• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genome-wide identification,evolutionary selection,and genetic variation of DNA methylation-related genes in Brassica rapa and Brassica oleracea

    2022-05-09 03:37:30ANFengZHANGKangZHANGLingkuiLlXingCHENShuminWANGHuasenCHENGFeng
    Journal of Integrative Agriculture 2022年6期

    AN Feng ,ZHANG Kang ,ZHANG Ling-kui ,Ll Xing ,CHEN Shu-min ,WANG Hua-senCHENG Feng

    1 Collaborative Innovation Center for Efficient and Green Production of Agriculture in Zhejiang Mountainous Areas,College of Horticulture Science,Zhejiang A&F University,Hangzhou 311300,P.R.China

    2 Institute of Vegetables and Flowers,Chinese Academy of Agricultural Sciences,Beijing 100081,P.R.China

    Abstract DNA methylation plays an important role in plant growth and development,and in regulating the activity of transposable elements (TEs). Research on DNA methylation-related (DMR) genes has been reported in Arabidopsis,but little research on DMR genes has been reported in Brassica rapa and Brassica oleracea,the genomes of which exhibit significant differences in TE content. In this study,we identified 78 and 77 DMR genes in Brassica rapa and Brassica oleracea,respectively. Detailed analysis revealed that the numbers of DMR genes in different DMR pathways varied in B.rapa and B.oleracea. The evolutionary selection pressure of DMR genes in B.rapa and B.oleracea was compared,and the DMR genes showed differential evolution between these two species. The nucleotide diversity (π) and selective sweep (Tajima’s D) revealed footprints of selection in the B.rapa and B.oleracea populations. Transcriptome analysis showed that most DMR genes exhibited similar expression characteristics in B.rapa and B.oleracea. This study dissects the evolutionary differences and genetic variations of the DMR genes in B.rapa and B.oleracea,and will provide valuable resources for future research on the divergent evolution of DNA methylation between B.rapa and B.oleracea.

    Keywords:DNA methylation,Brassica rapa,Brassica oleracea,evolutionary selection,genetic variation,gene expression

    1.lntroduction

    DNA methylation is an epigenetic modification that controls multiple processes,such as gene expression,stress responses,and the expression of transposable elements(TEs) (Gallego-Bartolomé 2020). Many studies have demonstrated that the manipulation of DNA methylation provides an alternative method for crop improvement,thereby serving as an important target for manipulation in crop improvement (Springer 2013;Bloomfieldet al.2014;King 2015). DNA methylation is divided into three processes,includingde novomethylation,maintenance of methylation,and active DNA demethylation,and these three processes are catalyzed by various enzymes (Zhanget al.2018). In plants,de novomethylation refers to the RNA-directed DNA methylation (RdDM) pathway,which is employed by plant-specific RNA polymerases (Zhanget al.2018). The RdDM pathway relies on a specialized transcription machinery including RNA polymerase IV (Pol IV) and Pol V (Herret al.2005;Haag and Pikaard 2011;Peiet al.2019). The single-stranded RNAs,which are transcribed from RdDM target loci by Pol IV,are converted into double-stranded RNAs (dsRNAs) by RNA-dependent RNA polymerase 2 (RDR2) (Onoderaet al.2005;Haag and Pikaard 2011;Blevinset al.2015;Grimanelli and Ingouff 2020). Dicer-like protein 2 (DCL2),DCL3,andDCL4cleave these dsRNAs to yield small-interfering RNAs (siRNAs) (Xieet al.2004). Subsequently,the siRNAs are loaded onto Argonaute 4 (AGO4) orAGO6,and pair with scaffold RNAs transcribed by Pol V,recruiting domains rearranged methylase 2 (DRM2),which catalyzesde novoDNA methylation (Zilbermanet al.2003;Yeet al.2012;Zhonget al.2014;Zhanget al.2018). The mechanisms for the maintenance of DNA methylation (MDM) depend on the cytosine sequence context (CG,CHG,or CHH,H=T,C,A),and are catalyzed by different DNA methyltransferases (Cokuset al.2008;Chodavarapuet al.2010;Zhanget al.2018). In brief,CG cytosine methylation is maintained by methyltransferase 1(MET1). CHG cytosine methylation is maintained by chromomethylase 3 (CMT3) andCMT2(Lindrothet al.2001;Stroudet al.2014). CHH cytosine methylation is maintained byCMT2andDRM2(Jeddelohet al.1999;Zilbermanet al.2003). There are two forms of DNA demethylation,the passive DNA demethylation (PDD) and the active DNA demethylation (ADD). PDD depends on DNA replication (Zhu 2009;Liuet al.2018),while ADD is mediated by a family of DNA glycosylases including Demeter (DME),Demeter-like 2 (DML2),andDML3,as well as repressor of silencing 1 (ROS1) (Choiet al.2002;Pentermanet al.2007;Ortega-Galisteoet al.2008). In plants,ADD is a complex process,and the ADD pathway includes the participation of multiple protein complexes and transcription factors (Duanet al.2017;Frostet al.2018).

    The genusBrassicabelongs to the plant family Brassicaceae (Warwicket al.2006;Chenget al.2017),and includes many important horticultural species.Among them,BrassicarapaandBrassicaoleraceaare two important representative vegetable crops. Recent research has proven thatBrassicaspecies have undergone additional whole-genome triplication (WGT)events since they diverged fromArabidopsis thaliana,followed by extensive gene loss and the divergence of three subgenomes (Wanget al.2011). Extensive gene loss resulted in various subgenome-dominant phenomena inB.rapaandB.oleracea,such as gene loss bias and expression dominance between homoeologous genes from different subgenomes (Zhanget al.2019). Among the three subgenomes,the dominant subgenome is referred to as the least fractionated subgenome (LF),while the other two recessive subgenomes are referred to as the medium fractionated subgenome (MF1) and the most fractionated subgenome (MF2) (Wanget al.2011;Chenget al.2012a;Liu S Yet al.2014). Recently,the impact of DNA methylation on polyploid genome evolution has been documented inB.rapaandB.oleracea(Chenet al.2015;Groveret al.2018). It was also found that variation in DNA methylation broadly exists among different plant species (Niederhuthet al.2016). Wholegenome DNA methylation,and small RNA and gene expression were systematically analyzed inB.rapa(Chenet al.2015;Takahashiet al.2018). The results showed that the genic regions of single-copy genes had significantly higher methylation than multi-copy genes.Generally,the level of gene expression was negatively correlated with the mean gene methylation content and depended on the copy number or subgenomes inB.rapa(Takahashiet al.2018). In addition,the differences in TEs betweenB.rapaandB.oleraceaare notable (Wanget al.2011;Zhaoet al.2013;Liu S Yet al.2014),and TEs are closely related to DNA methylation (Chenget al.2016a). These findings indicate the importance of studying the divergent evolution of DNA methylationrelated (DMR) genes that underlie the differences in TEs and their methylation betweenB.rapaandB.oleracea.However,systematic identification and characterization of DMR genes inB.rapaandB.oleraceaare still lacking.In recent years,with the rapid development of genomics,high-throughput sequencing technology has provided a large quantity of nucleic acid data for bothB.rapaandB.oleracea,which is very convenient for the study of DMR genes inB.rapaandB.oleracea.

