• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Global patterns of fern species diversity:An evaluation of fern data in GBIF

    2022-04-25 07:31:32HongQianJianZhangMeiChenJiang
    植物多樣性 2022年2期

    Hong Qian,Jian Zhang,Mei-Chen Jiang

    aResearch and Collections Center,Illinois State Museum,1011 East Ash Street,Springfield,IL 62703,USA

    bZhejiang Tiantong Forest Ecosystem National Observation and Research Station,School of Ecological and Environmental Sciences,East China Normal University,200241 Shanghai,China

    ABSTRACT

    Despite that several studies have shown that data derived from species lists generated from distribution occurrence records in the Global Biodiversity Information Facility(GBIF)are not appropriate for those ecological and biogeographic studies that require high sampling completeness,because species lists derived from GBIF are generally very incomplete,Suissa et al.(2021)generated fern species lists based on data with GBIF for 100 km×100 km grid cells across the world,and used the data to determine fern diversity hotspots and species richness-climate relationships.We conduct an evaluation on the completeness of fern species lists derived from GBIF at the grid-cell scale and at a larger spatial scale,and determine whether fern data derived from GBIF are appropriate for studies on the relations of species composition and richness with climatic variables.We show that species sampling completeness of GBIF is low(<40%)for most of the grid cells examined,and such low sampling completeness can substantially bias the investigation of geographic and ecological patterns of species diversity and the identification of diversity hotspots.We conclude that fern species lists derived from GBIF are generally very incomplete across a wide range of spatial scales,and are not appropriate for studies that require data derived from species lists in high completeness.We present a map showing global patterns of fern species diversity based on complete or nearly complete regional fern species lists.

    Keywords:

    Climate

    Data bias

    Fern

    GBIF

    Species diversity

    Species list

    1.Introduction

    Ferns,which include about 12,000 species worldwide(Hassler,2004-2021),are one of the oldest and the most species-rich groups of vascular plants(Mabberley,2008;Qian et al.,2021a).Fern propagules are spores,which are small(usually<0.1 mm in equatorial axis and polar axis;Adsersen,1995),and are capable of dispersing thousands of kilometers by wind(Wolf et al.,2001).Ferns are generally distributed broadly,and fern distributions are thought to be more in equilibrium with climate than most other groups of vascular plants(Qian,2009).Fern species richness exhibits marked variation among areas across the globe(Weigand et al.,2020),which is thought to be driven by environmental factors(Kreft et al.,2010;Khine et al.,2019).Therefore,ferns are an ideal group of vascular plants for the study of geographic and ecological patterns and drivers of plant diversity at global and regional scales.

    In an article by Suissa et al.(2021),the authors analyzed species occurrence data downloaded from the Global Biodiversity Information Facility(GBIF)to address several questions.They converted the geo-referenced occurrences downloaded from GBIF to fern species lists for each of 100 km×100 km grid cells across the globe,explored geographic patterns of fern species richness and endemism,and tested for correlations between individual environmental variables and richness and speciation rate.The robustness of the conclusions of their study heavily depends on the quality of the data used in their study(i.e.the completeness of fern species list for each of the 100 km×100 km grid cells).

    While GBIF occurrence data are useful for biological conservation and some ecological and biogeographic studies,it may not be appropriate to use the data in those studies that depend on species lists derived from the GBIF data.This is because previous studies have shown that species lists derived from GBIF occurrence data are commonly very incomplete and the completeness of a species list varies non-randomly across the globe.For example,Yesson et al.(2007)found that GBIF included only 31%of global Fabaceae species richness while large parts of the world are data deficient.Beck et al.(2013)found that the GBIF data for European moths provided less information on species’geographic ranges and climatic niches than an independent data compilation based on museum collections and published literature.Qian et al.(2018)showed that the completeness of species lists of vascular plants derived from GBIF is only 13%for the Chinese counties examined in their study(8195 km2per county on average)and is only 37%for the Chinese provinces(342,749 km2per province on average).Qian et al.(2018)also showed that the relationships between species richness and climate can be substantially biased when species richness derived from GBIF is used in an analysis relating species richness to climatic variables.Recently,Qian et al.(2021b)showed that species lists of vascular plants derived GBIF for 100 km×100 km grid cells in Africa account for less than 37%of the species in their full species lists.

    Suissa et al.(2021)included only two third of the fern species worldwide in their study.Because the completeness of species lists derived from GBIF data decreases with decreasing spatial scale,as shown in Qian et al.(2018,2021b),the completeness of the fern species lists for the 100 km×100 km grid cells used in their study are likely very low,at least in some regions.Suissa et al.(2021)pointed out that“misidentified records or those with problematic localities can bias biodiversity analyses”,but they overlooked the problem of using substantially incomplete species lists in their study.To determine whether the conclusions of their study are valid,it is necessary to evaluate the quality of the data used in their study.Here,we report an evaluation on their data.

