• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    OsABT,a Rice WD40 Domain-Containing Protein,Is Involved in Abiotic Stress Tolerance

    2022-04-30 01:22:08CHENEryongSHENBo
    Rice Science 2022年3期

    CHEN Eryong,SHEN Bo

    (1College of Life and Environmental Sciences,Hangzhou Normal University,Hangzhou 311121,China;2Life School of Science and Technology,Henan Institute of Science and Technology,Xinxiang 453003,China)

    Abstract:Plant growth and crop productivity are severely affected by abiotic stress on a global scale.WD40 repeat-containing proteins play a significant role in the development and environmental adaptation of eukaryotes.In this study,OsABT,a stress response gene,was cloned from rice (Oryza sativa L.cv.Nipponbare).OsABT encodes a protein containing seven WD40 domains.Expression analysis revealed that the OsABT gene was first up-regulated and then down-regulated following treatment with abscisic acid (ABA) and NaCl,but was down-regulated when treated with PEG8000.Subcellular localization results showed that OsABT was located in the cytoplasm and nucleus of Arabidopsis roots.OsABT transgenic Arabidopsis showed significantly increased tolerance to ABA and salt stress during plant seedling development.However,the transgenic lines were more sensitive to drought stress.Moreover,OsABT can interact with OsABI2,a component of ABA signaling pathway.These results showed that OsABT plays a positive regulatory role in response to salt stress and a negative role in response to drought stress in Arabidopsis.

    Key words:abscisic acid;Arabidopsis;drought stress;rice;salt stress;WD40 domain-containing protein

    Various abiotic stresses can severely affect the growth,development and yield of crop plants (Mishra et al,2012).Drought stress is a major limiting factor in agricultural production,leading to a decline in crop yields worldwide (Shinozaki and Yamaguchi-Shinozaki,2007).Therefore,plants have evolved diverse biological defense mechanisms to improve water use efficiency under drought conditions,including accumulation of dehydrin,maintenance of root water absorption and reduction of transpiration rate through leaf stomata (Shinozaki and Yamaguchi-Shinozaki,2007;Gong et al,2015;Li et al,2015).Salt stress,another key factor,has become a serious issue limiting plant growth and crop yields.Plant species have undergone diverse changes from physiological adaptation to gene expression changes in response to salt stress.Salt stress-responsive genes are broadly divided into two types:effector genes that directly play a protective role in plant cells against salt stress,such as Na+/H+antiporters,and regulator genes that control gene expression or stress signal transduction,such as transcription factors and protein kinases (Zhu,2001;Chinnusamy et al,2006).

    WD40 proteins,also known as WD40 repeat-containing proteins,are junction proteins in eukaryotic proteomes.The WD40 domain provides a platform for mediating protein-protein or protein-DNA interactions,and it is involved in the scaffolding,assembly and regulation of active polyprotein complexes (Stirnimann et al,2010;Xu and Min,2011).There are multiple WD40 repeats in WD40 proteins,each of them contains 44-60 residue units as its main feature.This unit usually contains glycine-histidine (GH) dipeptide at N-terminus and tryptophan-aspartate (WD) dipeptide at C-terminus (van Nocker and Ludwig,2003).Moreover,each WD40 repeat includes a four-stranded anti-parallel β-sheet (Neer et al,1994).Generally,the WD40 domain typically exhibits 5-8 duplicates,mostly 7 duplicates,which form a stable β-propeller structure (Fül?p et al,1998;Juhász et al,2005).The WD40 proteins are implicated in diverse biological processes,such as signal transduction,transcriptional regulation,chromatin modification,damage response,ribosomal RNA biogenesis,cytoskeletal assembly,vesicle transport,cell cycle control and apoptosis (Neer et al,1994;Smith et al,1999;Wakasugi et al,2002;Xu and Min,2011).The WD40 proteins are also involved in plant stress tolerance.WDR5a,a WD40 protein ofArabidopsis,alters NOS-like activity,which plays a role in nitric oxide (NO) accumulation and stomatal closure under drought stress (Liu et al,2017).Another WD40 protein ofArabidopsis,HOS15,is involved in cold tolerance,and its mutant plants are hypersensitive to freezing temperatures (Zhu et al,2008).Transforming the wheat WD40 geneTaWD40DintoArabidopsisresults in transgenic plants with improved tolerance to abscisic acid (ABA),osmotic stress and salt stress (Kong et al,2015).In rice,SRWD,a WD40 protein subfamily,is predominately up-regulated under salt stress (Huang et al,2008).In light of the current research results,the various roles of WD40 proteins in plant stress tolerance are worthy of attention.

    ABA signaling terminator(ABT),a gene encoding anArabidopsisWD40 repeat protein,can disintegrate ABA signaling and is critical for seed germination and seedling organization (Wang et al,2020).TransgenicABTArabidopsisseeds have higher seed germination rate and seedling greening than wild type seeds when being sown on Murashige and Skoog (MS) medium containing ABA.In contrast,Arabidopsisseeds withABTgene knockout have an opposite phenotype.However,the role ofABTin drought stress is still unclear (Wang et al,2020).These results highlight the importance ofABTin ABA signaling,seed germination and seedling development,but its role in rice stress tolerance should be further studied.

    Despite growing evidence that WD40 proteins have function in abiotic stress tolerance in plants,research on the function of WD40 proteins in rice is still largely limited.Here,we identified OsABT,a rice WD40 protein,and elucidated its roles in plant stress tolerance.Our study found that theArabidopsistransgenic linesoverexpressingOsABTsignificantly increased tolerance to ABA and salt stresses,as well as sensitivity to drought stress.Moreover,the bimolecular fluorescent complimentary (BiFC) assay revealed that OsABT interacted with OsABI2,an important component in the ABA signaling pathway.Our results provided important insights in the role ofOsABTin ABA signaling pathway and its functions under diverse stresses,such as salt and drought stresses.