    In this study,we identified the DMR genes by comparative genomic analysis ofA.thaliana,B.rapa,andB.oleracea,and analyzed the retention and evolutionary differences in the DMR genes after WGT betweenB.rapaandB.oleracea. We compared the evolutionary selection pressures and expression differences of DMR genes betweenB.rapaandB.oleracea. In addition,we estimated the population diversity of DMR genes by calculating nucleotide diversity (π) and Tajima’s D in 199B.rapaand 119B.oleraceaaccessions. This study provides valuable resources for future research on the divergent evolution of DNA methylation between the genomes ofB.rapaandB.oleracea.

    2.Materials and methods

    2.1.ldentification of DMR genes

    The sequences ofA.thalianagenes involved in the DMR pathways were retrieved from the TAIR database (https://www.arabidopsis.org/). TheB.rapa(v3.1) andB.oleraceagenomes (v2.0) were downloaded from BRAD (http://brassicadb.cn/) (Chenget al.2011). These genomes and gene datasets were used to identify the DMR genes inB.rapaandB.oleracea. We used two methods (BLASTP and SynOrths) to identify the DMR proteins inB.rapaandB.oleracea. In the BLASTP v2.10.0 Software (NCBIBLAST package,ftp://ftp.ncbi.nih.gov/blast/),we used the following parameters:E-value of ≤10?10,identity of ≥0.65,and coverage of ≥0.70. In the SynOrths v1.5 Software(Chenget al.2012b),we used the default parameters.

    2.2.Chromosomal localization,synteny analysis,and protein domain analysis

    DMR genes were mapped to theA.thaliana,B.rapa,andB.oleraceachromosomes with MapChart v2.32 (Voorrips 2002) according to their positions in the chromosomes.SynOrths v1.5 was employed to analyze the synteny for DMR genes amongA.thaliana,B.rapa,andB.oleracea,and Circos v0.69 (Krzywinskiet al.2009) was used to draw the synteny relationships of the DMR genes. The domains in DMR protein sequences were predicted by Pfam (http://pfam.xfam.org/) with E-value ≤10?3.

    2.3.Evolutionary selection pressure analysis

    DMR gene pairs were aligned by codons in MAFFT v7.467 Software (Katoh and Standley 2013). Non-synonymous(Ka) and synonymous (Ks) substitution rates andKa/Ksratios were determined using theKaKs_Calculator v2.0 program (Wanget al.2010). The frequency distribution of these data was visualized by a violin plot using the R package vioplot (https://github.com/TomKellyGenetics/vioplot). The significance was tested using theF-test.

    2.4.Population diversity analysis

    By using the resequencing data from the 199B.rapaand 119B.oleraceaaccessions (Chenget al.2016b),genetic diversity measures were calculated. The π and Tajima’s D index values were estimated for the whole genome using the VCFtools v0.1.16 Software (Daneceket al.2011). The sliding window of VCFtools v0.1.16 was the middle distance between each gene and its two upper and lower genes. The π and Tajima’s D index of the DMR genes inB.rapaandB.oleraceawere then estimated by the same method. The frequency distribution of this data was visualized by a violin plot using the R package vioplot (https://github.com/TomKellyGenetics/vioplot). The significance was tested using theF-test.

    2.5.Expression pattern analysis

    The transcriptional patterns of the DMR genes in multiple tissues were obtainedviatranscriptional sequencing data from the DDBJ/EMBL/GenBank Sequence Read Archive(SRA) databases (codes GSE43245 and GSE42891) for bothB.rapaandB.oleracea,including root,stem,leaf,flower,and silique tissues. The clean data were mapped onto theB.rapaandB.oleraceagenomes using Hisat2 v2.1.0 (Kimet al.2019) with default parameters. The mapped output was processedviafeatureCounts v2.0.0 (Liaoet al.2014)and a Python script to obtain transcripts per million (TPM) for all the DMR genes in each sample. The TPM values of the DMR genes were transformed by log2(TPM+1). Finally,heat maps of the DMR genes were generated using pheatmap in the R package (pheatmap,https://cran.r-project.org/web/packages/pheatmap/index.html).

    3.Results

    3.1.DMR genes show different contents between B.rapa and B.oleracea

    We systematically collected the genes involved in DMR that have been reported previously (Deleriset al.2016;Liu and Lang 2020). In total,50 genes inArabidopsiscorresponding to the three main pathways for DNA methylation were obtained,with the functional information listed in Appendix A. The resultant gene numbers in the RdDM,MDM,and ADD categories were 17,8,and 25,respectively.

    We identified the orthologs (homeologs) of these 50A.thalianagenes in theB.rapaandB.oleraceagenomes using two methods (Guoet al.2014). The tool SynOrths was applied to determine the syntenic orthologs,while BLASTP was performed to detect those orthologs without synteny relationships (see Section 2.1). Ultimately,78 and 77 DMR genes were identified inB.rapaandB.oleracea,respectively (Table 1;Appendices B and C). We then named these genes according to their subgenome locations. For example,the syntenic orthologs of geneAbcwere located in subgenomes LF,MF1,and MF2,so these syntenic orthologs were named “Abc.1”,“Abc.2”,and “Abc.3”,respectively. If two syntenic genes were located in one subgenome LF,we further distinguished them as “Abc.1.a” and “Abc.1.b”. The non-syntenicorthologs were named after the numbering of these syntenic genes,such as “Abc.4”. Following these rules,a comprehensive annotation for these DMR genes was generated (Appendices B and C). With the subgenome information,we found that 34,12,and 18 DMR genes were located in subgenomes LF,MF1,and MF2 inB.rapa,respectively;while 32,15,and 21 DMR genes were located in subgenomes LF,MF1,and MF2,respectively,inB.oleracea. These data show that more syntenic orthologs are located in subgenome LF than in either subgenomes MF1 or MF2,which is consistent with the fact that genes in LF are generally over-retained inBrassicaspecies(Wanget al.2011;Chenget al.2018).

