产高清国产av| 日韩av在线免费看完整版不卡| 美女黄网站色视频| 91久久精品国产一区二区成人| 国产精品嫩草影院av在线观看| 亚洲美女搞黄在线观看| 夜夜爽夜夜爽视频| 看十八女毛片水多多多| 国产伦精品一区二区三区四那| 高清午夜精品一区二区三区| 亚洲美女视频黄频| 69av精品久久久久久| av国产久精品久网站免费入址| 水蜜桃什么品种好| 国产色婷婷99| 成人高潮视频无遮挡免费网站| 久久久久久久亚洲中文字幕| 小说图片视频综合网站| 国内揄拍国产精品人妻在线| 精品免费久久久久久久清纯| 麻豆成人午夜福利视频| 国产成人a区在线观看| 国产精品一区二区在线观看99 | 久久午夜福利片| 婷婷色av中文字幕| 少妇的逼水好多| 麻豆久久精品国产亚洲av| 亚洲av男天堂| 观看美女的网站| 午夜激情福利司机影院| 久久久国产成人精品二区| 建设人人有责人人尽责人人享有的 | 少妇的逼水好多| 中文字幕另类日韩欧美亚洲嫩草| 如日韩欧美国产精品一区二区三区| 狂野欧美激情性xxxx在线观看| 我要看黄色一级片免费的| 免费黄网站久久成人精品| 久久久久久久久久成人| 2022亚洲国产成人精品| 五月玫瑰六月丁香| 国产精品熟女久久久久浪| 久久久久国产精品人妻一区二区| 国产亚洲av片在线观看秒播厂| 中文字幕人妻丝袜制服| 精品久久久久久电影网| 国精品久久久久久国模美| 日韩制服丝袜自拍偷拍| 深夜精品福利| av在线观看视频网站免费| 国产亚洲最大av| 亚洲国产色片| 久久久a久久爽久久v久久| 国产有黄有色有爽视频| 七月丁香在线播放| 在线观看三级黄色| 久久韩国三级中文字幕| 女人被躁到高潮嗷嗷叫费观| 成人午夜精彩视频在线观看| 国产免费福利视频在线观看| 日韩大片免费观看网站| 91精品伊人久久大香线蕉| 狠狠精品人妻久久久久久综合| 狂野欧美激情性bbbbbb| 韩国高清视频一区二区三区| 国产精品国产av在线观看| 男女免费视频国产| 又大又黄又爽视频免费| 日韩免费高清中文字幕av| 久久久精品免费免费高清| 国产成人精品无人区| 国产成人a∨麻豆精品| 女的被弄到高潮叫床怎么办| 看免费成人av毛片| 91aial.com中文字幕在线观看| 一级a做视频免费观看| 日日爽夜夜爽网站| 日韩制服丝袜自拍偷拍| 国产成人精品在线电影| 最黄视频免费看| 国产亚洲午夜精品一区二区久久| 亚洲精品国产av成人精品| 午夜福利视频在线观看免费| 成人亚洲欧美一区二区av| 久久精品久久久久久噜噜老黄| 自拍欧美九色日韩亚洲蝌蚪91| 欧美精品一区二区大全| 国产片特级美女逼逼视频| 免费黄频网站在线观看国产| 大话2 男鬼变身卡| 女的被弄到高潮叫床怎么办| kizo精华| 18禁裸乳无遮挡动漫免费视频| 婷婷色av中文字幕| 黄色配什么色好看| 久久久久精品久久久久真实原创| 精品第一国产精品| 丝袜在线中文字幕| 你懂的网址亚洲精品在线观看| 我的女老师完整版在线观看| 性色avwww在线观看| av黄色大香蕉| 99国产精品免费福利视频| 精品人妻偷拍中文字幕| 中文字幕最新亚洲高清| 三上悠亚av全集在线观看| 亚洲欧美清纯卡通| 日韩欧美一区视频在线观看| a级毛片在线看网站| 久久久久人妻精品一区果冻| 亚洲成人一二三区av| 亚洲国产日韩一区二区| 精品国产一区二区久久| 9191精品国产免费久久| 免费人妻精品一区二区三区视频| 亚洲国产av影院在线观看| 国产精品欧美亚洲77777| 黄色毛片三级朝国网站| 少妇熟女欧美另类| 一级黄片播放器| kizo精华| 国产免费现黄频在线看| 亚洲精品久久久久久婷婷小说| 我的女老师完整版在线观看| 青青草视频在线视频观看| 春色校园在线视频观看| 久久久久久久大尺度免费视频| 三级国产精品片| 97在线人人人人妻| 亚洲成色77777| 波野结衣二区三区在线| a级毛片在线看网站| 少妇人妻久久综合中文| av一本久久久久| 亚洲综合精品二区| 晚上一个人看的免费电影| 成人午夜精彩视频在线观看| 