    2.Materials and methods

    Suissa et al.’s(2021)primary analyses were based on species lists at the spatial resolution of 100 km×100 km,but their study also invoked larger geographic areas,such as those regions that were used to characterize regional patterns and hotspots of species richness and endemism.Accordingly,we evaluate the completeness of fern species lists derived from the GBIF occurrence records reported in Suissa et al.(2021)for geographic areas at both regional scale and 100 km×100 km grid cell scale.

    At a regional scale,we extracted fern occurrence records from World Plants(WP;https://www.worldplants.de/)and Plants of the World online(POWO;http://www.plantsoftheworldonline.org/)for geographic units mostly defined in Brummitt(2001),which are geographic units at the level 3 in most cases,and are geographic units at the level 4 defined in Brummitt(2001)for several countries with large extents of latitude or longitude or both.These countries are:Argentina,Australia,Brazil,Canada,Chile,China,Mexico,Russia,South Africa,and USA.For Russia,geographic units located in Europe are political regions shown in Map 5 of Brummitt(2001),and geographic units located in Siberia and Russian Far East are those shown in figure 1 of Zhang et al.(2018).A total of 470 geographic regions,as shown in Fig.1,were used to document global fern distributions.Regional species lists derived from the data extracted from WP and POWO were supplemented by additional data sources,e.g.GBIF data for global fern occurrences reported in Suissa et al.(2021),Flora of China online(http://www.efloras.org/flora_page.aspx?flora_id=2),and PLANTS Database(https://plants.usda.gov/home).Of the 470 geographic regions,457 had at least one fern species,and were analyzed in this study.These regional species lists,which were considered as ‘complete’or‘nearly complete’species lists for the regions,were compared with those regional species lists derived solely from the GBIF occurrence records reported in Suissa et al.(2021).For a particular geographic region,we determined the completeness of the species list derived solely from the GBIF data by dividing the number of species in the GBIF-based species list by the number of species in the ‘complete’species list of the region,as described above.Botanical nomenclature for ferns from all the above-mentioned data sources was standardized according to Hassler(2004-2021),which was also used to standardize fern nomenclature in Suissa et al.(2021).

    Complete fern species lists for 100 km×100 km grid cells are generally not available,and cannot be generated for the vast majority of the global land surface due to lack of sufficient small-scale complete species lists.However,because the completeness of species lists of vascular plants for counties in USA are high,particularly for those counties which,or parts of which,have been botanized with an aim of compiling their complete species lists(appendix A of Qian et al.,2007),and because county-level species lists of vascular plants have been used to address species richness questions in previous studies(e.g.Stohlgren et al.,2003),we divided the contiguous USA(with 48 states)into 100 km×100 km grids and used county-level distributions available at the PLANTS Database(https://plants.usda.gov/home)and local(nature reserve or park)plant checklists published in Weiser et al.(2018)to generate fern species lists for 100 km×100 km grid cells in USA.Similarly,county-level plant distributions in China have been used to generate species lists for 100 km×100 km grid cells in China,which were used in studies on species richness patterns(e.g.Feng et al.,2016).We divided China into 100 km×100 km grid cells,and used county-level fern distributions and local(nature reserve and park)species lists available online(e.g.the National Specimen Information Infrastructure,www.nsii.org.cn/)or the literature(e.g.Qian et al.,2018)to generate fern species lists for 100 km×100 km grid cells in China.The approach that we used to generate species lists for grid cells based on county-level and local species lists has been commonly used in the literature(e.g.Feng et al.,2016).GBIF occurrence records reported in Suissa et al.(2021)were also used when we generated fern species lists for 100 km×100 km grid cells.For both China and USA,we only used those 100 km×100 km grid cells which have complete fern species lists for counties or localities within each of them,based on the county-level or local floras used in Qian et al.(2018)for China and Weiser et al.(2018)for USA.As a result,we included 267 grid cells in our analysis(115 in China,152 in USA).For both countries,a Mollweide(equal-area)projection was used to divide them into 100 km×100 km grid cells.Botanical nomenclature in each data set was standardized according to Hassler(2004-2021).