    Table 1 The numbers of DNA methylation-related (DMR) genes in Brassica rapa and Brassica oleracea

    To understand the distributions of DMR genes in theA.thaliana,B.rapa,andB.oleraceagenomes,we mapped the identified DMR genes onto theA.thaliana,B.rapa,andB.oleraceachromosomes.We drew a map of each DMR gene on theA.thaliana,B.rapa,andB.oleraceachromosomes. The resulting maps showed that most of the DMR genes were located in syntenic regions. Compared withA.thaliana,the uneven distribution of these genes inBrassicawas probably due to the extensive subgenome rearrangements (Appendix D). InA.thaliana,the RdDM and ADD genes are mainly distributed on chromosome 3,while MDM genes are mainly distributed on chromosome 5. InB.rapa,most of the DMR genes are localized on the first six chromosomes,and only three of the DMR genes are located on chromosome 8. InB.oleracea,none of the DMR genes were found on chromosome 6.

    We also performed synteny analysis with the DMR genes amongA.thaliana,B.rapa,andB.oleracea.The syntenic relationships of these genes are listed in Appendix E. A total of 24 chromosomes(A.thaliana:5,B.rapa:10,andB.oleracea:9) with a total of 134 DMR genes (A.thaliana:43,B.rapa:64,andB.oleracea:69) were used to map the synteny relationships (Fig.1). The results showed that approximately 56% of DMR genes showed “oneto-one synteny” relationships betweenA.thalianaandB.rapa(B.oleracea),while approximately 44%of the DMR genes showed “one-to-many synteny”relationships,which revealed that some DMR genes were retained while some DMR genes were lost after a WGT event (Fig.1).

    Fig.1 Syntenic analysis of DNA methylation-related (DMR) genes. Lines link the synteny genes from the Arabidopsis thaliana,Brassica rapa,and Brassica oleracea genomes. ChrX represents an A.thaliana chromosome,A0X represents a B.rapa chromosome,and C0X represents a B.oleracea chromosome. Blue lines represent the RNA-directed DNA methylation (RdDM)pathway,green lines represent the maintenances of DNA methylation (MDM) pathway,and orange lines represent the active DNA demethylation (ADD) pathway.

    3.2.DMR genes show differential evolution between B.rapa and B.oleracea

    BrassicarapaandB.oleraceashowed differential retention of genes related to DNA methylation regulation.These syntenic orthologs to theA.thalianagenes were generated through a WGT event and retained through extensive homoeologous gene loss. Because of neofunctionalization,subfunctionalization,and nonfunctionalization (Lynchet al.2001),differences exist in the copy numbers of the genes.

    We wondered whether there are differences in the functional domains of the DMR genes besides the presence-absence variation (PAV). Considering the importance of these DMR genes in the pathway and copy number variations,AGOsandMETswere selected as examples to illustrate the differences. The analysis revealed that five AGO4 proteins possessed six types of domains,while three AGO6 proteins possessed five types of domains (Fig.2-A). Compared with other AGO4s,the BrAGO4.3 protein lost all types of domains inB.rapa,while the BoAGO4.3 protein was lost directly inB.oleracea. The BoAGO4.4 protein lost the fifth domain,ArgoMid domain,which is a site-specific DNA-guided endoribonuclease. However,there is noBrAGO4.4gene inB.rapa. Similarly,compared with other AGO6s,BrAGO6.4 and BrAGO6.5 only retained the Piwi domain,and the other four domains were lost. Among the MET proteins,compared to the other MET1 proteins,BrMET1.1 and BoMET1.1 had one less copy of the dnMT1-RFD domain,which is part of a cytosine-specific DNA methyltransferase enzyme. In addition,there are noBrMET1.5inB.rapa(Fig.2-B). In summary,many DMR genes inB.rapaandB.oleraceaalso had partial or total loss of their protein domains,such asROSs,CLSY1,andPIE1(Appendix F). These results indicated that DMR genes had undergone functional differentiation during evolution betweenB.rapaandB.oleracea.

    Fig.2 Conserved domains of argonaute (AGO) (A) and methyltransferase (MET) (B) proteins. Amino acid sequences are indicated by black lines,and a colored box represents a domain. The stars represent Arabidopsis thaliana genes,the triangles represent Brassica rapa genes,and the circles represent Brassica oleracea genes.

    We counted the numbers of these single-copy and multiple-copy DMR genes and compared them to the numbers of whole genome-wide single-copy and multiplecopy paralogous genes (background),respectively,inB.rapa(1.77;14 531/8 191) andB.oleracea(3.59;33 251/9 261) (Table 2). The results show that the genes of the RdDM (4;12/3) and MDM (6;6/1) have a higher proportion than the background inB.rapa,indicating that these genes are more fragmented,but the ADD genes (1;10/10) are preferentially retained inB.rapa. In addition,the DMR genes have a lower proportion than the background inB.oleracea,suggesting that the DMR genes inB.oleraceaare preferentially retained (Table 2).These results reveal that the DMR genes show differential retention betweenB.rapaandB.oleracea.

    Table 2 Numbers and ratios of single copy to multiple copy paralogs of Arabidopsis DNA methylation-related (DMR) genes in Brassica rapa and Brassica oleracea

    At the same time,the DMR genes were described based on the differences in DMR genes inB.rapaandB.oleracea. Only a limited number of genes,such asAGO6,CLSY1,RDR6,PIE1,andROS3,were identified as multiple copies in one species and as single copy in another (Table 1). Most genes were identified as multiple copies both inB.rapaandB.oleracea. In addition,some genes were identified as single copy both inB.rapaandB.oleracea(Table 1).

    In addition,we further explored the particular class of DMR genes in detail because these DMR genes have no copies inB.rapaorB.oleracea(Table 1;Appendice B and C). These genes can be further divided into those with the loss of all copies in bothB.rapaandB.oleracea(RRP6L1,ARP6,andDML2),and loss of all copies in eitherB.rapaorB.oleracea(SUVH9,CMT3,andDME). These genes play important roles inArabidopsis.The geneRRP6L1,which belongs to the RdDM group,controls genome-wide DNA methylation. The absence ofRRP6L1will cause the release of non-coding RNAs from the chromatin,resulting in DNA hypomethylation(Zhang and Zhu 2014). The geneARP6,component of the SWR1 chromatin-remodeling complex,belongs to the ADD group and can inhibit DNA hypermethylation and gene silencing (Nieet al.2019). The geneDML2,which belongs to the ADD group,inhibits DNA hypermethylation at specific genomic regions.DML2,one of the families of DNA glycogenesis,plays an extremely important role in DNA demethylation (Zhu 2009) (Appendix A). The results here showed that no orthologs of these genes were found inB.rapaorB.oleracea,which supported a specific evolution of DNA methylation inBrassicaspecies (Table 1;Appendices B and C).

