• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Industrial Wireless Control Networks: From WIA to the Future

    2022-04-24 03:22:48HaibinYuPengZengChiXu
    Engineering 2022年1期

    Haibin Yu, Peng Zeng, Chi Xu

    a State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

    b Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang 110016, China

    c Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China

    1. Introduction

    Industrial automation is undergoing a significant innovation as information, communication, and operation technologies are deeply integrating with each other. Following this trend, industrial wireless control networks (IWCNs) are becoming increasingly attractive to industrial automation since they can help speed up production efficiency,reduce cost,enhance safety,and finally realize intelligent manufacturing [1].

    To achieve the above targets, IWCNs must satisfy the various critical communication requirements of industrial automation,such as high reliability, strong timeliness, little jitter, low cost,low power,and high security[2].However,IWCNs always operate under harsh industrial environments with extremely limited communication resources, such as unlicensed spectrum shared with wireless fidelity (WiFi), Bluetooth, and ZigBee. Thus, academia and industry have spent significant effort in developing IWCNs during the past decades. In particular, WirelessHART, ISA100.11a,and wireless networks for industrial automation-process automation (WIA-PA) were developed for process automation, whereas wireless interface for sensors and actuators(WISA),wireless sensor actuator network for factory automation(WSAN-FA), and wireless networks for industrial automation-factory automation (WIA-FA)were developed for factory automation [3–5]. To date, WirelessHART, ISA100.11a, WIA-PA, and WIA-FA have been the only four international IWCN standards released by the International Electrotechnical Commission.

    More recently, International Telecommunications Union and the 3rd Generation Partnership Project (3GPP) have proposed to develop ultra-reliable low latency communication (URLLC) for industrial control [6], as one of the three 5G scenarios. In this way, cloud-based industrial control will be possible since URLLC is based on the long-range 5G wide-area network. This is completely different from existing IWCNs that are based on shortrange wireless personal-area or local-area networks. Currently,although URLLC has been standardized, its applications in vertical industries are still being tested and have not been commercially deployed at a large scale. This is mainly due to the fact that the applications of 5G in industry have not undergone a steady evolution process as industrial Ethernet,and different industrial applications have different communication requirements. Typically, most industrial enterprises do not have spectrum license and would like to establish private networks to enhance their security and privacy,whereas commercial 5G networks are managed in the licensed spectrum by mobile operators. Moreover, most industrial control applications are still in the industrial field, and it is unnecessary to transmit all industrial data around the wide-area Internet.Thus,how to achieve URLLC over the unlicensed spectrum to satisfy the critical requirements of field-level industrial control in harsh environment is one of the most challenging problems. To address this challenge, wireless networks for industrial automation-new radio(WIA-NR) was recently developed based on the air-interface of 5G to realize URLLC over the unlicensed spectrum [7].

    Currently, WIA-PA, WIA-FA, and WIA-NR have formulated a complete technology family (namely wireless networks for industrial automation (WIA)) to cover different industrial applications,and will further evolve according to industrial requirements.However, the various requirements from vertical industries continuously motivate the evolution of IWCNs, like URLLC towards 6G. Thus, 3GPP establishes a new work item investigating enhanced URLLC [8]. The world’s first 6G white paper [9] also confirms the continuous improvement of URLLC whose air-interface latency is enhanced to 0.1 ms. The perspective from Nature Electronics [10] proposes five 6G scenarios, wherein secure URLLC is defined. Furthermore, massive URLLC and broadband URLLC are also defined [11]. To summarize, it is believed that URLLC in 6G should achieve less than 0.1 ms latency and higher than 99.9999999% reliability. Such performance will ensure highly accurate industrial control such as micro–nano tele–operation and precision machining. With the continuous enhancement of URLLC, WIA-NR will also evolve towards 6G. As WIA family is developed by the same team with a similar technology roadmap,this paper introduces and compares this technology family and discusses the future of WIA in the 6G era.

    2. Overview of WIA family

    2.1. System architecture

    WIA defines a group of physical devices including the host computer, gateway device, field device, handheld device, and routing device/access device/base station.With these devices,WIA formulates different topologies as shown in Fig. 1. Specifically, WIA-PA employs a star or hierarchical star–mesh topology, of which star topology is a special case.In contrast,WIA-FA employs a redundant star topology. Furthermore, WIA-NR defines a hierarchical star topology that supports device-to-device (D2D) and coordinate multi-point (CoMP) communication.

    Corresponding to different network topologies, WIA employs two system management architectures, namely centralized management,hybrid centralized and distributed management.Specifically,WIA-PA supports both architectures,while WIA-FA and WIANR only support the former and the later architectures,respectively.