    One of the key components of Suissa et al.’s(2021)study was to analyze species richness and hotspots in climate spaces,particularly in a temperature-precipitation space(e.g.their figure 5),using regression models.Although Qian et al.(2018)showed that the relationships between species richness and a given climatic variable can differ not only in strength but also in direction between the regression models based on data derived from complete species lists and those based on the data derived from GBIF for vascular plants,it is not clear whether this conclusion applies to ferns because the relationships between species richness and climatic variables differ substantially between pteridophytes,the vast majority of which are ferns,and seed plants(Kreft et al.,2010).Accordingly,we also assess whether using data derived from incomplete GBIF fern species lists in regression models would significantly affect the results on the relationships between species richness and climatic variables.Mean annual temperature,annual precipitation,minimum temperature of the coldest month,precipitation during the driest month,temperature seasonality,and precipitation seasonality represent the mean,extreme and variability of temperature and precipitation.Because these climatic variables are commonly included in studies on geographic and ecological patterns of plant diversity(e.g.Kooyman et al.,2012;Weigelt et al.,2015;Qian et al.,2017,2021),and some of them were also used to build climate spaces in Suissa et al.(2021),our analysis emphasized on these six climatic variables.We obtained climatic data for each 100 km×100 km grid cell from the WorldClim database(http://worldclim.org/version2),using data at the 30-arcsecond resolution.We used spatial regressions(simultaneous autoregressive(SAR)models)in our analyses,which accounted for spatial autocorrelation(Kissling and Carl,2008).We investigated the effect of data completeness on inference from the richness-climate relationship.We ran SAR models separately for the two data sets of each country(i.e.a data set derived from complete species lists(full data set),a date set derived solely from GBIF)and compared effect sizes(standardized regression coefficient)within models and R2values between models.Species richness was transformed by log10(x+1).Each climatic variable of a regression was standardized to have a mean of zero and a standard deviation of one.Spatial Analysis in Macroecology(www.ecoevol.ufg.br/sam)was used to conduct SAR.

    Fig.1.Comparison between fern species density(i.e.,species richness was divided by log10-transformed area in square kilometer)derived from GBIF alone and that derived from WP,POWO and additional sources for geographic regions(countries or sub-countries)across the world.(a)Species density based on GBIF,(b)species density based on WP,POWO and additional sources,(c)percentage of species richness derived from GBIF over species richness derived from WP,POWO and additional sources(i.e.,completeness(%)of fern species lists derived from GBIF).

    3.Results and discussion

    Suissa et al.(2021)report that their cleaned version of the GBIF data for ferns includes 7865 species.Their study intends to include only binomials(i.e.species-level taxa),as indicated in their Appendix S2,but because they mistakenly treated trinomials(infraspecific taxa;e.g.Asplenium affine var.mettenii)as binomials(species),some species were counted more than once in their study.For example,the species A.affine was counted four times in their study(i.e.A.affine,A.affine var.gilpinae,A.affine var.mettenii,A.affine var.pectin).With duplicate species names being removed,Suissa et al.‘s study actually included 7462 species,which included 62%of fern species in the world(Hassler,2004-2021).Our analyses reported here used the corrected version of Suissa et al.‘s data set.

    At the beginning of the Results section of Suissa et al.(2021),the authors state that“Species richness per grid cell ranged from 3 to 929 species.”This statement is incorrect,because many grid cells having 1-2 species,as shown in appendix S2 of Suissa et al.(2021),were ignored by the authors.Thus,Suissa et al.(2021)incorrectly presented their data in their figure 1.Because many grid cells,particularly those located in arid regions,truly have 1 or 2 fern species,these grid cells should be shown in their figure 1.We have updated their figure 1 by using a corrected version of Suissa et al.‘s data set,as mentioned above(i.e.combining trinomials with their respective binomials),and adding grid cells with 1 or 2 species on the map(Fig.S1).

    For the 457 geographic regions across the world,each of which has,on average,294,310 km2,the completeness of a fern species list derived from GBIF was,on average,only 51%of its full fern species list(Fig.1).About 54%of the geographic regions each have less than 60%of the completeness in their species lists derived from GBIF(Fig.S2).Regional fern species lists derived from GBIF are substantially incomplete for a large geographic extent from northern Africa eastward to eastern Asia(Fig.1c),including China and India,which are rich in fern diversity(Fig.1b).

    At the grid-cell scale(i.e.100 km×100 km),our analysis showed that fern species lists derived from GBIF included less than 20%of all the species in each grid cell for 92%of the 115 grid cells sampled from China(Fig.2).Only 2%of the species lists derived from GBIF for China each had more than 40%of all the fern species in the grid cells.The completeness of species lists derived from GBIF for grid cells in the USA was higher than that for China,but fern species lists derived from GBIF included less than 60%of the species in each of the majority(53%)of the 152 grid cells sampled from the USA(Fig.2).When complete fern species lists were considered,each grid cell had,on average,231 species in China and 29 species in USA,i.e.actual fern species richness per grid cell in China is eight times as high as in USA.However,when fern species lists derived from GBIF were considered,fern species richness per grid cell in China is nearly the same as that in the USA(18.8 versus 18.3 species).The completeness of species lists derived from GBIF was lowest for the most species-rich grid cells(Fig.S3).Clearly,geographic patterns and hotspots of fern species diversity determined according to the GBIF data are substantially biased.Our analysis showed that the completeness of species lists derived from GBIF tended to be lower in areas with richer floras(Fig.S1),suggesting that identifying diversity hotspots solely based on data in GBIF,as did in Suissa et al.(2021),is not reliable.