    The geneCMT3,which belongs to the MDM group,maintains CHG cytosine methylation (Barteeet al.2001).The results showed that no orthologs ofCMT3were found inB.oleracea,and only one copy ofCMT3was found inB.rapa(Table 1). Similarly,the geneSUVH9,which belongs to the RdDM group,can bind to methylated DNA at RdDM loci and recruit Pol V to produce noncoding RNAs (Liu Z Wet al.2014). We found no orthologs ofSUVH9inB.rapa,and only one copy ofSUVH9was found inB.oleracea. The geneDMEis from the family of DNA glycosylases,which belongs to the ADD group(Zhanget al.2019). There were no orthologs ofDMEfound inB.rapa,but one copy ofDMEwas found inB.oleracea. These results suggested differences in the evolution of DNA methylation inB.oleraceacompared to that inB.rapa.

    3.3.DMR genes in B.oleracea are more conserved than those in B.rapa

    To obtain a more thorough understanding of the evolutionary constraints that act on the DMR genes inA.thaliana,B.rapa,andB.oleracea,theKa,Ks,andKa/Ksratios were calculated for the DMR genes inA.thaliana-B.rapaandA.thaliana-B.oleraceapairs (Appendices G and H).

    TheKavalues ranged from 0.01761 to 0.9154 with an average of 0.1738 inA.thaliana-B.rapapairs,and from 0.0180 to 1.1523 with an average of 0.1823 inA.thaliana-B.oleraceapairs. Studies have shown that MDM genes are more susceptible to natural selection. This was specifically reflected in the fact that inA.thaliana-B.rapapairs,the MDM pathway displayed the highest meanKaratio (0.2276),while inA.thaliana-B.oleraceapairs,the MDM pathway also displayed the highest meanKaratio(0.2764) (Fig.3-A). Similarly,theKa/Ksvalues ranged from 0.0573 to 0.5700 with an average of 0.2591 inA.thaliana-B.rapapairs,and from 0.0489 to 0.5689 with an average of 0.2550 inA.thaliana-B.oleraceapairs. InA.thaliana-B.rapaandA.thaliana-B.oleraceapairs,the MDM pathway displayed the highest meanKa/Ksratio.Nevertheless,there were some genes with higherKa/Ksvalues in the ADD pathways,including their respective copies,such asMBD7andROS3(Fig.3-B). In addition,theKa/Ksratios of RdDM genes exhibited different value ranges betweenB.rapaandB.oleracea,and the same was true of the MDM genes. TheKa/Ksratios of DMR genes in the same subgenomes showed different value ranges (Appendix I),such as in MF2,and the averageKa/Ksratios of DMR genes inA.thaliana-B.oleraceapairs were higher than inA.thaliana-B.rapapairs.

    We investigated the genetic diversity of these DMR genes from the population genetic level in bothB.rapaandB.oleracea. Genes under different strengths of selection will show variations in genetic diversity,which can be observed on the population level of the corresponding genome. Previously,two different datasets forB.rapaandB.oleraceawere released (Chenget al.2016b),providing a good basis for estimating the selection pressure on these DMR genes in the two crop populations ofBrassica. Using the two datasets,we calculated π and selection sweep (Tajima’s D) of these individual DMR genes inB.rapaandB.oleracea.

    The π values ranged from 0.000075 to 0.014117 with an average of 0.004558 inB.rapa,and from 0.000033 to 0.018084 with an average of 0.004352 inB.oleracea(Appendix J). In the same species,some different categories of DMR genes showed similar trends in nucleotide diversity. For example,the RdDM and MDM genes showed similar nucleotide diversity inB.rapa,while the MDM and ADD genes showed similar nucleotide diversity inB.oleracea. Furthermore,different categories of DMR genes showed different nucleotide diversities betweenB.rapaandB.oleracea. In general,this difference was mainly reflected in the different pathways (Fig.3-C),as well as different subgenomes(Appendix K). Among them,the RdDM genes and ADD genes inB.rapahad higher nucleotide diversity than inB.oleracea(Fig.3-C). Among the ADD genes,BrZDP.3andBoMFP2.2had the highest nucleotide diversity,whileBrACX4.2andBoMBD9.2had the lowest genetic diversity inB.rapaandB.oleracea,respectively (Appendix H).Similarly,in LF and MF2,the DMR genes had a higher nucleotide diversity inB.rapathan inB.oleracea(Appendix K). In addition,although the nucleotide diversity of MDM genes inB.rapawas lower than that ofB.oleracea,overall,the nucleotide diversity of DMR genes in most different categories ofB.rapawas higher than that ofB.oleracea(Fig.3-C;Appendix K).

    At the same time,Tajima’s D values showed the conservation of DMR genes inB.rapaandB.oleracea(Fig.3-D). One of the DMR genes,BrNPX1.1a,underwent negative selection in all DMR genes,with a Tajima’s D value of ?0.1189. Other than this gene,all the others underwent positive selection (Appendix L). Furthermore,the different categories of DMR genes showed different trends in conservation betweenB.rapaandB.oleracea(Fig.3-D;Appendix K). More specifically,the RdDM,MDM,and ADD genes inB.rapahad higher Tajima’s D values than inB.oleracea,and in the LF and MF1 subgenomes,and the Tajima’s D value for DMR genes inB.rapawas higher than inB.oleracea(Appendix K).

    Fig.3 The frequency distribution of Ka,Ka/Ks,π,and Tajima’s D. RdDM,MDM,and ADD represent the three different pathways of the DNA methylation-related (DMR) genes;ALL represents all genes of this species. Significance is indicated for P-values<0.001 (**).

    3.4.Most DMR genes show similar expression characteristics in B.rapa and B.oleracea

    To explore the expression characteristics of DMR genes in different tissues ofB.rapaandB.oleracea,we calculated the expression of DMR genes in five tissues,including roots,stems,leaves,flowers,and siliques (see Section 2.5). Overall,most of the DMR genes in different pathways showed similar expression characteristics betweenB.rapaandB.oleracea. However,some DRM genes are highly expressed in one species and either only minimally expressed,unexpressed,or absent in another.In the RdDM pathway,some DMR genes inB.oleraceawere significantly higher than inB.rapa,such asRDM1.1andSUVH9.4(Fig.4-A);while in the MDM pathway,some DMR genes inB.rapawere higher than inB.oleracea,such asDDM1.3a,MET1.4,andSUVH4.2(Fig.4-B).Notably,seven DMR genes were almost not expressed at all in any of the tissues inB.rapaandB.oleracea(Fig.4).Similarly,DMR gene members inB.rapaandB.oleraceahad diverse expression modes across different tissues(Fig.4). InB.rapa,some DMR genes in the RdDM and MDM pathways had higher expression levels in stems and flowers,while inB.oleracea,some DMR genes in the RdDM and MDM pathways had higher expression levels in leaf and silique tissues (Fig.4-A and B).