    2.2. Protocol stack

    As illustrated in Fig. 2, WIA defines their protocol stacks based on the open system interconnection (OSI) reference model.WIA-PA completely adopts IEEE 802.15.4 as its physical layer(PHY) and medium access control (MAC) sub-layer, and defines its own data link sub-layer, network layer (NET), and application layer (APP), where the MAC sub-layer and the data link sub-layer comprise the date link layer (DLL). WIA-FA only adopts the PHY of IEEE 802.11, and defines DLL and APP. In contrast, WIA-NR employs the PHY,MAC,and radio link control layers of 5G without other protocol layers for wide-area communication, and defines APP. Note that only WIA-PA defines NET because routing devices are wirelessly connected in the mesh topology and addressing/routing must be defined in NET, while access devices or base stations use wired connections whose functions are not defined by WIA-FA or WIA-NR.

    In PHY, WIA employs the unlicensed spectrum for worldwide utilization, wherein WIA-PA and WIA-FA work on the 2.4 GHz band, while WIA-NR works on the 5 GHz band. Thus, the listenbefore-talk mechanism is employed to satisfy spectrum rules before channel access.This is also one of the most important differences of WIA-NR from the commercial 5G. The fundamental parameters of PHY are summarized in Table 1 [4,5,7].

    In DLL,to realize collision-free communication,WIA defines different superframe/slot structures for timeslot communication and designs multi-channel access, adaptive frequency hopping, and time synchronization schemes to enhance reliability and timeliness.

    In APP,multiple user application objects(UAOs)implement distributed industrial applications according to the given virtual communication relationship(VCR)which describes the communication resources and paths among UAOs.More importantly,WIA provides protocol adaptation services by tunneling or protocol conversion for heterogeneous industrial communication (e.g., PROFINET and Modbus) in APP. This significantly enhances its interoperability with existing industrial automation systems.

    3. Key techniques

    3.1. Deterministic timeslot communication

    To realize deterministic communication,WIA employs timeslot communication, where a slot is the basic time unit for packet exchange and its length is configurable. As shown in Fig. 3, WIAPA and WIA-FA further define superframes, while WIA-NR formulates frame and subframe, all based on a collection of slots cyclically repeating at a constant rate. Specifically, WIA-PA defines its superframe based on the IEEE 802.15.4 beacon-enabled superframe which consists of a beacon,an active period and an inactive period. The active period further includes contention access and contention free periods, while the inactive period includes intracluster communication,inter-cluster communication,and sleeping periods. The default superframe of WIA-FA is composed of beacon slots,uplink shared timeslots,and downlink timeslots that may be used for management and data transmission. In contrast, with the flexible numerology of 5G, WIA-NR supports multiple kinds of frames by setting the sub-carrier spacing as 2μ × 15 kHz, where μ = {0, 1, 2, 3, 4} is the numerology. As the length of one frame is fixed at 10 ms,one frame can consist of different numbers of slots which may be downlink/uplink slot, downlink/uplink self-contain slot, or flexible slot.

    3.2. Multi-channel access with adaptive channel hopping

    Fig 1. Network topology of WIA. (a) Hierarchical star–mesh topology of WIA-PA; (b) redundant star topology of WIA-FA; (c) hierarchical star topology of WIA-NR. D2D:device-to-device; CoMP: coordinate multi-point.

    Fig 2. Protocol stack of WIA. ↑and ↓indicate that the functions of this layer, when present, can be included in the protocol layer according to the direction of the arrow.OSI: open system interconnection reference model; UAO: user application object; VCR: virtual communication relationship; TDMA: time division multiple access;FDMA:frequency division multiple access;CSMA:carrier sense multiple access;MAC:medium access control;PHY:physical layer;DSSS:direct sequence spread spectrum;FHSS:frequency-hopping spread spectrum;OFDM:orthogonal frequency division multiplexing;CCK:complementary code keying;PBCC:packet binary convolutional code;MIMO: multiple input multiple output.

    Table 1 The fundamental parameters of PHY.

    WIA employs multi-channel access schemes combined with channel hopping to improve the capacity and reliability. Specifically, WIA-PA adopts frequency division multiple access (FDMA)for multi-channel access, combining with time division multiple access (TDMA) for system capacity enhancement. Meanwhile,WIA-PA defines three channel hopping schemes, namely adaptive frequency switching, adaptive frequency hopping, and timeslot hopping, whose advantages over blind channel hopping are verified in Ref. [12]. WIA-FA employs multiple access devices which are divided into different sets, for parallel access over different channels using FDMA. Similarly, WIA-FA also supports adaptive channel hopping. For WIA-NR, each base station is equipped with multiple antennas for multiple input multiple output (MIMO)transmission and multiple base stations apply CoMP.Furthermore,WIA-NR defines three-level adaptive channel hopping, including slot-based, subframe-based, and frame-based adaptive channel hopping according to the packet loss rate or retransmission.