    Fig.2.Geographic variation in sampling completeness(%)of species richness(SR)in GBIF(a and b),and the relationship between the proportion of samples(grid cells)and sampling completeness of SR for ferns in the selected 267 grid cells(each being 100 km×100 km)in China(a and c)and USA(b and d).

    This problem with Suissa et al.(2021)can be easily seen from their figure 1.For example,their figure 1 showed that most grid cells in Japan are among the grid cells with the highest fern species richness across the globe,and have much higher fern species richness than those grid cells located in the Hengduan Mountains and southeastern China.However,both regional floras in the literature and our data show that local and regional fern species richness in the Hengduan Mountains and southeastern China is much higher than that in Japan.For example,the five most speciesrich grid cells in Japan each has 190 to 218 fern species based on data from GBIF,but many grid cells in southeastern China each have 220 to 400 fern species in the data we analyzed,and these grid cells commonly each have few to none fern species in the GBIF data set analyzed by Suissa et al.(e.g.the grid cell whose centroid is located at 26.41°N and 117.38°E has 377 fern species but it has no species in the GBIF data reported in Suissa et al.).Such cases occur in many regions across the world.For example,the fern flora of India is rich,with over 1000 species(according to WP and POWO).However,few grid cells across the entire India south of the Himalayas have fern species in figure 1 of Suissa et al.(2021).We believe that the fern diversity hotspots identified by Suissa et al.(2021)largely reflect the availability of occurrence records in GBIF,rather than true fern diversity hotspots,and many true fern diversity hotspots,such as the Hengduan Mountains,southeastern China and tropical mountains in India,have not been identified in their study.

    Our analysis showed that using fern species lists derived from GBIF can substantially bias the relationships between species richness and climate not only in strength but also in direction(Table 1).For example,for grid cells in China,when species richness derived from complete species lists was used in a regression analysis with six climatic variables being included as independent variables,the model explained 65.5%of the variation in fern richness and annual precipitation was the strongest correlate of fern richness and was positively associated with fern richness(Table 1),which is consistent with findings reported in previous studies(e.g.Nagalingum et al.,2015).By contrast,when species richness in the model was replaced by that derived from the GBIF data reported in Suissa et al.(2021),the model explained only 34.2%of the variation in fern richness and annual precipitation was not only the weakest correlate of fern richness but also was negatively,rather than positively,associated with fern species richness(Table 1).Our analysis suggests that the results of the climate-based analyses reported in Suissa et al.(2021)are likely biased to a large degree.

    Table 1Results of multiple regressions of species richness with six climate variables for ferns in 100 km×100 km grid cells in China and USA.Rank refers to the order of absolute values of standardized regression coefficient(Coeff.),from largest to smallest,based on simultaneous autoregressive models.

    We conclude that fern species lists derived from GBIF are generally very incomplete across a wide range of spatial scales(at least<300,000 km2),and should not be used in studies that require data derived from complete or nearly complete species lists.This conclusion likely applies to data with GBIF for all taxonomic groups of organisms.

    Author contributions

    H.Q.designed research,analyzed data,and wrote the paper;J.Z.prepared data;M.J.generated maps;all authors participated in revising the paper.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgements

    We thank two reviewers for their helpful comments.

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.pld.2021.10.001.