肉色欧美久久久久久久蜜桃| 这个男人来自地球电影免费观看 | 亚洲在久久综合| 26uuu在线亚洲综合色| 久久99热这里只频精品6学生| videos熟女内射| 纵有疾风起免费观看全集完整版| 国产男人的电影天堂91| 色婷婷久久久亚洲欧美| 精品人妻在线不人妻| 亚洲天堂av无毛| av不卡在线播放| 尾随美女入室| 桃花免费在线播放| 晚上一个人看的免费电影| www.av在线官网国产| 99久久中文字幕三级久久日本| a级毛片黄视频| a级片在线免费高清观看视频| av福利片在线| 精品第一国产精品| 少妇的逼水好多| 1024视频免费在线观看| 亚洲高清免费不卡视频| 精品亚洲成国产av| 男女啪啪激烈高潮av片| 成人18禁高潮啪啪吃奶动态图| 国产乱来视频区| 精品国产露脸久久av麻豆| 97在线视频观看| 午夜精品国产一区二区电影| 精品国产一区二区三区久久久樱花| a级毛片在线看网站| 大片电影免费在线观看免费| 咕卡用的链子| kizo精华| 国产男人的电影天堂91| 18禁观看日本| 汤姆久久久久久久影院中文字幕| 9色porny在线观看| 精品亚洲乱码少妇综合久久| 欧美精品人与动牲交sv欧美| 高清欧美精品videossex| 国产毛片在线视频| 亚洲国产精品专区欧美| 国产 精品1| 国产免费现黄频在线看| 各种免费的搞黄视频| 国产乱人偷精品视频| a级毛片在线看网站| av卡一久久| 一区二区日韩欧美中文字幕 | 最新中文字幕久久久久| 国产亚洲精品久久久com| 在线天堂中文资源库| 亚洲欧洲日产国产| av黄色大香蕉| 亚洲国产av影院在线观看| 亚洲国产精品成人久久小说| 欧美激情国产日韩精品一区| 午夜激情久久久久久久| 亚洲精品中文字幕在线视频| 黄色配什么色好看| 在线观看三级黄色| 国产精品麻豆人妻色哟哟久久| 两性夫妻黄色片 | 如日韩欧美国产精品一区二区三区| 国产 精品1| 久久鲁丝午夜福利片| 亚洲内射少妇av| 丝袜在线中文字幕| 满18在线观看网站| 成人漫画全彩无遮挡| 免费黄色在线免费观看| 18+在线观看网站| 我的女老师完整版在线观看| 少妇熟女欧美另类| 久久久精品区二区三区| 成人免费观看视频高清| 午夜久久久在线观看| 黄色 视频免费看| 插逼视频在线观看| xxxhd国产人妻xxx| 免费黄网站久久成人精品| 日本免费在线观看一区| 国产国语露脸激情在线看| 高清不卡的av网站| 国产精品熟女久久久久浪| 色5月婷婷丁香| 久久99精品国语久久久| 黄色怎么调成土黄色| 国产精品99久久99久久久不卡 | 如何舔出高潮| 一级黄片播放器| 日韩欧美一区视频在线观看| 视频在线观看一区二区三区| 国产xxxxx性猛交| 亚洲国产av影院在线观看| 最近的中文字幕免费完整| 久久人妻熟女aⅴ| 国产亚洲欧美精品永久| 国产亚洲av片在线观看秒播厂| 日韩一本色道免费dvd| 日日爽夜夜爽网站| 欧美老熟妇乱子伦牲交| 精品一区二区免费观看| 青春草国产在线视频| 男女啪啪激烈高潮av片| 97精品久久久久久久久久精品| 亚洲在久久综合| 久久精品久久精品一区二区三区| 国产淫语在线视频| 免费av中文字幕在线| 久久精品国产鲁丝片午夜精品| 一本—道久久a久久精品蜜桃钙片| 男女午夜视频在线观看 | 男女边吃奶边做爰视频| 久久婷婷青草| 亚洲国产av新网站| 精品亚洲成a人片在线观看| 色婷婷av一区二区三区视频| 午夜精品国产一区二区电影| 菩萨蛮人人尽说江南好唐韦庄| 狂野欧美激情性bbbbbb| 亚洲精品久久久久久婷婷小说| 午夜福利影视在线免费观看| 免费观看在线日韩| 国产av国产精品国产| 午夜免费男女啪啪视频观看| 精品国产一区二区三区久久久樱花| 久久97久久精品| 99久国产av精品国产电影| 成人毛片a级毛片在线播放| 最后的刺客免费高清国语| 国产一区二区三区综合在线观看 | 三上悠亚av全集在线观看| 亚洲国产av新网站| 免费看av在线观看网站| 视频区图区小说| 女的被弄到高潮叫床怎么办| 国产熟女欧美一区二区|