    3.3. Aggregation and disaggregation

    To reduce communication traffic and enhance energy efficiency,WIA defines different aggregation and disaggregation schemes that are implemented in different protocol layers as depicted in Fig. 2.WIA-PA defines a two-level aggregation scheme including data aggregation at NET and packet aggregation at APP.WIA-FA defines frame aggregation at DLL,and also supports aggregation and disaggregation at APP for process data.WIA-NR defines a two-level data aggregation scheme at APP for uplink and downlink data transmission.

    3.4. Industrial data priority scheduling

    To satisfy different industrial applications, WIA performs communication scheduling according to their priorities as shown in Table 2, wherein the priorities are given in descending order. For different priority scheduling, WIA defines three communication modes, namely client/server (C/S), publisher/subscriber (P/S), and report source/sink(R/S).Here,C/S supports unicast communication of dynamic and aperiodic non-real-time data,P/S supports unicast and multicast communication of periodic real-time data, and R/S supports unicast and multicast communication of aperiodic data,such as alarms, alerts, or events. To realize these communication modes, we can use C/S VCR, P/S VCR, and R/S VCR.

    Fig 3. Frame of WIA: (a) superframe of WIA-PA, (b) superframe of WIA-FA, and (c) frame of WIA-NR.

    Table 2 Industrial data priority of WIA.

    4. Performance and applications

    With technological improvements and standardization, WIA is going deep into different industrial applications. Fig. 4 shows the achievable performance of WIA [4,5,7,12–14].

    WIA-PA, as the first developed WIA technology, has been applied for more than a decade. Its products are mature and have occupied a part of the Chinese market. Currently, WIA-PA can support a large-scale network with up to 1000 nodes and a typical rate of 250 kilobits per second (kbps), where the average power at a router with 0.18% duty cycle is as low as 0.63 mW [13]. Meanwhile, WIA-PA achieves more than 99.3% reliability and less than 100 ms end-to-end latency. Using multi-source high-precision clock synchronization technology, WIA-PA can even support real-time closed-loop control by reducing the access latency from 1 s to 10 ms. To date, WIA-PA has been utilized for industrial measurement, monitoring and process control in several industries including petroleum, petrochemical,metallurgy, and power grids.

    Fig 4. Performance of WIA.

    WIA-FA, standardized in 2017, has passed the product testing stage and is extending its practical applications. Currently, WIAFA achieves higher than 99.99% reliability and less than 10 ms latency,and can support at least 100 nodes with a rate of 54 megabits per second (Mbps). WIA-FA has been used for industrial multimedia communication, and closed-loop control in discrete manufacturing industry, such as robot monitoring and controlling in digital workshops,and automated guided vehicles connecting in logistic sorting systems [5,14].

    In contrast, WIA-NR has yet to be practically deployed as the development of WIA-NR has just begun corresponding to 5G.Thus,WIA-NR is still under development and testing. Currently, both system-level simulations and experimental tests indicate that WIA-NR can achieve more than 99.999% reliability and less than 1 ms latency [7]. Such performance meets the basic objective of 5G and can support motion control. However, for more critical industrial control, the timeliness and reliability should be further enhanced.Meanwhile,such performance is also far from the objective of 6G, thereby motivating us to further evolve WIA-NR towards 6G.

    5. Evolution of WIA towards 6G

    As no single industrial communication technology can address the manifold industrial requirements, neither existing IWCNs(e.g.,WirelessHART and WIA-PA)nor industrial Ethernet(e.g.,PROFINET and ModBus)will be replaced by 5G or 6G in the short term.That is,multiple industrial communication technologies will coexist and integrate with each other in the long term. Thus, we propose to establish a heterogeneous hierarchical architecture for future IWCNs in the industrial field. As depicted in Fig. 5, WIANR provides coarse-grained cover for a factory, while existing industrial communication networks such as WIA-PA and industrial Ethernet keep on providing fine-grained cover in the local area of a factory.WIA-NR connected with the factory backbone network further establishes communication links with the manufacturing execution system (MES) or enterprise resource planning (ERP). In this way, the ultra-reliable and low-latency WIA-NR is responsible for critical industrial control while the low-power and low-cost WIA-PA is responsible for large-scale industrial monitoring and measurement.To realize this paradigm,we are facing the following challenges that should be addressed during the 6G era.

    (1)Heterogeneous interconnection.To interconnect heterogeneous industrial networks using WIA-NR for unified access, we need to address the protocol adaption problem. The challenges lie in that industrial enterprises have developed hundreds of industrial wired or wireless communication protocols with different stacks, data format, and transmit rate. One promising method is to directly parse different protocols by the gateway. For this case,we can establish a virtual mapping relationship between each industrial protocol and WIA-NR, and perform protocol conversion.However, some industrial protocols may not be open for analysis.For this case,we can utilize tunnel technology to perform transparent transmission.Anyway,how to guarantee the timeliness during protocol parsing and conversion is the most important problem.Furthermore, we can enhance the computing capability of WIA by deploying distributed edge computing servers for edge computing and caching. In this way, WIA-NR can support complex protocol operations with hard timeliness and therefore satisfy timecritical industrial applications.