    RESULTS

    Identification and phylogenetic analysis of OsABT

    To identify theOsABTgene from rice (Oryza sativa),the protein sequence ofArabidopsisABT (At1g49450) was used as a query to BLAST the rice RNAseq database ofOryza sativaJaponica Group (https:// archive.gramene.org/).TheABTsequence with higher similarity index was cloned and sequenced,and the homologous gene in rice was later named asOsABT(Os03g0738700).OsABT contains 488 amino acid residues and shares 47.95% identity with AtABT (Fig.1-A).According to the results of domain analysis performed using the SMART program,the deduced amino acid sequence possesses seven highly conserved WD40 domains (Fig.1-B).The results indicated that OsABT belongs to the WD40 protein family.

    To understand the evolutionary relationships between OsABT and its homologs in different plant species,a BLASTP search was performed in the NCBI database.Then,a phylogenetic tree was constructed including OsABT,AtABT and 12 other homologous protein which sharing a high percentage of identity with OsABT.The phylogenetic tree showed that OsABT was clustered together with the proteins from monocots,but was far from the homologous proteins of dicots,especially from AtABT (Fig.1-C).These results suggested that the functions of OsABT and its homologs in monocots might be conserved,and that the functions of OsABT in rice might be different from those of AtABT inArabidopsis.

    OsABT gene structure and protein analysis

    From the database of Gramene (https://archive.gramene.org/),we found that the length ofOsABTis 2 175 bp,with the coding sequence of 1 470 bp,5′-UTR of 73 bp and 3′-UTR of 632 bp.To learn more about the gene,we analyzed the gene structure ofOsABTusing GSDS (http://gsds.cbi.pku.edu.cn/).TheOsABTgene sequence showed absence of intron,which was similar to theAtABTgene structure,although the lengths of their 5′-and 3′-UTRs were different (Fig.2-A).The results were consistent with the phylogenetic analysis results,showing similarities and differences in evolutionary process betweenOsABTandAtABT.

    To investigate the subcellular localization of the OsABT protein,theOsABTgene was fused with the green fluorescent protein (GFP) vector PEZR (K)-LC driven byCaMV35Spromoter,and transformed intoArabidopsisvia the floral-dip method (Clough and Bent,1998).GFP fluorescence was observed in the nucleus,peripheral membrane and cytoplasm ofArabidopsisroot cells expressing GFP-OsABT (Fig.2-B).These results suggested that the OsABT protein is distributed in multiple cellular locations.

    Expression pattern of OsABT gene

    AtABTis responsive to ABA and osmotic stress,as shown inArabidopsiseFP Brower (http://bbc.utoronto.ca.efp).However,there was no significant difference in phenotype betweenAtABTmutantArabidopsisand wild type (WT) plants under drought conditions (Wang et al,2020).To analyze whetherOsABTresponds to ABA and osmotic stress,we first intercepted the sequence of 1 947 bp upstream of the initiation codon ATG (Fig.S1),and then analyzed the promoter ofOsABTusing the New PLACE web (https://www.dna.affrc.go.jp/PLACE/?action=newplace).The results showed manycis-elements that respond to ABA and stress are in theOsABTpromoter,such as ABRELATERD1,MYB1AT,MYCCONSENSUSAT and DRECRTCOREAT (Table 1).Moreover,we aligned the promoters ofOsABTandAtABT,and the results revealed that they only shared 36.72% of identity (Fig.S2).These results suggested thatOsABTmight be a stress response gene,andOsABTandAtABThad different stress response patterns.

    Table 1.cis-elements that respond to abscisic acid (ABA) and stress in OsABT promoter.

    To analyze the expression patterns ofOsABT,rice seedlings of Nipponbare were treated with 150 mmol/L NaCl,50 μmol/L ABA or 10% PEG8000.The qRT-PCR results showed that the transcription level ofOsABTwas up-regulated,reaching a maximum level at 3 h after ABA treatment,and then gradually declined in the long-term treatment (Fig.3-A).The expression pattern ofOsABTunder the NaCl treatment was similar to that under the ABA treatment (Fig.3-B).In contrast,under the treatment with PEG8000,the transcription levelofOsABTwas down-regulated (Fig.3-C).These results suggested thatOsABTplays a vital role in drought and salt stresses,and that the function ofOsABTin stress responses is mediated by ABA.

    OsABT transgenic Arabidopsis confers tolerance to ABA during greening

    To investigate whetherOsABTis involved in ABA response,we cloned and transformedOsABTintoArabidopsis.Two homozygous35S::OsABTtransgenic lines (1-5 and 4-5) were chosen through RT-PCR and used for investigation of ABA response inArabidopsis(Fig.4-A).The seeds of Columbia-0 (Col-0) and two homozygousOsABTtransgenicArabidopsislines were sown on solid MS medium and MS medium containing ABA (1 μmol/L),and grown in a growth chamber.The greening rates of the three samples were calculated at 14 d after germination.The results showed that the greening rates were not different between the two transgenic lines and Col-0 grown on MS medium (Fig.4-B).On the contrary,the transgeniclines showed much better growth and higher greening rates than Col-0 under the ABA treatment (1 μmol/L) (Fig.4-B and -C),indicating thatOsABTis a negative regulator in the ABA signal transduction pathway.

    OsABT improves greening rate of transgenic OsABT Arabidopsis under salt stress

    To analyze whetherOsABTplays important roles in salt stress,the seeds of Col-0 and twoOsABTtransgenicArabidopsislines were sown on solid MS medium and MS medium containing NaCl (125 mmol/L).Four days later,the greening rates of the three samples were calculated.As shown in Fig.5-A,there was no significant difference between the two transgenic lines and Col-0 grown on MS medium.In contrast,under the NaCl treatment,the greening rates were significantly higher in the two transgeniclines than in Col-0 (Fig.5),suggesting thatOsABTpositively regulates plant resistance to salt stress.

    OsABT transgenic Arabidopsis lines are sensitive to drought stress

    To comprehend the molecular function ofOsABTin drought stress,Col-0 and the homozygous transgenic lines (1-5 and 4-5) were grown in four small pots and planted alternately.After transplanting for 2 weeks,all the seedlings were withheld water for 2 weeks and then rewatered.Upon watering,the transgenic lines showed higher sensitivity to drought stress and obviously lower survival rate than Col-0 (Fig.6),suggesting thatOsABTis a negative regulator under drought stress.