    欧美国产精品一级二级三级| 欧美大码av| 欧美日韩福利视频一区二区| 亚洲av日韩精品久久久久久密| 91九色精品人成在线观看| 69av精品久久久久久 | 51午夜福利影视在线观看| 亚洲成人免费av在线播放| av一本久久久久| 国产有黄有色有爽视频| 精品人妻在线不人妻| 91成人精品电影| 欧美+亚洲+日韩+国产| 天天躁狠狠躁夜夜躁狠狠躁| 久久国产精品大桥未久av| 一区在线观看完整版| 在线播放国产精品三级| 亚洲熟女毛片儿| 久久狼人影院| 纵有疾风起免费观看全集完整版| 亚洲精品国产一区二区精华液| 咕卡用的链子| 91成人精品电影| 老司机影院毛片| 在线观看免费午夜福利视频| 亚洲 欧美一区二区三区| 亚洲欧美激情在线| 国产91精品成人一区二区三区 | 亚洲专区国产一区二区| 人妻 亚洲 视频| 免费观看av网站的网址| 99热网站在线观看| 亚洲av片天天在线观看| 午夜免费成人在线视频| 99精国产麻豆久久婷婷| 国产一区二区在线观看av| 一级毛片精品| 丝袜在线中文字幕| 国产在线免费精品| aaaaa片日本免费| 黄色毛片三级朝国网站| 日本五十路高清| 美女高潮到喷水免费观看| 亚洲五月婷婷丁香| 国产高清国产精品国产三级| 一区二区三区激情视频| 久久久水蜜桃国产精品网| 一区二区三区精品91| 国产亚洲午夜精品一区二区久久| 午夜两性在线视频| 少妇被粗大的猛进出69影院| av网站免费在线观看视频| 可以免费在线观看a视频的电影网站| 大片免费播放器 马上看| 国产欧美日韩一区二区三区在线| 国产在线视频一区二区| 久久这里只有精品19| 国产精品电影一区二区三区 | 国产伦理片在线播放av一区| 久久九九热精品免费| 搡老乐熟女国产| 色老头精品视频在线观看| av线在线观看网站| 国产成人精品在线电影| 老鸭窝网址在线观看| 久久久久久久久久久久大奶| 亚洲va日本ⅴa欧美va伊人久久| 久久青草综合色| 制服人妻中文乱码| 啦啦啦视频在线资源免费观看| 老熟妇乱子伦视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 日韩精品免费视频一区二区三区| 国产成人av激情在线播放| 精品午夜福利视频在线观看一区 | 国产精品.久久久| 午夜福利一区二区在线看| 80岁老熟妇乱子伦牲交| 亚洲精品一二三| 捣出白浆h1v1| a级毛片在线看网站| 99精品久久久久人妻精品| 日本wwww免费看| 精品第一国产精品| 性少妇av在线| 日韩三级视频一区二区三区| 丝袜喷水一区| 满18在线观看网站| 啦啦啦视频在线资源免费观看| 亚洲精品中文字幕一二三四区 | 精品一区二区三区av网在线观看 | 真人做人爱边吃奶动态| 久久久精品94久久精品| www.熟女人妻精品国产| 99热网站在线观看| 国产极品粉嫩免费观看在线| 黄片大片在线免费观看| 亚洲欧美一区二区三区黑人| 久久久国产精品麻豆| 岛国毛片在线播放| videosex国产| 啦啦啦 在线观看视频| 日韩三级视频一区二区三区| 90打野战视频偷拍视频| 午夜福利免费观看在线| 黑丝袜美女国产一区| 丝袜美腿诱惑在线| 黑丝袜美女国产一区| 国产精品av久久久久免费| 狠狠婷婷综合久久久久久88av| 国产一区二区激情短视频| 免费女性裸体啪啪无遮挡网站| 51午夜福利影视在线观看| 久久国产精品大桥未久av| 亚洲九九香蕉| 男女之事视频高清在线观看| 亚洲精品中文字幕一二三四区 | 亚洲中文日韩欧美视频| 亚洲第一欧美日韩一区二区三区 | 精品国产一区二区久久| 黄片大片在线免费观看| 老司机午夜十八禁免费视频| 亚洲成a人片在线一区二区| 熟女少妇亚洲综合色aaa.| 在线av久久热| 91麻豆av在线| 精品久久久久久久毛片微露脸| 亚洲视频免费观看视频| 欧美黄色片欧美黄色片| 久久av网站| 人妻一区二区av| 欧美日本中文国产一区发布| 人人妻人人澡人人爽人人夜夜| 精品国产乱码久久久久久男人| 久久亚洲真实| 十八禁人妻一区二区| 欧美日韩福利视频一区二区| 国产精品亚洲av一区麻豆| 久久久久国产一级毛片高清牌| 熟女少妇亚洲综合色aaa.