    (2) Harmonious coexistence. As WIA-NR operates over the unlicensed spectrum, anti-interference communication and harmonious coexistence for heterogeneous industrial networks must be deeply investigated for ultra-reliable communications. In general, resource allocation and power control are the basic methods for reducing interference and enhancing reliability. However,how to precisely evaluate the whole channel state and achieve real-time access control is the most important problem. Cognitive radio, which has dynamic spectrum access capability, is always regarded as an option allowing IWCNs to realize ultra-reliable communications [15]. Furthermore, with the fast development of artificial intelligence, intelligent radio [16] can further enhance the cognitive capability over unlicensed spectrum. In the future,WIA-NR empowered with intelligent radio can defeat the random interference in industrial environment and harmoniously coexist with other wireless networks such as WiFi in the unlicensed spectrum.

    (3)Energy efficiency.Intelligent radio together with other new functions will significantly enhance the energy consumption.Thus,the next problem is to enhance the energy efficiency of WIA-NR.Energy harvesting is a promising way to provide sustainable energy supply since this technology can continuously scavenge energy from ambient energy sources. As such, energy harvesting cognitive radio networks have been investigated for the coexistence of heterogeneous networks [17]. More recently, intelligent symbiotic radio [18] is proposed to simultaneously enhance spectrum and energy efficiencies.It is regarded as a key 6G technology,which should also be a research issue of future IWCNs.With these key technologies,we aim at promoting WIA-NR to support massive URLLC for long-time operation.

    (4)Absolute time synchronization.The absolute time synchronization with little jitter is required to ensure cooperative control in industrial automation. For example, multiple robots cooperatively execute a task which requires isochronous operations. Obviously,cooperative robots must realize absolute time synchronization.This is different from the time synchronization between user equipment and base station in 5G. As absolute time synchronization has not been investigated prior to 3GPP Release 16,it remains a significant challenge. Thus, we propose to investigate the absolute time synchronization for heterogeneous hierarchical IWCNs in 3GPP[19,20].In practice,how to enhance the accuracy of time synchronization and reduce jitter must be comprehensively investigated to guarantee the robustness of isochronous operation.

    (5) Multi-priority joint scheduling. For heterogeneous hierarchical IWCNs, joint scheduling is indispensable since a controller usually interacts with a large number of sensors and actuators belonging to different networks. For such a case, the hybrid centralized and distributed management architecture of WIA-NR should be more effective. As different IWCNs employ different scheduling schemes, the joint scheduling for inter-network is certainly more complex than that for intra-network. To support multiple industrial data priorities, mixed-criticality scheduling [21] is an efficient way to guarantee timeliness and reliability,and should be deeply investigated for future IWCNs.For this case,employing a real-time queue classifier is necessary to facilitate the scheduling of gateway. Meanwhile, cross-layer scheduling and optimization among different protocols can also help facilitate the scheduling problems. Moreover, redefining a unified data priority scheme is also welcome since different industrial networks define different data priority schemes.

    In addition to the aforementioned challenges and research issues, realizing heterogeneous hierarchical IWCNs is facing numerous challenges that should be properly addressed in the 6G era. Anyhow, upgrading or even redesigning a new IWCN to proactively embrace vertical industries is always better than reactively waiting current IWCNs being used by industries.

    6. Conclusions

    This paper studied the current status and future prospects of the WIA technology family, namely WIA-PA, WIA-FA, and WIANR. We first presented the background of IWCNs by analyzing the critical communication requirements and development challenges, following by a discussion on the motivation for technological innovations of IWCNs in the 6G era. We then provided an overview on WIA by comparing the different system architectures and protocol stacks.Next,we summarized the key techniques,performance, and applications of WIA. Finally, we proposed a heterogeneous hierarchical architecture for future IWCNs and discussed the challenges and research issues evolving WIA towards 6G.

    Acknowledgments

    This work was supported by the National Key Research and Development Program of China (2020YFB1710900), the National Natural Science Foundation of China (62173322 and 61803368),the China Postdoctoral Science Foundation (2019M661156), the Liaoning Revitalization Talents Program (XLYC1801001), and the Youth Innovation Promotion Association Chinese Academy of Sciences (2019202).