    OsABT interacts with OsABI2

    WD40 proteins are usually regarded as a scaffolding platform for protein-protein interactions (Xu and Min,2011),and ABA is an important hormone for plant adaptation to abiotic stress (Hirayama and Shinozaki,2007).ABT is dependent on ABI2,which is a vital component in the ABA signaling transduction pathway to inhibit ABA signaling (Wang et al,2020).We speculated that OsABT interacted with OsABI2 in rice.To test this,full-length OsABT was fused within the N-terminus of yellow fluorescent protein (YFP) to generate OsABT-YFPN,and OsABI2 was fused to the C-terminus of YFP to generate OsABI2-YFPC.These constructs were co-induced into theleaf cellsofNicotiana benthamiana.As expected,there were strong YFP signals in both the cytoplasm and nucleus when OsABT-YFPNand OsABI2-YFPCwere co-induced intoleaf cellsofN.benthamiana(Fig.7).Nevertheless,no YFP signal was detected for OsABT-YFPNand YFPCor OsABI2-YFPCand YFPN(Fig.7),indicating that there is an interaction between OsABT and OsABI2 proteins.

    DISCUSSION

    OsABT is a typical protein of WD40 protein family in rice

    WD40 proteins comprise the largest protein family in eukaryotes (Stirnimann et al,2010),which are characterized by the presence of multiple repeats of~40 amino acids named ‘WD40 repeats’ at the carboxyl termini,and ends with the sequence WD (Neer et al,1994).Generally,the WD40 domains contain seven repeats that form a highly stable β-propeller structure,and a minimum of four WD40 repeats are needed to form a higher-order and functional structure (Sondek et al,1996;Chothia et al,1997).

    AtABT is a protein containing seven WD40 repeats inArabidopsis.In this study,we cloned the homologous gene ofAtABTin rice,namedOsABT.Protein sequence analysis revealed that OsABT possessed seven conserved WD40 repeats,the same as AtABT (Fig.1-A and -B).Phylogenetic analysis showed that OsABT had close evolutionary relationship with WD40 proteins inSorghum bicolor(Fig.1-C).These results indicated OsABT belongs to the WD40 protein family.The WD40 domain usually acts as a scaffold for protein-protein interactions and alter the process of molecular recognition (Xu and Min,2011).One well-studied example is a WD40-repeat protein HOS15 which can interact with histone H4 to regulate plant tolerance to cold stress (Zhu et al,2008).Here,BiFC analysis revealed that OsABT can interact with OsABI2 (Fig.7).This result provided another evidence to support that WD40 proteins are involved in protein interactions.

    OsABT is involved in response to abiotic stress in rice

    Although there are several studies on the functions of WD40 proteins,most of their functions in plants are still unclear.In recent years,many WD40 proteins have been found to participate in abiotic stress responses in the model plantArabidopsisand in crop plants.ArabidopsisWDR5a(WD40-REPEAT 5a) mutant,wdr5a,is more sensitive to drought stress than its WT plants,as they have reduced stomatal closure and decreased expression of drought-related genes (Liu et al,2017).WhenTaWD40D,a wheat WD40 protein,is exogenously overexpressed inArabidopsis,the transgenic plants show improved tolerance to ABA,salt and osmotic stresses during seed germination and seedling development.In addition,the increased tolerance of transgenic lines may be due to changes in the expression patterns of genes in salt overly sensitive (SOS) pathway,ABA-dependent pathway and ABA-independent pathway (Kong et al,2015).Furthermore,OsRACK1A,a WD40 protein in rice,negatively affects the salt tolerance phenotype in rice.OsRACK1A-suppressed transgenic rice can significantly accumulate more ABA and more transcripts of ABA-and stress-inducible genes compared with the WT plants (Zhang et al,2018).

    In this study,the expression ofOsABTinitially increased until reaching a peak,and then gradually decreased after 3 h of treatment with ABA or NaCl (Fig.3-A and -B).In contrast,the expression ofOsABTwas down-regulated after the PEG8000 treatment (Fig.3-C).These results indicated that theOsABTgene may be involved in salt and drought stresses.WhenOsABTwas transformedintoArabidopsis,the resulting transgenic lines had higher greening rates than Col-0 under the NaCl treatment (Fig.5).On the contrary,the transgenic lines had lower survival rates under drought conditions and were more sensitive to drought stress (Fig.6).These results indicated thatOsABThas a positive regulatory effect on salt stress and a negative regulatory effect on drought stress inArabidopsis.Under the drought conditions,bothArabidopsislines withAtABToverexpression orAtABTknockout have similar drought phenotype to Col-0 plants (Wang et al,2020).This result was inconsistent with our finding on the function ofOsABTin drought tolerance.There were two reasons whyOsABTandAtABThad different functions under drought stress.The first one may be that they shared low percentages of identity (47.95%) with each other,which resulted in different protein structures (Fig.1-A),and the other one may be that they shared low percentages of promoter identity (36.72%),which resulted in different expression patterns (Fig.S1).