| 王馨瑶露胸无遮挡在线观看| 国产高清videossex| 18禁黄网站禁片午夜丰满| 女人精品久久久久毛片| 多毛熟女@视频| 9色porny在线观看| 欧美乱码精品一区二区三区| 少妇 在线观看| 美女视频免费永久观看网站| 黑人巨大精品欧美一区二区蜜桃| 久热这里只有精品99| 国产91精品成人一区二区三区 | 黄片播放在线免费| 日日摸夜夜添夜夜添小说| 91九色精品人成在线观看| 午夜激情av网站| 日韩免费av在线播放| 亚洲欧美日韩另类电影网站| 又紧又爽又黄一区二区| 亚洲中文字幕日韩| 免费在线观看影片大全网站| 国产精品影院久久| av欧美777| 亚洲久久久国产精品| 捣出白浆h1v1| 肉色欧美久久久久久久蜜桃| 久久99一区二区三区| 日韩大码丰满熟妇| 欧美日韩一级在线毛片| 国产成人欧美在线观看 | 亚洲免费av在线视频| 国产高清国产精品国产三级| 真人做人爱边吃奶动态| 香蕉久久夜色| 亚洲精品成人av观看孕妇| 飞空精品影院首页| 欧美av亚洲av综合av国产av| 国产主播在线观看一区二区| 另类亚洲欧美激情| 在线天堂中文资源库| 久久中文字幕一级| 亚洲精品自拍成人| 日本撒尿小便嘘嘘汇集6| 免费av中文字幕在线| 天堂8中文在线网| 精品卡一卡二卡四卡免费| 久久精品亚洲熟妇少妇任你| 老司机亚洲免费影院| 国产日韩欧美视频二区| 国产一区有黄有色的免费视频| tube8黄色片| 国产精品久久久人人做人人爽| 国产一区二区激情短视频| 最近最新免费中文字幕在线| 久久香蕉激情| av网站在线播放免费| 久久久久精品国产欧美久久久| 一级毛片精品| 两性午夜刺激爽爽歪歪视频在线观看 | 丝袜美腿诱惑在线| 老鸭窝网址在线观看| 99riav亚洲国产免费| 亚洲国产av影院在线观看| svipshipincom国产片| 久久人妻av系列| 国产亚洲精品一区二区www | 亚洲五月色婷婷综合| 亚洲伊人色综图| 久久久欧美国产精品| 国产精品av久久久久免费| 日韩欧美免费精品| 交换朋友夫妻互换小说| 免费人妻精品一区二区三区视频| 在线观看免费午夜福利视频| 国产亚洲欧美精品永久| 精品国内亚洲2022精品成人 | 三级毛片av免费| 国产男女内射视频| 国产亚洲精品一区二区www | 久久精品国产99精品国产亚洲性色 | 免费在线观看影片大全网站| 精品少妇黑人巨大在线播放| 精品久久久久久久毛片微露脸| 欧美精品人与动牲交sv欧美| 别揉我奶头~嗯~啊~动态视频| 夜夜夜夜夜久久久久| 国产人伦9x9x在线观看| 色综合婷婷激情| 久久国产精品影院| 国产精品久久久久久精品古装| 十八禁高潮呻吟视频| av在线播放免费不卡| 精品乱码久久久久久99久播| 免费高清在线观看日韩| 国产黄色免费在线视频| 极品人妻少妇av视频| 国产一区二区 视频在线| 欧美日韩av久久| 久久精品国产a三级三级三级| 久久av网站| 大型av网站在线播放| 精品国产一区二区久久| 国产成人av激情在线播放| 一边摸一边抽搐一进一出视频| 亚洲精品在线观看二区| 国产精品九九99| 老鸭窝网址在线观看| 亚洲国产av新网站| 久久99热这里只频精品6学生| 五月天丁香电影| 成人国产一区最新在线观看| 丝袜喷水一区| 大香蕉久久网| 国产成人精品久久二区二区91| 久久精品成人免费网站| 在线观看免费日韩欧美大片| av福利片在线| 久久久久精品国产欧美久久久| 在线十欧美十亚洲十日本专区| 日韩制服丝袜自拍偷拍| 日本精品一区二区三区蜜桃| 国产精品久久久久久人妻精品电影 | 久久亚洲真实| 精品欧美一区二区三区在线| 真人做人爱边吃奶动态| 五月天丁香电影| 亚洲av成人不卡在线观看播放网| 国产免费av片在线观看野外av| 国产精品一区二区在线观看99| 一边摸一边抽搐一进一小说 | 成人黄色视频免费在线看| 在线播放国产精品三级| 中文字幕av电影在线播放| 岛国在线观看网站| 美女视频免费永久观看网站| 免费黄频网站在线观看国产| 99精国产麻豆久久婷婷| 国产国语露脸激情在线看| 日本一区二区免费在线视频| 午夜成年电影在线免费观看| 色综合婷婷激情| 中文亚洲av片在线观看爽 | 激情在线观看视频在线高清 | 精品一区二区三区视频在线观看免费 | 丁香欧美五月| 人人妻人人澡人人爽人人夜夜| 欧美乱妇无乱码| 国产精品 欧美亚洲| 曰老女人黄片| 纯流量卡能插随身wifi吗| 精品人妻在线不人妻| 肉色欧美久久久久久久蜜桃| 在线观看免费午夜福利视频| 久久影院123| 久久精品亚洲熟妇少妇任你| 亚洲 国产 在线| 黄片小视频在线播放| av超薄肉色丝袜交足视频| 老司机福利观看| 精品少妇内射三级| 国产日韩欧美视频二区| 亚洲精品一二三| 亚洲精品自拍成人| 国产97色在线日韩免费| 久久 成人 亚洲| 中文字幕制服av| 色94色欧美一区二区| 国产黄频视频在线观看| 国产亚洲欧美精品永久| 日韩免费高清中文字幕av| 在线亚洲精品国产二区图片欧美| 日韩欧美一区二区三区在线观看 | 大片免费播放器 马上看| 日韩一区二区三区影片| a级片在线免费高清观看视频| 母亲3免费完整高清在线观看| 狂野欧美激情性xxxx| 香蕉久久夜色| 精品亚洲成国产av| 女性生殖器流出的白浆| 欧美日韩视频精品一区| 一级毛片电影观看| 另类精品久久| 亚洲,欧美精品.