    亚洲熟女毛片儿| 男女之事视频高清在线观看| 国产成人一区二区三区免费视频网站| 国产无遮挡羞羞视频在线观看| cao死你这个sao货| 国产免费av片在线观看野外av| 精品电影一区二区在线| 黄色毛片三级朝国网站| 久久这里只有精品19| 久久久久久久午夜电影 | 亚洲五月婷婷丁香| 天堂动漫精品| 国产熟女xx| 精品国产乱码久久久久久男人| 亚洲自偷自拍图片 自拍| 亚洲欧美一区二区三区黑人| 国产精品国产高清国产av| 大型av网站在线播放| 高清黄色对白视频在线免费看| 久久99一区二区三区| 亚洲五月色婷婷综合| 十八禁人妻一区二区| 亚洲专区国产一区二区| 久久精品成人免费网站| 亚洲精品一卡2卡三卡4卡5卡| 最近最新免费中文字幕在线| 国产精品免费视频内射| 亚洲一区二区三区欧美精品| 夜夜看夜夜爽夜夜摸 | 免费不卡黄色视频| 亚洲成人精品中文字幕电影 | 天堂影院成人在线观看| 欧美黄色片欧美黄色片| 一级毛片女人18水好多| 成年人免费黄色播放视频| 日日摸夜夜添夜夜添小说| 精品人妻1区二区| 久久草成人影院| 一区福利在线观看| 91大片在线观看| 长腿黑丝高跟| 国产深夜福利视频在线观看| 久久狼人影院| 黑人欧美特级aaaaaa片| 制服诱惑二区| 免费人成视频x8x8入口观看| 侵犯人妻中文字幕一二三四区| 国产精品偷伦视频观看了| 亚洲 国产 在线| 少妇的丰满在线观看| av视频免费观看在线观看| 亚洲熟女毛片儿| 国产精品秋霞免费鲁丝片| 亚洲国产精品sss在线观看 | 窝窝影院91人妻| 黄频高清免费视频| 一边摸一边做爽爽视频免费| 国产熟女午夜一区二区三区| 国产欧美日韩综合在线一区二区| 日本一区二区免费在线视频| 人人妻人人澡人人看| 国产精品久久久人人做人人爽| xxxhd国产人妻xxx| 欧美日韩乱码在线| 欧美成人午夜精品| 美女 人体艺术 gogo| 丁香欧美五月| 最近最新中文字幕大全电影3 | 久久久国产精品麻豆| 久久久久国产精品人妻aⅴ院| 久久精品亚洲av国产电影网| 久久久久亚洲av毛片大全| svipshipincom国产片| 美女高潮到喷水免费观看| 视频在线观看一区二区三区| 成人永久免费在线观看视频| 午夜免费激情av| 国产深夜福利视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产一区二区激情短视频| 国产精品国产高清国产av| 国产av又大| 在线av久久热| 美女扒开内裤让男人捅视频| 亚洲欧洲精品一区二区精品久久久| 午夜福利免费观看在线| 国产精品99久久99久久久不卡| 国产成人av教育| 丰满的人妻完整版| 国产亚洲精品一区二区www| www.www免费av| 色在线成人网| 50天的宝宝边吃奶边哭怎么回事| av在线天堂中文字幕 | 国产欧美日韩一区二区精品| 亚洲成国产人片在线观看| 国产aⅴ精品一区二区三区波| 久久天躁狠狠躁夜夜2o2o| 成人免费观看视频高清| 亚洲男人天堂网一区| 久久久国产欧美日韩av| 中文亚洲av片在线观看爽| 久久精品亚洲熟妇少妇任你| 757午夜福利合集在线观看| 很黄的视频免费| 女生性感内裤真人,穿戴方法视频| 久热爱精品视频在线9| 亚洲一区高清亚洲精品| 国产欧美日韩精品亚洲av| 亚洲精品一卡2卡三卡4卡5卡| 亚洲人成77777在线视频| 亚洲精华国产精华精| 久久久国产成人免费| 91av网站免费观看| 亚洲一区二区三区欧美精品| 国产三级黄色录像| 激情视频va一区二区三区| 免费久久久久久久精品成人欧美视频| 亚洲九九香蕉| 久久久久久久久久久久大奶| 99国产综合亚洲精品| 久久久久久久精品吃奶| 国产熟女午夜一区二区三区| 久久亚洲真实| 丝袜美腿诱惑在线| 欧美日韩中文字幕国产精品一区二区三区 | 在线天堂中文资源库| 视频区欧美日本亚洲| 久久久久久人人人人人| 亚洲情色 制服丝袜| 国产精品 国内视频| 国产熟女午夜一区二区三区| 久久久水蜜桃国产精品网| 少妇裸体淫交视频免费看高清 | 美女国产高潮福利片在线看| 日本wwww免费看| 天堂动漫精品| 激情视频va一区二区三区| 