    ABA is a vital hormone for plant adaptation to stress.Many components in the ABA signaling pathway are involved in plant stress tolerance (Miller et al,2007;Cutler et al,2010;Hubbard et al,2010).PP2Cs (type 2C protein phosphatases),includingArabidopsisABI1,ABI2,HAB1,AtPP2CA and RAB18,are important components and negative regulators of ABA signal transduction (Leung et al,1997;Sheen,1998;Gosti et al,1999;Kuhn et al,2006).Previously,ZmPP2Coverexpression inArabidopsisresults in decreased tolerance of transgenic plants to salt and drought stresses.ABI2-dependent ABA signaling can control HrpN-induced drought tolerance inArabidopsis(Dong et al,2005).SOS2,a protein kinase and a key component of the SOS pathway,can physically interact with ABI2 (Rodriguez et al,1998;Qiu et al,2002;Ohta et al,2003).These results suggested thatABI2is a key factor for plant adaptation in response to salt and drought stresses.BiFC assay confirmed that ABT can interact with ABI2 (Wang et al,2020).Here,we also found a similar result that OsABT can interact with OsABI2 (Fig.7).Moreover,the transgenicOsABTArabidopsislines showed a higher resistant to salt stress than Col-0 plants (Fig.5).These results suggested thatOsABTregulates salt tolerance through the ABA and SOS signaling pathways mediated byOsABI2.TheOsABTtransgenicArabidopsislines were insensitive to ABA and sensitive to drought stress,compared with Col-0 plants (Figs.4-B,4-C and 6).Furthermore,ABT switches off the ABA signaling pathway by obstructing the interaction between PYR1/ PYL4 and ABI1/ABI2 (Wang et al,2020).All these results implied that OsABT inhibits the ABA signaling pathway and decreases plant responses to drought stress via interaction with OsABI2.Although we have analyzed the roles ofOsABTin abiotic stress conditions inArabidopsis,the roles and the regulatory mechanisms ofOsABTin rice under abiotic stress conditions still need further research.

    METHODS

    Plant materials and growth conditions

    Rice (O.sativaL.cv.Nipponbare) was used as an experimental material.Rice seeds were cultivated in Hoagland’s solution (Hoagland and Arnon,1950) in 96-well plates with cut bottom.Rice leaves were harvested at the 3-leaf stage for RNA and DNA extraction.The rice seedlings were grown in a growth room at temperatures of 28 °C day/25 °C night with a 16-h light/8-h dark photoperiod under 50% relative humidity (Kawasaki et al,2001).

    A.thalianaCol-0 was used.Col-0 seeds were surface-sterilized using 15% sodium hypochlorite,washed four times with sterile water,sown on solid MS medium and vernalized for 2 d at 4 °C in dark.Next,the MS plates were placed in a growth chamber.After 11 d,the Col-0 seedlings were transplanted into a mixture which contains two thirds nutrient soil and one third vermiculite,and grown at 22 °C in a growth room under a 16-h light/8-h dark photoperiod.One month later,the adultArabidopsisplants were used for transformation studies.

    To analyze the function ofOsABTin ABA and salt stresses,the seeds of Col-0 and homozygousOsABTtransgenicArabidopsiswere surface-sterilized,sown on solid MS medium or MS medium containing ABA (1 μmol/L) or NaCl (125 mmol/L),and vernalized in dark at 4 °C for 2 d.Next,the samples were moved to a growth chamber with a constant temperature of 22 °C under a 16-h light/8-h dark photoperiod.The greening rates were calculated after 14 d of culture on MS medium containing ABA,and after 5,6,7 and 8 d of culture on MS medium containing NaCl.

    For drought assay,the seeds of Col-0 and homozygousOsABTtransgenicArabidopsiswere sown on solid MS medium after surface-sterilization and moved to a growth chamber for 10 d.Next,the seedlings were transplanted into four small pots and alternately planted with four replicates.After transplantation for 2 weeks,the seedlings were grown with no water supply for 2 weeks.Next,the seedlings were rewatered and grown in a growth room at 22 °C under a 16-h light/8-h dark photoperiod.After 1 week of rewatering,the survival rates were calculated,and the phenotypes were recorded by taking photos.

    Vector construction and Arabidopsis transformation

    To generate35S::OsABTtransgenicArabidopsislines,full-lengthOsABTcoding sequence was amplified from rice using specific set of primers and cloned into a pMD18-T simple vector.The pMD18-T-OsABTvector was sequenced to test the correctness ofOsABTsequence at Wuhan GeneCreate Biological Engineering Co.,Ltd.(Wuhan,Hubei,China).The pMD18-T-OsABTvector with correctOsABTsequence was digested withSpeI andSacI (TaKaRa,Dalian,China),and the full-length coding sequence ofOsABTwas cloned into theSpeI andSacI sites of a p6MYC vector to generate p6MYC-OsABTconstruct.Then,the correctness of the p6MYC-OsABTwas identified by enzyme digestion withSpeI andSacI and sequencing.The correct recombinant vector p6MYC-OsABTwas used to obtain the transgenicArabidopsisofOsABT.The primers used for cloningOsABTwere OsABT-OV-F and OsABT-OV-R,as shown in Table S1.

    To obtain the transgenicOsABTArabidopsislines,theAgrobacteriumGV3101 containing the recombinant vector p6MYC-OsABTwas suspended,and then transformed into the buds ofArabidopsisusing the floral-dip method (Clough and Bent,1998).

    Phylogenetic and domain analyses,gene structure analysis,and protein sequence alignment

    TheOsABTsequence was obtained from Gramene (https:// archive.gramene.org/) BLAST program.OsABT homologous protein was searched in NCBI (http://www.ncbi.nlm.nih.gov/) using BLASTP.The neighbor-joining method was used for phylogenetic tree construction in the MEGA software (version 6.0).The SMART program (http://smart.embl-heidelberg.de/) was used to analyze conserved domains in the OsABT protein.

    To analyze the gene structure ofOsABT,the gene sequences ofOsABTandAtABTwere obtained and the gene structure was constructed via GSDS (http://gsds.cbi.pku.edu.cn/).To analyze the sequence identity between OsABT and AtABT,the protein sequences of OsABT and AtABT were aligned using DNAMAN 7.0.

    Subcellular localization analysis

    To analyze the subcellular localization of OsABT,the coding sequence ofOsABTwas amplified through PCR and then cloned into a binary vector PEZR (K)-LC betweenEcoRI andXbaI restriction sites.The construct was transformed intoA.thalianathrough the floral-dip method (Clough and Bent,1998),whereas the pEZR(K)-LC vector was used as a control.Fluorescence imaging was performed by a confocal laser scanning microscopy (Leica SP8;Leica Microsystems,Wetzlar,Germany).The primer set used for cloningOsABTconsisted of OsABT-GFP-F and OsABT-GFP-R,as shown in Table S1.