    Fig.4 Expression profiles for DNA methylation-related (DMR) genes in different tissues. A,B,and C show the RNA-directed DNA methylation (RdDM),maintenances of DNA methylation (MDM) and active DNA demethylation (ADD) pathways,respectively. Colors correspond to log2(TPM+1) values;the deeper the red,the higher the expression,while gray represents the absence of the gene.TPM,transcripts per million.

    4.Discussion

    DNA methylation is an important epigenetic marking mechanism that regulates many biological processes in plants,and is of special importance for genome evolution in polyploids (Baulcombe and Dean 2014;Diezet al.2014;Song and Chen 2015;Elhamamsy 2017;Itabashiet al.2018).

    The WGD-derived multi-copy genes suffer from extensive gene loss,which is substantially associated with DNA methylation. Previous studies have suggested that DNA methylation levels are biased toward the more fractionated subgenomes,and also vary in the genes with different copy numbers (Diezet al.2014;Chenet al.2015). Chenet al.(2015) found that the LF subgenome exhibited the lowest DNA methylation levels,whereas the single-copy genes are saddled with higher methylation than multi-copy genes through the DNA methylation profile inB.rapa. These results indicated the potential role of the DNA methylation system in the evolution of the plant genomes that survived polyploidization,especially for those with subgenome dominance,such asB.rapaandB.oleracea. However,it is difficult to directly study the role of DMR genes in the formation of subgenome dominance,since these DMR genes and the subgenome dominance both went through longterm evolution after polyploidization. As for the mesohexaploidsB.rapaandB.oleracea,it was found thatB.oleraceacontained more TEs thanB.rapa,and thatB.oleraceaconsistently exhibited higher DNA methylation(CpG) thanB.rapa,implying differences in the strength of selection and the potential divergence in their DMR genes (Parkinet al.2014;Chenet al.2015). Therefore,in addition to the characterization of the genomic DNA methylation patterns in these species shown previously,the systematic identification of DMR genes,followed by a comparative genomics and evolutionary analysis of these genes betweenB.rapaandB.oleracea,would provide new clues for explaining their differences in terms of DNA methylation and TE contents,as well as the formation of subgenome dominance. These genes and related information are valuable resources for future gene function studies regarding the differential DNA methylation levels between the genomes or subgenomes ofBrassica.

    In this study,a total of 78 and 77 DMR genes were identified inB.rapaandB.oleracea,respectively.Both species contain significantly more DMR genes thanA.thaliana,and almost all these DMR genes are located in the syntenic regions compared withA.thaliana(Fig.1;Appendix E). These findings indicate that theBrassica-specific WGT event played an important role in promoting the DMR gene expansion in these twoBrassicaspecies,similar to the results of a previous study focusing on leaf adaxial-abaxial patterning genes(Lianget al.2016). The gene loss following the WGT also greatly influenced the scenario of DMR genes,as evidenced by the fact that only seven DMR genes were retained as triplets inB.rapaandB.oleracea(Table 1;Appendices B and C). While the total number of identified DMR genes inB.rapaandB.oleraceawas similar,the gene copy numbers in different DMR pathways varied due to the biased DMR gene loss(Table 1). Furthermore,although most DMR genes were ubiquitously expressed in the examined tissues,some DMR genes in the RdDM pathways showed higher expression inB.oleraceathan inB.rapa(Fig.4).Given the critical role of DNA methylation in protecting the plant genomes from the impairment caused by the deleterious amplification of TEs,coupled with the fact thatB.oleraceacontains substantially more TEs thanB.rapa(Vitte and Panaud 2005;Hawkinset al.2006;Chenget al.2016a;Denizet al.2019),our results prompted us to hypothesize that biased DMR gene retention and DMR gene expressions,especially in the RdDM pathways,play critical roles in modulating the different TE contents in these two species.

    During long-term evolution,the DMR genes may experience different fates,such as nonfunctionalization,subfunctionalization,and neofunctionalization (Lynch and Conery 2000). Gene structural analysis provides a promising approach for investigating the evolutionary history of genes (Zhouet al.2020;Mulekeet al.2021). Here,we found that some DMR genes such asBrAGO4.3andBoHDP1.2lost key functional domains(Fig.2;Appendix F),and these DMR genes had either no expression or relatively weak expression levels in different tissues (Fig.4),suggesting that they might have experienced nonfunctionalization after they diverged from the common ancestor withA.thaliana. In contrast,some DMR genes,includingBoROS1.1andBoDRM2.3,were found to have new functional domains,indicating that these genes likely underwent neofunctionalization (Kimet al.2014). In addition to the functional domain variation,the values of nucleotide diversity and selection sweep analysis revealed that the DMR genes showed variations in genetic diversity and were under different strengths of selection inB.rapaandB.oleracea,providing a new perspective for understanding the mechanism regulating the differences in methylation levels betweenB.rapaandB.oleracea(Fig.3).

    5.Conclusion

    This study systematically identified theB.rapaandB.oleraceaDMR genes at the whole-genome level. A total of 78 DMR genes inB.rapaand 77 DMR genes inB.oleraceawere identified. Functional and evolutionary analyses showed differential evolution of DMR genes betweenB.rapaandB.oleracea,and also demonstrated that the DMR genes inB.oleraceaare more conserved than those inB.rapa. The transcriptomic data revealed that most DMR genes show similar expression patterns inB.rapaandB.oleracea. These results enhance our understanding of the divergent evolution of DNA methylation betweenB.rapaandB.oleracea.

    Acknowledgements

    The work was supported by the National Natural Science Foundation of China (NSFC;31872105 and 31801862),the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences,and the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops,Ministry of Agriculture and Rural Affairs,China.

    Declaration of competing interest

    The authors declare that they have no conflict of interest.

    Appendicesassociated with this paper are available on http://www.ChinaAgriSci.com/V2/En/appendix.htm