高清在线国产一区| a级毛片在线看网站| 一级a爱片免费观看的视频| 午夜日韩欧美国产| 99香蕉大伊视频| 亚洲熟妇中文字幕五十中出 | 淫秽高清视频在线观看| 老汉色∧v一级毛片| 国产精品一区二区在线不卡| 亚洲黑人精品在线| 国产又色又爽无遮挡免费看| 超碰成人久久| 国产激情欧美一区二区| 又黄又爽又免费观看的视频| 成人国产一区最新在线观看| 国产成年人精品一区二区 | 一本综合久久免费| 欧美另类亚洲清纯唯美| а√天堂www在线а√下载| 亚洲成人精品中文字幕电影 | 国产精品亚洲一级av第二区| 欧美中文综合在线视频| 久久久久久久精品吃奶| av欧美777| 午夜激情av网站| 夫妻午夜视频| 国产成人精品在线电影| a级毛片黄视频| √禁漫天堂资源中文www| 一级片免费观看大全| 在线观看免费视频网站a站| 久久久久国产精品人妻aⅴ院| 成人亚洲精品av一区二区 | 成人18禁高潮啪啪吃奶动态图| 国产精品久久久久成人av| 欧美一区二区精品小视频在线| 另类亚洲欧美激情| 亚洲五月色婷婷综合| 丰满迷人的少妇在线观看| 青草久久国产| 亚洲熟妇熟女久久| 91字幕亚洲| 黑人操中国人逼视频| 国产区一区二久久| 亚洲av第一区精品v没综合| 国产真人三级小视频在线观看| 亚洲狠狠婷婷综合久久图片| 欧美人与性动交α欧美精品济南到| 亚洲精品国产色婷婷电影| 91在线观看av| 18禁观看日本| 在线观看66精品国产| 亚洲av成人不卡在线观看播放网| 亚洲狠狠婷婷综合久久图片| 一级作爱视频免费观看| 亚洲欧美日韩高清在线视频| av片东京热男人的天堂| 中文字幕人妻丝袜制服| 午夜a级毛片| 黑人巨大精品欧美一区二区mp4| 精品第一国产精品| 免费在线观看黄色视频的| 成在线人永久免费视频| 亚洲欧美日韩无卡精品| 9热在线视频观看99| 国产日韩一区二区三区精品不卡| 欧美乱妇无乱码| 女性生殖器流出的白浆| 亚洲自拍偷在线| 久热爱精品视频在线9| 人妻丰满熟妇av一区二区三区| www.熟女人妻精品国产| 青草久久国产| 淫秽高清视频在线观看| 啦啦啦免费观看视频1| 国产视频一区二区在线看| 久久青草综合色| 久久久久久亚洲精品国产蜜桃av| cao死你这个sao货| 中文字幕人妻丝袜一区二区| 久久欧美精品欧美久久欧美| 热99国产精品久久久久久7| 丰满人妻熟妇乱又伦精品不卡| tocl精华| 99国产综合亚洲精品| 久久精品国产亚洲av香蕉五月| 色哟哟哟哟哟哟| 在线观看舔阴道视频| 国产精品久久电影中文字幕| 欧美日韩视频精品一区| 久久人妻福利社区极品人妻图片| 美女 人体艺术 gogo| 中文字幕高清在线视频| 亚洲国产精品999在线| 一区二区三区激情视频| 色播在线永久视频| 国产av一区在线观看免费| 久久香蕉激情| 丰满迷人的少妇在线观看| 精品一区二区三区视频在线观看免费 | 精品福利观看| 欧美日韩黄片免| 人人妻,人人澡人人爽秒播| 国产真人三级小视频在线观看| 91成年电影在线观看| 日韩 欧美 亚洲 中文字幕| 老司机在亚洲福利影院| 久久 成人 亚洲| 国产精品永久免费网站| x7x7x7水蜜桃| 丝袜人妻中文字幕| 黄频高清免费视频| 久久香蕉国产精品| 国产精品国产av在线观看| 乱人伦中国视频| 丰满饥渴人妻一区二区三| 国产成年人精品一区二区 | 亚洲少妇的诱惑av| 久久久国产精品麻豆| 99久久综合精品五月天人人| 美女国产高潮福利片在线看| 欧美黄色片欧美黄色片| 国产极品粉嫩免费观看在线| 国产成+人综合+亚洲专区| 一a级毛片在线观看| 久久九九热精品免费| 真人做人爱边吃奶动态| 纯流量卡能插随身wifi吗| 五月开心婷婷网| 成年女人毛片免费观看观看9| 欧美日韩av久久| 精品乱码久久久久久99久播| 99香蕉大伊视频| 亚洲一区中文字幕在线| 搡老岳熟女国产| 欧美黄色片欧美黄色片| 国产成人一区二区三区免费视频网站| 无限看片的www在线观看| 国产av一区二区精品久久| 狠狠狠狠99中文字幕| 精品日产1卡2卡| 香蕉久久夜色| 搡老岳熟女国产| 亚洲国产欧美一区二区综合| 9色porny在线观看| 少妇粗大呻吟视频| 