    RNA extraction,RT-PCR and qRT-PCR analyses

    Total RNA was extracted from transgenic and control plantlet leaves using TRIzol reagent according to the manufacturer’s instructions (Invitrogen,Shanghai,China).To detectOsABToverexpression inArabidopsis,we synthesized first-strand cDNA using the total RNA extracted from transgenic and Col-0 plants.2× Es Taq master mix (Dye) (CWBIO,China) was used for PCR amplification.The sequences of specific primers OsABT-F and OsABT-R are shown in Table S1.RT-PCR was performed using a heated lid thermal cycler (Bio-Rad,USA) under the following conditions:pre-denaturation at 94 °C for 4 min,denaturation at 94 °C for 30 s,annealing at 56 °C for 30 s,and extension at 72 °C for 60 s,for 28 cycles.AtUBQ10(At4g05320) was used as an internal control.The primers used were based on those described by Chen et al (2017).

    To investigate the transcript patterns ofOsABTunder the ABA,salt and drought stress conditions.The rice seedlings were treated with 50 μmol/L ABA,150 mmol/L NaCl or 10 g/mL PEG8000.The rice roots were collected at the time point of 0 (control),1,3,6,12 and 24 h after treatment and frozen in liquid nitrogen immediately for RNA isolation.cDNAs were synthesized from the total RNA extracted from the rice roots.qRT-PCR was performed using a SYBR?premix Ex Taq? (Tli RNaseH Plus) (TaKaRa,Dalian,China) in an ABI Prism 7000 system (Thermo Fisher Scientific,USA).Each PCR was conducted with three biological and technical replicates.OseEF-1αwas used as an internal reference.The standardized 2-ΔΔCTmethod was used to normalize the obtained results.The primer sets used for qRT-PCR are given in Table S2.

    BiFC assay

    The binary vectors used for BiFC assay were pEarleyagate201-YN and pEarleygate202-YC vectors,in accordance with Wang et al (2015).TheOsABTcoding sequence was cloned into pEarleyagte201-YN to obtain OsABT-YFPN,whereas the coding sequence ofOsABI2was cloned into pEarleygate202-YC to yield OsABI2-YFPC.The reconstructed vectors were transformed intoA.tumefaciensstrain GV3101 and introduced intoN.benthamianaepidermal cells.At 3 d after injection,YFP fluorescence was imaged through a confocal laser scanned microscopy (Leica SP8;Leica Microsystems,Wetzlar,Germany).

    ACKNOWLEDGEMENTS

    This study was supported by the Major Program of the Zhejiang Province for Food Crop Breeding (Grant No.2016C02050-6) and the Key Program of Hangzhou Agricultural Scientific Research (Grant No.20191203B08).We also thank LI Xia and WANG Zhijuan from Huazhong Agricultural University,for their help in experimental ideas and methods.

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science;http://www.ricescience.org.

    Fig.S1.Promoter sequence ofOsABT.

    Fig.S2.Multiple sequence alignment ofOsABTandAtABTpromoters.

    Table S1.Primers used in this study.

    Table S2.qRT-PCR primers used for analyzing expression patterns ofOsABTunder ABA,salt and drought stresses.