| 精品免费久久久久久久清纯 | 国产精品一区二区在线观看99| 大香蕉久久成人网| 夫妻午夜视频| 超碰成人久久| 久久青草综合色| 国产精品熟女久久久久浪| 女人高潮潮喷娇喘18禁视频| 成人免费观看视频高清| 黄片播放在线免费| 午夜两性在线视频| av在线播放免费不卡| 亚洲欧美一区二区三区黑人| 日本vs欧美在线观看视频| xxxhd国产人妻xxx| 国产精品久久久久久精品古装| 搡老岳熟女国产| 性色av乱码一区二区三区2| 操美女的视频在线观看| 亚洲中文日韩欧美视频| 18禁观看日本| 中文字幕人妻丝袜一区二区| 超色免费av| 成人18禁在线播放| 麻豆成人av在线观看| 一区二区日韩欧美中文字幕| 亚洲av欧美aⅴ国产| av网站在线播放免费| 色婷婷久久久亚洲欧美| 国产日韩欧美在线精品| 香蕉丝袜av| 日韩中文字幕视频在线看片| 国产视频一区二区在线看| 久久av网站| 日本撒尿小便嘘嘘汇集6| 99国产精品99久久久久| 亚洲 国产 在线| 亚洲中文av在线| 人人妻人人澡人人看| 国产99久久九九免费精品| 亚洲精品国产区一区二| 天堂动漫精品| 国产精品偷伦视频观看了| 黄色丝袜av网址大全| 女同久久另类99精品国产91| 久久毛片免费看一区二区三区| a级毛片在线看网站| 男女高潮啪啪啪动态图| 精品少妇一区二区三区视频日本电影| 在线永久观看黄色视频| 一级,二级,三级黄色视频| 正在播放国产对白刺激| 又紧又爽又黄一区二区| 亚洲视频免费观看视频| 在线观看免费午夜福利视频| 国产亚洲午夜精品一区二区久久| 在线十欧美十亚洲十日本专区| 欧美精品高潮呻吟av久久| 久久人妻福利社区极品人妻图片| 一本色道久久久久久精品综合| 9热在线视频观看99| kizo精华| 制服诱惑二区| 丝袜美足系列| 啦啦啦免费观看视频1| 日本av免费视频播放| 国产成人免费无遮挡视频| 无遮挡黄片免费观看| 日韩人妻精品一区2区三区| 天堂8中文在线网| 99久久人妻综合| 国产亚洲精品久久久久5区| 午夜激情久久久久久久| 超碰97精品在线观看| 91成年电影在线观看| 久久精品国产99精品国产亚洲性色 | 久久久欧美国产精品| 一区在线观看完整版| 国产在视频线精品| 国产欧美日韩一区二区三| 美女主播在线视频| 天天躁日日躁夜夜躁夜夜| 精品人妻在线不人妻| 欧美日韩一级在线毛片| 免费日韩欧美在线观看| 国产av一区二区精品久久| 成年人黄色毛片网站| 亚洲专区字幕在线| 久久天堂一区二区三区四区| 亚洲国产av新网站| 色老头精品视频在线观看| 岛国毛片在线播放| 日韩大片免费观看网站| 美女国产高潮福利片在线看| 日本黄色日本黄色录像| 日韩中文字幕视频在线看片| 国产高清视频在线播放一区| 成在线人永久免费视频| 男女高潮啪啪啪动态图| 久久人人97超碰香蕉20202| 亚洲七黄色美女视频| 欧美久久黑人一区二区| 精品人妻1区二区| 纵有疾风起免费观看全集完整版| 久久青草综合色| 亚洲国产看品久久| 最黄视频免费看| 激情在线观看视频在线高清 | 亚洲第一青青草原| 人妻久久中文字幕网| 不卡一级毛片| 国产精品av久久久久免费| 午夜成年电影在线免费观看| 午夜精品国产一区二区电影| 久久久国产精品麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 又紧又爽又黄一区二区| 国产精品二区激情视频| aaaaa片日本免费| 少妇 在线观看| 99精品欧美一区二区三区四区| 久久久久久亚洲精品国产蜜桃av| 中文字幕最新亚洲高清| 大型黄色视频在线免费观看| 国产成人精品无人区| 一本—道久久a久久精品蜜桃钙片| a级毛片黄视频| 女人高潮潮喷娇喘18禁视频| a级毛片在线看网站| 亚洲国产av影院在线观看| 久久 成人 亚洲| 淫妇啪啪啪对白视频| 狠狠精品人妻久久久久久综合| 午夜福利免费观看在线| 日本一区二区免费在线视频| 女同久久另类99精品国产91| 欧美国产精品va在线观看不卡| 久久久精品免费免费高清| 免费人妻精品一区二区三区视频| 久久影院123| 伊人久久大香线蕉亚洲五| a级毛片在线看网站| 淫妇啪啪啪对白视频| 亚洲少妇的诱惑av| 欧美日韩视频精品一区| 国产精品99久久99久久久不卡| 日韩三级视频一区二区三区| 免费观看人在逋| 熟女少妇亚洲综合色aaa.