亚洲欧美一区二区三区黑人| 久久人妻av系列| 波多野结衣高清无吗| 老鸭窝网址在线观看| 人妻丰满熟妇av一区二区三区| 精品福利观看| 亚洲成人免费av在线播放| 一级,二级,三级黄色视频| 久久影院123| 精品国产亚洲在线| 亚洲狠狠婷婷综合久久图片| 国产av又大| 亚洲一区二区三区不卡视频| 80岁老熟妇乱子伦牲交| 国产极品粉嫩免费观看在线| 老司机在亚洲福利影院| 日韩欧美三级三区| 性欧美人与动物交配| 国产99白浆流出| 最近最新中文字幕大全免费视频| 亚洲精品国产一区二区精华液| 九色亚洲精品在线播放| videosex国产| 亚洲欧洲精品一区二区精品久久久| 久久欧美精品欧美久久欧美| www.www免费av| 成人永久免费在线观看视频| 免费av毛片视频| 欧美日韩中文字幕国产精品一区二区三区 | 欧美激情久久久久久爽电影 | 久久久久久大精品| 黄色丝袜av网址大全| 涩涩av久久男人的天堂| 十八禁人妻一区二区| 亚洲av片天天在线观看| 亚洲欧美日韩无卡精品| 中文字幕人妻丝袜制服| 久久精品国产亚洲av香蕉五月| 亚洲av第一区精品v没综合| 正在播放国产对白刺激| 亚洲专区中文字幕在线| av超薄肉色丝袜交足视频| 日日夜夜操网爽| 国产在线观看jvid| 免费高清在线观看日韩| 国内久久婷婷六月综合欲色啪| 一边摸一边做爽爽视频免费| videosex国产| 欧洲精品卡2卡3卡4卡5卡区| 12—13女人毛片做爰片一| 精品国产乱码久久久久久男人| 国产日韩一区二区三区精品不卡| 丝袜在线中文字幕| 欧美老熟妇乱子伦牲交| 无人区码免费观看不卡| 久久精品国产综合久久久| 两个人免费观看高清视频| 精品无人区乱码1区二区| 老熟妇乱子伦视频在线观看| 亚洲熟妇中文字幕五十中出 | 黄色 视频免费看| 国产精品二区激情视频| 成人黄色视频免费在线看| 亚洲国产欧美网| 久热这里只有精品99| 久99久视频精品免费| 一边摸一边抽搐一进一出视频| 亚洲成av片中文字幕在线观看| 欧美丝袜亚洲另类 | 久久精品亚洲av国产电影网| 中文字幕高清在线视频| 国产精品香港三级国产av潘金莲| 午夜精品久久久久久毛片777| 女性被躁到高潮视频| 天堂√8在线中文| 91麻豆av在线| 亚洲全国av大片| 久久久久久久精品吃奶| 手机成人av网站| 国产精品久久久久久人妻精品电影| 757午夜福利合集在线观看| 日本a在线网址| 两性午夜刺激爽爽歪歪视频在线观看 | 夜夜躁狠狠躁天天躁| 岛国视频午夜一区免费看| 国产在线精品亚洲第一网站| 99在线人妻在线中文字幕| 国产精品电影一区二区三区| 国产亚洲欧美在线一区二区| 在线观看舔阴道视频| 黄色视频,在线免费观看| 在线观看舔阴道视频| 丝袜美腿诱惑在线| 欧美激情久久久久久爽电影 | 丰满人妻熟妇乱又伦精品不卡| 久久精品国产亚洲av香蕉五月| 男女高潮啪啪啪动态图| 亚洲,欧美精品.| svipshipincom国产片| 男人舔女人下体高潮全视频| 日本一区二区免费在线视频| 亚洲一区中文字幕在线| 黄片小视频在线播放| 很黄的视频免费| 黑人巨大精品欧美一区二区mp4| 老汉色av国产亚洲站长工具| 精品久久久久久电影网| 亚洲av五月六月丁香网| 淫秽高清视频在线观看| 久久午夜综合久久蜜桃| 欧美av亚洲av综合av国产av| 高清毛片免费观看视频网站 | 精品国产一区二区三区四区第35| 在线观看日韩欧美| 欧美国产精品va在线观看不卡| 岛国视频午夜一区免费看| 大码成人一级视频| 亚洲全国av大片| 日韩高清综合在线| 成人永久免费在线观看视频| 一二三四社区在线视频社区8| 丰满人妻熟妇乱又伦精品不卡| 欧美午夜高清在线| 精品国内亚洲2022精品成人| 嫩草影院精品99| 搡老熟女国产l中国老女人| 丝袜美腿诱惑在线| 老司机在亚洲福利影院| 久久性视频一级片| 自线自在国产av| 桃色一区二区三区在线观看| 一a级毛片在线观看| 黄色丝袜av网址大全| 美女高潮喷水抽搐中文字幕| 看片在线看免费视频| 亚洲性夜色夜夜综合| 国产亚洲精品一区二区www| 少妇裸体淫交视频免费看高清 | 中文字幕另类日韩欧美亚洲嫩草| 