    国产一级毛片七仙女欲春2 | 在线十欧美十亚洲十日本专区| 欧美成人午夜精品| 午夜免费观看网址| 大型av网站在线播放| 日韩有码中文字幕| 热re99久久国产66热| 亚洲中文字幕一区二区三区有码在线看 | 男女之事视频高清在线观看| 日韩一卡2卡3卡4卡2021年| 国内精品久久久久精免费| 免费无遮挡裸体视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久久精品欧美日韩精品| 一本久久中文字幕| 校园春色视频在线观看| 午夜激情av网站| 国产又爽黄色视频| 69av精品久久久久久| 亚洲欧美激情综合另类| 搡老熟女国产l中国老女人| 999久久久国产精品视频| 午夜福利,免费看| 一边摸一边抽搐一进一小说| xxx96com| 夜夜看夜夜爽夜夜摸| 国产主播在线观看一区二区| 国产欧美日韩综合在线一区二区| 一级毛片女人18水好多| 国产欧美日韩一区二区三区在线| 国产午夜精品久久久久久| 国产亚洲av嫩草精品影院| 欧美黄色淫秽网站| www日本在线高清视频| 乱人伦中国视频| 国产亚洲欧美在线一区二区| 老司机午夜十八禁免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久热在线av| 亚洲精品国产区一区二| 琪琪午夜伦伦电影理论片6080| 成人手机av| 亚洲天堂国产精品一区在线| 一二三四在线观看免费中文在| 一a级毛片在线观看| 亚洲七黄色美女视频| 十分钟在线观看高清视频www| 亚洲av片天天在线观看| 美女大奶头视频| 制服丝袜大香蕉在线| 欧美色欧美亚洲另类二区 | 99国产精品一区二区蜜桃av| 欧美国产日韩亚洲一区| 一二三四在线观看免费中文在| 亚洲精品久久成人aⅴ小说| 亚洲aⅴ乱码一区二区在线播放 | 免费不卡黄色视频| 在线十欧美十亚洲十日本专区| 国产又爽黄色视频| 国产精品 国内视频| 人妻久久中文字幕网| 欧美绝顶高潮抽搐喷水| 99re在线观看精品视频| 久久久久国内视频| 国产精品一区二区免费欧美| 夜夜看夜夜爽夜夜摸| 欧美激情 高清一区二区三区| 日韩大码丰满熟妇| 亚洲 欧美一区二区三区| 99久久久亚洲精品蜜臀av| 亚洲精品美女久久av网站| 人人妻,人人澡人人爽秒播| 亚洲视频免费观看视频| 欧美成人性av电影在线观看| 桃红色精品国产亚洲av| 国产成人系列免费观看| 激情视频va一区二区三区| 精品久久久精品久久久| 真人做人爱边吃奶动态| 精品午夜福利视频在线观看一区| x7x7x7水蜜桃| aaaaa片日本免费| 老鸭窝网址在线观看| 别揉我奶头~嗯~啊~动态视频| 99久久国产精品久久久| 久久国产精品人妻蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人免费无遮挡视频| 看黄色毛片网站| 久久精品国产综合久久久| 超碰成人久久| 亚洲欧美精品综合一区二区三区| 久久精品亚洲熟妇少妇任你| 精品少妇一区二区三区视频日本电影| 日韩中文字幕欧美一区二区| 大型黄色视频在线免费观看| 精品久久久久久,| 日韩欧美一区二区三区在线观看| 国产黄a三级三级三级人| 亚洲中文av在线| 人成视频在线观看免费观看| 国产精品永久免费网站| 老汉色∧v一级毛片| 亚洲熟妇中文字幕五十中出| 操美女的视频在线观看| 久久久久国产精品人妻aⅴ院| 一区福利在线观看| 两性夫妻黄色片| 夜夜躁狠狠躁天天躁| 久久久久久免费高清国产稀缺| 午夜免费观看网址| 99精品欧美一区二区三区四区| 日韩欧美在线二视频| 久9热在线精品视频| 真人一进一出gif抽搐免费| 国内精品久久久久久久电影| 人妻久久中文字幕网| 啦啦啦观看免费观看视频高清 | 午夜福利18| 精品久久久久久,| 欧美黑人欧美精品刺激| 欧美日韩亚洲综合一区二区三区_| 国产精品 国内视频| 在线观看日韩欧美| 人妻久久中文字幕网| 亚洲欧美日韩高清在线视频| 波多野结衣巨乳人妻| 免费在线观看视频国产中文字幕亚洲| 亚洲五月色婷婷综合| 纯流量卡能插随身wifi吗| 国产真人三级小视频在线观看| 琪琪午夜伦伦电影理论片6080| 91国产中文字幕| 首页视频小说图片口味搜索| 精品卡一卡二卡四卡免费| 国产精品99久久99久久久不卡| 午夜两性在线视频| 国产伦一二天堂av在线观看| av免费在线观看网站| 大型黄色视频在线免费观看| 亚洲国产精品sss在线观看| 宅男免费午夜| 亚洲av成人av| 91av网站免费观看| 久久精品91无色码中文字幕| 欧美成人一区二区免费高清观看 | 国产成人欧美在线观看| 国产在线精品亚洲第一网站| 91在线观看av| 国产欧美日韩一区二区三区在线| 视频区欧美日本亚洲| 在线av久久热| 成人特级黄色片久久久久久久| 久久久水蜜桃国产精品网| 操出白浆在线播放| 黄色成人免费大全| 免费高清视频大片| 精品日产1卡2卡| 亚洲欧美日韩另类电影网站| 欧美激情极品国产一区二区三区| 精品日产1卡2卡| 精品国产亚洲在线| 亚洲精品中文字幕一二三四区| 成人18禁在线播放| 久久人人精品亚洲av| 人成视频在线观看免费观看| 一区二区三区国产精品乱码| 国产蜜桃级精品一区二区三区| 国产熟女午夜一区二区三区| 欧美日韩瑟瑟在线播放| 在线天堂中文资源库| 性欧美人与动物交配| 又紧又爽又黄一区二区| 1024香蕉在线观看| 大型av网站在线播放| 久久久久国产一级毛片高清牌| 国产亚洲精品一区二区www| 一区福利在线观看| 久久久精品国产亚洲av高清涩受| 亚洲成人免费电影在线观看| 免费女性裸体啪啪无遮挡网站| 高清在线国产一区| 久久国产乱子伦精品免费另类| 国产精品 国内视频| 亚洲色图综合在线观看| 国产一区在线观看成人免费| 男人操女人黄网站| 亚洲欧美精品综合一区二区三区| 国产一区二区三区在线臀色熟女| 午夜久久久久精精品| 日韩免费av在线播放| 两个人视频免费观看高清| xxx96com| 日韩精品免费视频一区二区三区| 三级毛片av免费| 亚洲最大成人中文| 亚洲av电影在线进入| www.