    日韩视频一区二区在线观看| 国产激情欧美一区二区| 亚洲人成77777在线视频| 露出奶头的视频| 免费搜索国产男女视频| cao死你这个sao货| 少妇裸体淫交视频免费看高清 | 日韩高清综合在线| 最近最新免费中文字幕在线| 母亲3免费完整高清在线观看| 亚洲性夜色夜夜综合| 欧美成人性av电影在线观看| 久久亚洲真实| 国内久久婷婷六月综合欲色啪| 欧美日本视频| 午夜影院日韩av| 成人亚洲精品一区在线观看| 日韩一卡2卡3卡4卡2021年| 99精品在免费线老司机午夜| 久久人人97超碰香蕉20202| 日本精品一区二区三区蜜桃| 免费看十八禁软件| 久久久久久久久免费视频了| 欧美亚洲日本最大视频资源| 亚洲中文av在线| 一级作爱视频免费观看| 热re99久久国产66热| 一进一出抽搐gif免费好疼| 亚洲男人天堂网一区| 日韩高清综合在线| 午夜久久久久精精品| av免费在线观看网站| av欧美777| 亚洲av第一区精品v没综合| 夜夜夜夜夜久久久久| 久久久久久久久中文| 欧美一区二区精品小视频在线| 国产精品二区激情视频| 十八禁人妻一区二区| 伦理电影免费视频| 999久久久精品免费观看国产| 91麻豆精品激情在线观看国产| 一级片免费观看大全| 校园春色视频在线观看| 又紧又爽又黄一区二区| 欧美黑人欧美精品刺激| 亚洲色图 男人天堂 中文字幕| 欧美久久黑人一区二区| 午夜福利高清视频| 成在线人永久免费视频| 欧美成人免费av一区二区三区| 好看av亚洲va欧美ⅴa在| 国产男靠女视频免费网站| 亚洲精品国产精品久久久不卡| 后天国语完整版免费观看| 国产在线精品亚洲第一网站| 亚洲 国产 在线| 国产一区二区在线av高清观看| tocl精华| 在线观看舔阴道视频| 91字幕亚洲| 视频区欧美日本亚洲| 热99re8久久精品国产| 男男h啪啪无遮挡| 久久欧美精品欧美久久欧美| 亚洲九九香蕉| www国产在线视频色| 国产精品乱码一区二三区的特点 | 在线播放国产精品三级| 丝袜在线中文字幕| 黄色视频,在线免费观看| 精品一区二区三区四区五区乱码| 欧美绝顶高潮抽搐喷水| 亚洲片人在线观看| 欧美成狂野欧美在线观看| 久久久久久久久免费视频了| 伊人久久大香线蕉亚洲五| 国产一区二区激情短视频| bbb黄色大片| 成熟少妇高潮喷水视频| 精品国产国语对白av| 最好的美女福利视频网| 免费人成视频x8x8入口观看| 免费黄网站久久成人精品| 白带黄色成豆腐渣| 男女做爰动态图高潮gif福利片| 在线观看午夜福利视频| 国产激情偷乱视频一区二区| 日本五十路高清| 偷拍熟女少妇极品色| 又爽又黄无遮挡网站| 国产精品乱码一区二三区的特点| 日韩欧美一区二区三区在线观看| 人妻少妇偷人精品九色| 伊人久久精品亚洲午夜| 久久久久久久久大av| 18禁裸乳无遮挡免费网站照片| 观看免费一级毛片| 嫩草影视91久久| 国产一区二区三区在线臀色熟女| 蜜桃久久精品国产亚洲av| 日本成人三级电影网站| 日韩强制内射视频| 蜜桃亚洲精品一区二区三区| 日本-黄色视频高清免费观看| 免费高清视频大片| 亚洲一区高清亚洲精品| 日韩,欧美,国产一区二区三区 | 可以在线观看毛片的网站| 国产乱人视频| 舔av片在线| 亚洲欧美精品综合久久99| 少妇高潮的动态图| 免费电影在线观看免费观看| 韩国av在线不卡| 国产成人一区二区在线| 国产91精品成人一区二区三区| 国内精品宾馆在线| 搞女人的毛片| 99热只有精品国产| 欧美丝袜亚洲另类 | 亚洲精品久久国产高清桃花| 看片在线看免费视频| 午夜福利18| 一区二区三区四区激情视频 | 精品午夜福利视频在线观看一区| 动漫黄色视频在线观看| 亚洲av一区综合| 一卡2卡三卡四卡精品乱码亚洲| 日本成人三级电影网站| 亚洲狠狠婷婷综合久久图片| 91麻豆av在线| 永久网站在线| 少妇裸体淫交视频免费看高清| 在线看三级毛片| 九色国产91popny在线| 中文资源天堂在线| 12—13女人毛片做爰片一| 国产免费av片在线观看野外av| 日韩强制内射视频| 性插视频无遮挡在线免费观看| 简卡轻食公司| 人妻久久中文字幕网| 国产色婷婷99| 变态另类成人亚洲欧美熟女| 亚洲美女黄片视频| 亚洲av成人av| 男女之事视频高清在线观看| 国产欧美日韩一区二区精品| bbb黄色大片| 亚洲av不卡在线观看| 99精品在免费线老司机午夜| 亚洲经典国产精华液单| 麻豆久久精品国产亚洲av| 久久精品国产自在天天线| or卡值多少钱| 99riav亚洲国产免费| 91麻豆av在线| 亚洲国产日韩欧美精品在线观看| 成人高潮视频无遮挡免费网站| 国产伦一二天堂av在线观看| 白带黄色成豆腐渣| 人人妻人人澡欧美一区二区| 国产真实伦视频高清在线观看 | 老女人水多毛片| 日韩国内少妇激情av| 日韩一本色道免费dvd| 国产精品人妻久久久影院| 最近中文字幕高清免费大全6 | 99国产极品粉嫩在线观看| 欧美zozozo另类| 真实男女啪啪啪动态图| 国产一区二区三区av在线 | 亚洲国产精品成人综合色| 老师上课跳d突然被开到最大视频| 精品人妻偷拍中文字幕| 欧美xxxx黑人xx丫x性爽| 看片在线看免费视频| 精华霜和精华液先用哪个| videossex国产| 国产伦精品一区二区三区四那| 美女大奶头视频| 18禁裸乳无遮挡免费网站照片| 午夜日韩欧美国产| 亚洲美女视频黄频| 桃色一区二区三区在线观看| 国产乱人伦免费视频| 国产国拍精品亚洲av在线观看| 蜜桃亚洲精品一区二区三区| 男女啪啪激烈高潮av片| 中亚洲国语对白在线视频| 免费人成在线观看视频色| 精华霜和精华液先用哪个| 成年人黄色毛片网站| 韩国av一区二区三区四区| 亚洲精品日韩av片在线观看| 亚洲va在线va天堂va国产| 国产精品不卡视频一区二区| 国产高清视频在线观看网站| 内地一区二区视频在线| 色在线成人网| av女优亚洲男人天堂| 