| 少妇 在线观看| 99在线人妻在线中文字幕 | 欧美日韩亚洲高清精品| 国产在线视频一区二区| 亚洲第一欧美日韩一区二区三区 | 一边摸一边抽搐一进一出视频| 亚洲国产看品久久| 久久精品91无色码中文字幕| 人人澡人人妻人| 午夜免费成人在线视频| 免费女性裸体啪啪无遮挡网站| 老司机午夜福利在线观看视频 | 精品少妇一区二区三区视频日本电影| 久久精品国产亚洲av香蕉五月 | 欧美日本中文国产一区发布| 亚洲伊人久久精品综合| 在线 av 中文字幕| 五月开心婷婷网| 久久精品国产99精品国产亚洲性色 | 一边摸一边抽搐一进一出视频| 亚洲精品美女久久av网站| 99热网站在线观看| 免费在线观看视频国产中文字幕亚洲| 欧美日韩中文字幕国产精品一区二区三区 | 50天的宝宝边吃奶边哭怎么回事| 男人舔女人的私密视频| 国产色视频综合| 高清欧美精品videossex| 国产不卡av网站在线观看| 日本wwww免费看| 亚洲欧美激情在线| 男女下面插进去视频免费观看| av国产精品久久久久影院| 国产xxxxx性猛交| 亚洲五月婷婷丁香| 99久久99久久久精品蜜桃| 国产精品香港三级国产av潘金莲| 久久久久国内视频| 人人澡人人妻人| 97在线人人人人妻| 亚洲一区二区三区欧美精品| 精品久久久精品久久久| 人妻 亚洲 视频| 欧美日韩福利视频一区二区| 美国免费a级毛片| 亚洲久久久国产精品| 国产亚洲午夜精品一区二区久久| 一级黄色大片毛片| 亚洲av电影在线进入| 国产人伦9x9x在线观看| 美女视频免费永久观看网站| 精品少妇黑人巨大在线播放| e午夜精品久久久久久久| 建设人人有责人人尽责人人享有的| 精品国产乱码久久久久久男人| 国产片内射在线| 日本五十路高清| 18禁美女被吸乳视频| 久久午夜综合久久蜜桃| 亚洲精品在线观看二区| 90打野战视频偷拍视频| 黑人猛操日本美女一级片| 日韩制服丝袜自拍偷拍| 日韩大码丰满熟妇| av不卡在线播放| 亚洲av日韩精品久久久久久密| www.精华液| 极品少妇高潮喷水抽搐| 久久香蕉激情| 精品福利观看| 国产精品av久久久久免费| 亚洲精品国产色婷婷电影| 极品少妇高潮喷水抽搐| 亚洲av国产av综合av卡| 99九九在线精品视频| 欧美午夜高清在线| 性少妇av在线| 日韩中文字幕欧美一区二区| 欧美在线一区亚洲| 丁香六月欧美| 国产欧美日韩一区二区三| 777米奇影视久久| 蜜桃国产av成人99| 男女下面插进去视频免费观看| 精品国内亚洲2022精品成人 | 男女免费视频国产| 激情在线观看视频在线高清 | 老司机在亚洲福利影院| 国产亚洲精品久久久久5区| 50天的宝宝边吃奶边哭怎么回事| 免费少妇av软件| av片东京热男人的天堂| 侵犯人妻中文字幕一二三四区| 国产精品自产拍在线观看55亚洲 | 制服诱惑二区| 两性午夜刺激爽爽歪歪视频在线观看 | 交换朋友夫妻互换小说| 热99国产精品久久久久久7| 日本a在线网址| 一级毛片精品| 国产在线视频一区二区| 精品第一国产精品| 高清视频免费观看一区二区| 多毛熟女@视频| 国产av一区二区精品久久| 在线av久久热| 一级a爱视频在线免费观看| 国产免费福利视频在线观看| 9191精品国产免费久久| 女人久久www免费人成看片| 亚洲国产欧美在线一区| 嫩草影视91久久| 99精品久久久久人妻精品| 久久久精品区二区三区| 久久中文看片网| 亚洲精品乱久久久久久| 免费黄频网站在线观看国产| 欧美日韩福利视频一区二区| 黄色成人免费大全| 国产午夜精品久久久久久| 日本av手机在线免费观看| 欧美黑人精品巨大| 无人区码免费观看不卡 | 一进一出好大好爽视频| 国产精品一区二区在线不卡| 搡老岳熟女国产| 狂野欧美激情性xxxx| 亚洲国产毛片av蜜桃av| 狂野欧美激情性xxxx| 国产xxxxx性猛交| 精品国产乱码久久久久久小说| 不卡一级毛片| 视频区图区小说| 国产高清视频在线播放一区| 无人区码免费观看不卡 | 午夜福利乱码中文字幕| 最新在线观看一区二区三区| 999久久久国产精品视频| 亚洲色图 男人天堂 中文字幕| 欧美亚洲日本最大视频资源| 国产成人影院久久av| www日本在线高清视频|