精华液| 成人特级黄色片久久久久久久| 亚洲第一青青草原| 男人的好看免费观看在线视频 | 91麻豆精品激情在线观看国产| 午夜福利在线观看吧| 亚洲 欧美一区二区三区| 美女免费视频网站| 一进一出抽搐动态| 亚洲精品在线美女| 叶爱在线成人免费视频播放| 99精品在免费线老司机午夜| 他把我摸到了高潮在线观看| 老司机午夜福利在线观看视频| 亚洲精品在线美女| 母亲3免费完整高清在线观看| 免费在线观看日本一区| 国产免费av片在线观看野外av| 亚洲人成电影免费在线| 国产精品亚洲一级av第二区| 久久中文字幕一级| 欧美最黄视频在线播放免费| 国产精品久久久人人做人人爽| x7x7x7水蜜桃| 老司机靠b影院| cao死你这个sao货| 国产成+人综合+亚洲专区| 午夜福利,免费看| 可以免费在线观看a视频的电影网站| 在线观看www视频免费| 丝袜美腿诱惑在线| 一级毛片高清免费大全| 精品乱码久久久久久99久播| 亚洲精品国产一区二区精华液| 精品电影一区二区在线| 久久久久九九精品影院| 美女国产高潮福利片在线看| 香蕉丝袜av| 我的亚洲天堂| 男女做爰动态图高潮gif福利片 | 亚洲中文字幕一区二区三区有码在线看 | 亚洲国产精品久久男人天堂| 成人三级黄色视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧洲精品一区二区精品久久久| 激情在线观看视频在线高清| 欧美一区二区精品小视频在线| 国产欧美日韩精品亚洲av| 午夜福利在线观看吧| 99久久综合精品五月天人人| 亚洲自偷自拍图片 自拍| 午夜福利18| 久久久久久国产a免费观看| 国产av又大| 亚洲 欧美一区二区三区| 日本免费一区二区三区高清不卡 | 欧美大码av| 精品国产亚洲在线| 亚洲中文av在线| 免费久久久久久久精品成人欧美视频| 亚洲电影在线观看av| 琪琪午夜伦伦电影理论片6080| 国产片内射在线| 久久久国产欧美日韩av| 好男人在线观看高清免费视频 | 亚洲片人在线观看| 久99久视频精品免费| 国产精品免费视频内射| 亚洲av熟女| 男男h啪啪无遮挡| 免费av毛片视频| 可以免费在线观看a视频的电影网站| 国产精品综合久久久久久久免费 | 中出人妻视频一区二区| 一级黄色大片毛片| 久久天堂一区二区三区四区| 在线观看免费日韩欧美大片| 国内久久婷婷六月综合欲色啪| av天堂久久9| 国产99白浆流出| 国产一区二区激情短视频| 精品一区二区三区四区五区乱码| 中文字幕高清在线视频| 亚洲专区中文字幕在线| 久久久久久大精品| 女人精品久久久久毛片| 亚洲一区中文字幕在线| 国产av一区二区精品久久| 在线观看免费日韩欧美大片| 久久人人爽av亚洲精品天堂| 女人高潮潮喷娇喘18禁视频| 99久久国产精品久久久| 999久久久国产精品视频| 桃红色精品国产亚洲av| 欧美成人午夜精品| 一边摸一边抽搐一进一小说| av免费在线观看网站| 国产伦人伦偷精品视频| 国产精品亚洲美女久久久| 19禁男女啪啪无遮挡网站| 天堂影院成人在线观看| 少妇被粗大的猛进出69影院| 熟女少妇亚洲综合色aaa.| 午夜影院日韩av| 操出白浆在线播放| 999久久久国产精品视频| 禁无遮挡网站| 一级黄色大片毛片| 视频在线观看一区二区三区| 变态另类成人亚洲欧美熟女 | 黄网站色视频无遮挡免费观看| 18禁美女被吸乳视频| 亚洲中文日韩欧美视频| 亚洲无线在线观看| 免费久久久久久久精品成人欧美视频| 亚洲国产欧美日韩在线播放| 制服诱惑二区| 欧美绝顶高潮抽搐喷水| av天堂在线播放| 一级片免费观看大全| 免费一级毛片在线播放高清视频 | 欧美日韩福利视频一区二区| 亚洲最大成人中文| 在线免费观看的www视频| 国产成人影院久久av| 国产1区2区3区精品| 精品久久久久久,| 两个人视频免费观看高清| 9色porny在线观看| 老汉色∧v一级毛片| 大陆偷拍与自拍| 亚洲第一电影网av| 久久精品91蜜桃| 亚洲成人国产一区在线观看| 无人区码免费观看不卡| 香蕉久久夜色| 两个人免费观看高清视频| 最近最新免费中文字幕在线| 亚洲色图综合在线观看| 乱人伦中国视频| 亚洲国产欧美一区二区综合| 国产成人av激情在线播放| 亚洲美女黄片视频| 日韩大码丰满熟妇| 久久香蕉精品热| 午夜福利在线观看吧| 老司机在亚洲福利影院| 1024视频免费在线观看| 久热爱精品视频在线9| 老鸭窝网址在线观看| 国产精品国产高清国产av| 日韩欧美免费精品| 亚洲自偷自拍图片 自拍| 久久中文字幕一级| 不卡av一区二区三区| 久久久精品欧美日韩精品| 中文字幕高清在线视频| 黄色视频,在线免费观看| 亚洲午夜理论影院| 91av网站免费观看| 岛国在线观看网站| av网站免费在线观看视频| 激情在线观看视频在线高清| a级毛片在线看网站| 亚洲av五月六月丁香网| 1024视频免费在线观看| 日本黄色视频三级网站网址| 午夜福利视频1000在线观看 | 国产精品美女特级片免费视频播放器 | 亚洲性夜色夜夜综合| 精品卡一卡二卡四卡免费| 精品久久久久久久毛片微露脸| 丝袜美足系列| 欧美日韩乱码在线| 老熟妇乱子伦视频在线观看| 中亚洲国语对白在线视频| 免费无遮挡裸体视频| 电影成人av| 国产精品免费视频内射| 黄片大片在线免费观看| 999精品在线视频| 波多野结衣一区麻豆| 亚洲中文字幕一区二区三区有码在线看 | netflix在线观看网站| 亚洲av电影在线进入| 国产精品野战在线观看| 日韩视频一区二区在线观看| 一本综合久久免费| 国产成人精品无人区| 手机成人av网站| 久久久久久久精品吃奶| 欧美精品亚洲一区二区| 大香蕉久久成人网| 国产一区二区三区视频了| 99在线视频只有这里精品首页| 亚洲中文字幕一区二区三区有码在线看 | 搡老熟女国产l中国老女人| 国产精品av久久久久免费| 国产成人av激情在线播放| 国产xxxxx性猛交| 18禁裸乳无遮挡免费网站照片 | 亚洲av熟女| 一级毛片精品| 精品国产一区二区三区四区第35| 好男人在线观看高清免费视频 | 久久精品亚洲熟妇少妇任你| 精品国产美女av久久久久小说| 一进一出抽搐动态| 久久精品亚洲熟妇少妇任你| 天堂√8在线中文| 亚洲av电影不卡..