少妇熟女aⅴ在线视频| 天堂动漫精品| 男人狂女人下面高潮的视频| 日韩人妻高清精品专区| 性色avwww在线观看| 免费av观看视频| 国产精品av视频在线免费观看| 简卡轻食公司| 夜夜看夜夜爽夜夜摸| 嫩草影院精品99| 毛片一级片免费看久久久久 | 免费av观看视频| 人妻夜夜爽99麻豆av| 亚洲av免费在线观看| 在线免费十八禁| 大又大粗又爽又黄少妇毛片口| 国产高清不卡午夜福利| 亚洲综合色惰| 日日干狠狠操夜夜爽| 校园春色视频在线观看| 伦理电影大哥的女人| 欧美bdsm另类| 天美传媒精品一区二区| 99热这里只有是精品在线观看| 亚洲国产日韩欧美精品在线观看| 欧美日韩黄片免| 一a级毛片在线观看| 我要搜黄色片| 在线看三级毛片| 波多野结衣巨乳人妻| 男女啪啪激烈高潮av片| 亚洲精品国产成人久久av| 国产黄a三级三级三级人| 亚洲va日本ⅴa欧美va伊人久久| 人人妻人人澡欧美一区二区| 亚洲精品国产成人久久av| 精品日产1卡2卡| 看免费成人av毛片| 色噜噜av男人的天堂激情| 女人十人毛片免费观看3o分钟| 亚洲精品乱码久久久v下载方式| 精品福利观看| 欧美又色又爽又黄视频| 亚洲av成人av| 欧美zozozo另类| 亚洲人成网站在线播| 国产伦在线观看视频一区| 婷婷色综合大香蕉| 亚洲七黄色美女视频| 欧美3d第一页| 日韩,欧美,国产一区二区三区 | 欧美日韩精品成人综合77777| 欧美成人性av电影在线观看| 直男gayav资源| 久久人人精品亚洲av| 久久久色成人| 日本黄色视频三级网站网址| 亚洲黑人精品在线| 亚洲va日本ⅴa欧美va伊人久久| 国产精品三级大全| 99热这里只有是精品50| 国产蜜桃级精品一区二区三区| 很黄的视频免费| 夜夜看夜夜爽夜夜摸| 两个人视频免费观看高清| 中文字幕av在线有码专区| 99热只有精品国产| 一本精品99久久精品77| 搡女人真爽免费视频火全软件 | 亚洲天堂国产精品一区在线| 日本 av在线| x7x7x7水蜜桃| 午夜福利高清视频| 在线免费十八禁| 99视频精品全部免费 在线| 国产高清有码在线观看视频| 国产成人a区在线观看| 91午夜精品亚洲一区二区三区 | 国产av麻豆久久久久久久| 日日啪夜夜撸| 黄色视频,在线免费观看| 久久99热6这里只有精品| 中国美白少妇内射xxxbb| 22中文网久久字幕| 久久久久久大精品| 色视频www国产| 麻豆一二三区av精品| av天堂中文字幕网| www日本黄色视频网| 一夜夜www| 欧美3d第一页| 国内精品一区二区在线观看| 午夜影院日韩av| 一夜夜www| 亚洲男人的天堂狠狠| 免费看光身美女| 色噜噜av男人的天堂激情| 男女之事视频高清在线观看| aaaaa片日本免费| 午夜免费男女啪啪视频观看 | 亚洲精品日韩av片在线观看| 午夜福利视频1000在线观看| 天堂av国产一区二区熟女人妻| 我的女老师完整版在线观看| 精品人妻一区二区三区麻豆 | 亚州av有码| 国产av一区在线观看免费| 精品久久久久久久久亚洲 | 久久婷婷人人爽人人干人人爱| 成人鲁丝片一二三区免费| 久久热精品热| 1024手机看黄色片| 亚洲成人久久性| 一边摸一边抽搐一进一小说| 国产精品亚洲一级av第二区| 最近最新免费中文字幕在线| 网址你懂的国产日韩在线| 国产高清有码在线观看视频| 日韩精品中文字幕看吧| 日韩av在线大香蕉| 国语自产精品视频在线第100页| 嫩草影院新地址| 亚洲精华国产精华液的使用体验 | 91麻豆精品激情在线观看国产| 亚洲avbb在线观看| 在线观看一区二区三区| 亚洲人成网站在线播| 97人妻精品一区二区三区麻豆| 亚洲成a人片在线一区二区| 日韩精品青青久久久久久| 午夜精品久久久久久毛片777| 国产极品精品免费视频能看的| 亚洲va在线va天堂va国产| 国产精品1区2区在线观看.| 99国产精品一区二区蜜桃av| 国产精品一区二区三区四区免费观看 | 日韩亚洲欧美综合| 亚洲精华国产精华液的使用体验 | 欧美日韩亚洲国产一区二区在线观看| 九九在线视频观看精品| 男女边吃奶边做爰视频| 国产淫片久久久久久久久| 级片在线观看| 两个人的视频大全免费| 综合色av麻豆| АⅤ资源中文在线天堂| 在现免费观看毛片| 国产伦一二天堂av在线观看| 久久精品久久久久久噜噜老黄 | 啦啦啦啦在线视频资源| 精品不卡国产一区二区三区| 久久久久久国产a免费观看| 如何舔出高潮| 亚洲一区二区三区色噜噜| 嫩草影院新地址| 国产成人a区在线观看| 亚洲美女黄片视频| 色精品久久人妻99蜜桃| 人妻丰满熟妇av一区二区三区| av在线观看视频网站免费| 国产精华一区二区三区| 小蜜桃在线观看免费完整版高清| 婷婷色综合大香蕉| 欧美在线一区亚洲| 欧美一级a爱片免费观看看| 在线观看av片永久免费下载| 欧美黑人巨大hd| 国产探花在线观看一区二区| 日日啪夜夜撸| 国产精品女同一区二区软件 | 免费看a级黄色片| 少妇猛男粗大的猛烈进出视频 | 美女大奶头视频| 亚洲欧美日韩高清专用| 欧美+日韩+精品| 色噜噜av男人的天堂激情| x7x7x7水蜜桃| 午夜影院日韩av| 干丝袜人妻中文字幕| 日本与韩国留学比较| 麻豆av噜噜一区二区三区| 亚洲美女黄片视频| 一卡2卡三卡四卡精品乱码亚洲| 一区福利在线观看| 国产 一区 欧美 日韩| 亚洲av.av天堂| 日本一本二区三区精品| 国产一区二区激情短视频| 免费一级毛片在线播放高清视频| 成人特级av手机在线观看| 看黄色毛片网站| 国产精品精品国产色婷婷| 亚洲,欧美,日韩| 观看美女的网站| 日韩精品中文字幕看吧| www.www免费av| 亚洲成人免费电影在线观看| 别揉我奶头~嗯~啊~动态视频| 精品人妻偷拍中文字幕| 亚洲一区高清亚洲精品| 日韩精品有码人妻一区| 老女人水多毛片| 香蕉av资源在线| 三级毛片av免费| 欧美日韩综合久久久久久 | 