在线观看| 999精品在线视频| 精品免费久久久久久久清纯| 正在播放国产对白刺激| 涩涩av久久男人的天堂| 久久精品成人免费网站| 黑人操中国人逼视频| 国产高清激情床上av| 人人妻人人澡人人看| 精品不卡国产一区二区三区| 男人的好看免费观看在线视频 | 色婷婷久久久亚洲欧美| 1024视频免费在线观看| 亚洲一区二区三区色噜噜| 操出白浆在线播放| 亚洲自拍偷在线| www国产在线视频色| avwww免费| 国产片内射在线| 99精品欧美一区二区三区四区| 窝窝影院91人妻| 嫩草影院精品99| 国产免费男女视频| 99国产精品一区二区蜜桃av| 亚洲欧美激情在线| 久久香蕉激情| 女人高潮潮喷娇喘18禁视频| 色av中文字幕| 性少妇av在线| 国产真人三级小视频在线观看| 日韩欧美在线二视频| 欧美激情 高清一区二区三区| 免费观看精品视频网站| 久久中文字幕人妻熟女| 一级黄色大片毛片| 亚洲精品国产精品久久久不卡| 国产成人啪精品午夜网站| 久久久久亚洲av毛片大全| 国产熟女午夜一区二区三区| 黄网站色视频无遮挡免费观看| 久久亚洲真实| 国产熟女xx| 99国产精品免费福利视频| 校园春色视频在线观看| 男人舔女人的私密视频| 午夜福利视频1000在线观看 | 制服丝袜大香蕉在线| 欧美一级a爱片免费观看看 | 国产99久久九九免费精品| 精品一品国产午夜福利视频| 女人被狂操c到高潮| 久久久久久人人人人人| 日韩高清综合在线| ponron亚洲| 在线av久久热| 久久天堂一区二区三区四区| 国产1区2区3区精品| 午夜亚洲福利在线播放| 一边摸一边做爽爽视频免费| 18禁黄网站禁片午夜丰满| 在线视频色国产色| 91大片在线观看| 成人免费观看视频高清| 色老头精品视频在线观看| 黄片大片在线免费观看| 日韩精品青青久久久久久| 亚洲欧美精品综合久久99| 91麻豆精品激情在线观看国产| 窝窝影院91人妻| 免费观看人在逋| 97人妻天天添夜夜摸| 亚洲色图 男人天堂 中文字幕| 成人国产一区最新在线观看| 欧美另类亚洲清纯唯美| 亚洲av成人av| 免费在线观看视频国产中文字幕亚洲| 亚洲精品久久国产高清桃花| 999久久久国产精品视频| 亚洲成国产人片在线观看| 久久精品国产亚洲av香蕉五月| 欧美大码av| 国产一区二区在线av高清观看| 91九色精品人成在线观看| 男女下面插进去视频免费观看| 在线观看www视频免费| 极品人妻少妇av视频| 久久亚洲精品不卡| 国产精品电影一区二区三区| 香蕉丝袜av| 国产亚洲av高清不卡| 国产国语露脸激情在线看| 欧美av亚洲av综合av国产av| 久久午夜综合久久蜜桃| 国产一区二区在线av高清观看| 国产精品亚洲美女久久久| 一个人观看的视频www高清免费观看 | 亚洲国产看品久久| 人妻丰满熟妇av一区二区三区| 国内毛片毛片毛片毛片毛片| 国产亚洲精品久久久久久毛片| 午夜老司机福利片| 国产主播在线观看一区二区| 可以在线观看毛片的网站| 久久精品国产亚洲av高清一级| 精品国产亚洲在线| 国产区一区二久久| 亚洲视频免费观看视频| 亚洲av成人一区二区三| 视频在线观看一区二区三区| 日韩欧美国产一区二区入口| www.熟女人妻精品国产| 国产成人精品在线电影| 少妇 在线观看| 美女 人体艺术 gogo| 99re在线观看精品视频| 啦啦啦韩国在线观看视频| 免费女性裸体啪啪无遮挡网站| 亚洲中文字幕日韩| 亚洲成a人片在线一区二区| 精品国产美女av久久久久小说| 久久久久久久久中文| 中亚洲国语对白在线视频| 成人国产一区最新在线观看| 日韩欧美在线二视频| 久久久久久国产a免费观看| 9热在线视频观看99| 99香蕉大伊视频| av在线播放免费不卡| 啦啦啦韩国在线观看视频| 亚洲一码二码三码区别大吗| 黄色 视频免费看| 久久草成人影院| 国产精品一区二区三区四区久久 | 亚洲欧美精品综合一区二区三区| 99久久国产精品久久久| 国产蜜桃级精品一区二区三区| 久久久久久久久中文| 免费看十八禁软件| 嫩草影视91久久| 欧美中文综合在线视频| 女生性感内裤真人,穿戴方法视频| 欧美性长视频在线观看| 欧美成狂野欧美在线观看| 美女大奶头视频| 国内精品久久久久精免费| 欧美成人性av电影在线观看| 一进一出抽搐gif免费好疼| 婷婷丁香在线五月| 99在线人妻在线中文字幕| 欧美不卡视频在线免费观看 | a在线观看视频网站| 99国产极品粉嫩在线观看| 制服人妻中文乱码| 国产精品精品国产色婷婷| 一区二区三区激情视频| 可以免费在线观看a视频的电影网站| 国产精品一区二区三区四区久久 | 亚洲电影在线观看av| 国产成人欧美在线观看| 国产一区二区三区综合在线观看| 欧美精品啪啪一区二区三区| 免费在线观看黄色视频的| av视频免费观看在线观看| 欧美日本视频| 欧美乱妇无乱码| 亚洲国产看品久久| 热re99久久国产66热| 又大又爽又粗| 久久人人精品亚洲av| 我的亚洲天堂| 亚洲国产精品成人综合色| 纯流量卡能插随身wifi吗| 丰满人妻熟妇乱又伦精品不卡| 国产精品精品国产色婷婷| 久久久久久免费高清国产稀缺| 成人三级做爰电影| 午夜福利免费观看在线| 亚洲成人免费电影在线观看| 老司机午夜福利在线观看视频| 国产黄a三级三级三级人| 国语自产精品视频在线第100页| 免费在线观看亚洲国产| 国产私拍福利视频在线观看| 91在线观看av| 高清黄色对白视频在线免费看| 国产精品免费视频内射| 在线观看免费日韩欧美大片| 在线观看www视频免费| tocl精华| 99久久久亚洲精品蜜臀av| 精品无人区乱码1区二区| 91成人精品电影| 亚洲国产精品久久男人天堂| 国产成年人精品一区二区| 男男h啪啪无遮挡| 亚洲av第一区精品v没综合| 欧美日韩精品网址| 国产亚洲av嫩草精品影院| 亚洲av成人不卡在线观看播放网| 在线av久久热| 一进一出好大好爽视频| 日日摸夜夜添夜夜添小说| 国产精品精品国产色婷婷| 老司机在亚洲福利影院| 国产av又大| 午夜影院日韩av| 国产av一区在线观看免费| 亚洲精品粉嫩美女一区|