亚洲成a人片在线一区二区| 精品不卡国产一区二区三区| 丝袜美腿在线中文| 亚洲无线观看免费| 亚洲综合色惰| 欧美中文日本在线观看视频| 999久久久精品免费观看国产| 国产精品久久久久久av不卡| 午夜免费男女啪啪视频观看 | 色综合站精品国产| av在线老鸭窝| 热99在线观看视频| 极品教师在线视频| 最好的美女福利视频网| 在线免费十八禁| 熟女电影av网| 欧美黑人巨大hd| 熟妇人妻久久中文字幕3abv| 欧美性猛交黑人性爽| 国产在线精品亚洲第一网站| av国产免费在线观看| 亚洲人成伊人成综合网2020| 中文亚洲av片在线观看爽| а√天堂www在线а√下载| 91在线观看av| 亚洲国产欧美人成| 精品久久久久久久久久免费视频| 国产av在哪里看| 美女cb高潮喷水在线观看| 国产精品一区二区三区四区免费观看 | 久久精品国产亚洲av涩爱 | 搡老熟女国产l中国老女人| avwww免费| 亚洲人成伊人成综合网2020| 国内精品美女久久久久久| 国模一区二区三区四区视频| 日韩精品中文字幕看吧| 欧美一区二区亚洲| 赤兔流量卡办理| 亚洲熟妇熟女久久| 日本在线视频免费播放| 91av网一区二区| 国产日本99.免费观看| 亚洲专区中文字幕在线| 毛片女人毛片| 波野结衣二区三区在线| 国产高清有码在线观看视频| 中国美白少妇内射xxxbb| 久久精品综合一区二区三区| 啦啦啦观看免费观看视频高清| 男人舔女人下体高潮全视频| 欧美丝袜亚洲另类 | 乱码一卡2卡4卡精品| 九色成人免费人妻av| 亚洲无线观看免费| 亚洲欧美日韩东京热| 免费观看人在逋| 亚洲精品一卡2卡三卡4卡5卡| 男人和女人高潮做爰伦理| 日韩欧美国产一区二区入口| 欧美日韩亚洲国产一区二区在线观看| 亚洲自偷自拍三级| 尾随美女入室| 久久天躁狠狠躁夜夜2o2o| 两个人的视频大全免费| 又爽又黄无遮挡网站| 免费av毛片视频| av专区在线播放| 午夜亚洲福利在线播放| 日韩中文字幕欧美一区二区| 久久精品国产亚洲网站| 久久精品国产亚洲av香蕉五月| 大又大粗又爽又黄少妇毛片口| 乱人视频在线观看| 欧美日韩综合久久久久久 | 欧美三级亚洲精品| 日本撒尿小便嘘嘘汇集6| 日本 av在线| 免费观看精品视频网站| 欧美日韩乱码在线| 亚洲国产高清在线一区二区三| 久99久视频精品免费| 日本色播在线视频| 淫妇啪啪啪对白视频| 偷拍熟女少妇极品色| 三级男女做爰猛烈吃奶摸视频| 国产人妻一区二区三区在| 亚洲美女黄片视频| 老女人水多毛片| or卡值多少钱| 一级黄色大片毛片| 人妻少妇偷人精品九色| 婷婷色综合大香蕉| 免费观看精品视频网站| 亚洲七黄色美女视频| 午夜福利在线观看免费完整高清在 | 国产欧美日韩精品亚洲av| 尾随美女入室| 久久6这里有精品| 亚洲精品色激情综合| 乱码一卡2卡4卡精品| 一区福利在线观看| 亚洲av电影不卡..在线观看| 国产精品无大码| 久久久国产成人精品二区| 国产精品久久久久久亚洲av鲁大| 久久国内精品自在自线图片| 国产亚洲精品久久久久久毛片| 久久九九热精品免费| 女同久久另类99精品国产91| 亚洲av熟女| 日韩,欧美,国产一区二区三区 | 在现免费观看毛片| 国产一区二区三区视频了| 俺也久久电影网| 欧美三级亚洲精品| 久久午夜亚洲精品久久| 精品一区二区三区人妻视频| 久9热在线精品视频| 小说图片视频综合网站| 中亚洲国语对白在线视频| 精品不卡国产一区二区三区| 美女cb高潮喷水在线观看| 999久久久精品免费观看国产| 色精品久久人妻99蜜桃| 精品不卡国产一区二区三区| 国产亚洲av嫩草精品影院| 国产极品精品免费视频能看的| 亚洲va在线va天堂va国产| 午夜福利在线观看免费完整高清在 | 亚洲人成网站高清观看| 日韩欧美一区二区三区在线观看| 真人做人爱边吃奶动态| 久久天躁狠狠躁夜夜2o2o| 日韩精品青青久久久久久| 色尼玛亚洲综合影院| 久久精品综合一区二区三区| 欧美最新免费一区二区三区| 国产成人av教育| 久久精品国产亚洲av香蕉五月| 看黄色毛片网站| 欧美成人一区二区免费高清观看| av在线观看视频网站免费| 观看免费一级毛片| 搡老妇女老女人老熟妇| 三级国产精品欧美在线观看| 欧美极品一区二区三区四区| 琪琪午夜伦伦电影理论片6080| 免费av不卡在线播放| 无人区码免费观看不卡| 高清日韩中文字幕在线| 韩国av一区二区三区四区| 国产精华一区二区三区| 91av网一区二区| 窝窝影院91人妻| 嫩草影院入口| 自拍偷自拍亚洲精品老妇| 日本一本二区三区精品| 两个人视频免费观看高清| 22中文网久久字幕| av黄色大香蕉| 国产黄色小视频在线观看| 国产免费一级a男人的天堂| 亚洲人成网站在线播| 亚洲精品国产成人久久av| 久久香蕉精品热| 老司机午夜福利在线观看视频| 床上黄色一级片| 免费av不卡在线播放| 桃色一区二区三区在线观看| 天堂动漫精品| 免费无遮挡裸体视频| 国内精品久久久久久久电影| 美女高潮喷水抽搐中文字幕| 成人国产综合亚洲| 免费在线观看成人毛片| 亚洲av免费在线观看| 欧美激情久久久久久爽电影| 熟女人妻精品中文字幕| 精品一区二区免费观看| 特级一级黄色大片| 可以在线观看的亚洲视频| 亚洲av.av天堂| 伊人久久精品亚洲午夜| 一进一出抽搐动态| 国产私拍福利视频在线观看| 国产精品乱码一区二三区的特点| 国产成人aa在线观看| 久久久久久伊人网av| 日韩国内少妇激情av| 亚洲成人久久爱视频| 高清日韩中文字幕在线| 少妇熟女aⅴ在线视频| 午夜激情欧美在线| 亚洲av免费在线观看| 白带黄色成豆腐渣| 色视频www国产| 亚洲精品粉嫩美女一区| 国产视频一区二区在线看| 精品午夜福利视频在线观看一区| 综合色av麻豆| 不卡一级毛片| 国产精品永久免费网站| 我要搜黄色片| 亚洲 国产 在线| 日本一本二区三区精品| 久久亚洲真实| 日韩欧美精品v在线|