精品福利观看| tocl精华| 国产男靠女视频免费网站| 精品欧美一区二区三区在线| 欧美午夜高清在线| 窝窝影院91人妻| 国产一区二区在线av高清观看| 久久午夜综合久久蜜桃| 美女午夜性视频免费| 制服诱惑二区| 精品国产国语对白av| 另类亚洲欧美激情| 中出人妻视频一区二区| 精品电影一区二区在线| 亚洲人成电影观看| 亚洲av五月六月丁香网| 精品国产乱码久久久久久男人| 丁香六月欧美| 宅男免费午夜| 成人三级做爰电影| 国产三级在线视频| 99香蕉大伊视频| 激情视频va一区二区三区| 母亲3免费完整高清在线观看| 在线观看舔阴道视频| 欧美日本中文国产一区发布| 国产高清国产精品国产三级| 精品国产美女av久久久久小说| 久久久久久久精品吃奶| 亚洲一区二区三区不卡视频| 国产精品九九99| 欧美一级毛片孕妇| 村上凉子中文字幕在线| 18禁黄网站禁片午夜丰满| 老汉色∧v一级毛片| 国产熟女午夜一区二区三区| 麻豆久久精品国产亚洲av | 免费少妇av软件| 久久这里只有精品19| 色哟哟哟哟哟哟| 日本欧美视频一区| 97碰自拍视频| 久久久久久久精品吃奶| 一区二区三区国产精品乱码| 在线天堂中文资源库| 日日爽夜夜爽网站| 天堂√8在线中文| xxxhd国产人妻xxx| 一区二区日韩欧美中文字幕| 欧美成人免费av一区二区三区| 午夜精品国产一区二区电影| 中国美女看黄片| a级毛片黄视频| av超薄肉色丝袜交足视频| 一边摸一边抽搐一进一出视频| 黄频高清免费视频| 国产精品国产高清国产av| 久久精品91无色码中文字幕| 亚洲 欧美 日韩 在线 免费| 欧美日韩一级在线毛片| 女人被躁到高潮嗷嗷叫费观| 亚洲人成电影观看| 日韩中文字幕欧美一区二区| 欧美日韩视频精品一区| 亚洲 国产 在线| 十分钟在线观看高清视频www| 在线视频色国产色| 久久久久国产一级毛片高清牌| 亚洲国产看品久久| 最新在线观看一区二区三区| 国产在线观看jvid| 一进一出抽搐动态| 男女午夜视频在线观看| 校园春色视频在线观看| 国产精品久久久人人做人人爽| 久久午夜综合久久蜜桃| 国产欧美日韩精品亚洲av| 丁香六月欧美| 免费高清在线观看日韩| 欧美最黄视频在线播放免费 | 在线天堂中文资源库| 国产99久久九九免费精品| 日韩欧美三级三区| 欧美中文综合在线视频| 一a级毛片在线观看| 法律面前人人平等表现在哪些方面| 丁香欧美五月| 性少妇av在线| 少妇粗大呻吟视频| 久久性视频一级片| 亚洲三区欧美一区| 视频在线观看一区二区三区| av免费在线观看网站| 日本a在线网址| 午夜福利影视在线免费观看| 国产精品爽爽va在线观看网站 | 一个人免费在线观看的高清视频| 精品卡一卡二卡四卡免费| 免费高清在线观看日韩| 免费日韩欧美在线观看| 久久久久国内视频| 99久久久亚洲精品蜜臀av| 日本wwww免费看| 一级a爱片免费观看的视频| 国产av一区在线观看免费| 老汉色av国产亚洲站长工具| 热re99久久国产66热| 欧美激情高清一区二区三区| 曰老女人黄片| 国产黄色免费在线视频| 国产亚洲av高清不卡| 桃红色精品国产亚洲av| 亚洲欧美日韩另类电影网站| 中国美女看黄片| 久久精品91蜜桃| 国产精华一区二区三区| 精品一区二区三区视频在线观看免费 | www.www免费av| 亚洲 欧美 日韩 在线 免费| 久久午夜亚洲精品久久| 国产99白浆流出| 精品熟女少妇八av免费久了| 亚洲精品在线观看二区| 亚洲一区高清亚洲精品| 国产一区在线观看成人免费| 欧洲精品卡2卡3卡4卡5卡区| 18禁国产床啪视频网站| 亚洲精品久久午夜乱码| 五月开心婷婷网| 精品久久久精品久久久| 日本a在线网址| 成年版毛片免费区| 国产成人影院久久av| 久久婷婷成人综合色麻豆| 久久精品亚洲av国产电影网| 亚洲少妇的诱惑av| 最新美女视频免费是黄的| 国产亚洲精品久久久久5区| 999精品在线视频| 校园春色视频在线观看| 久久久水蜜桃国产精品网| 亚洲午夜理论影院| 最近最新中文字幕大全免费视频| 亚洲专区国产一区二区| 18禁裸乳无遮挡免费网站照片 | 日日干狠狠操夜夜爽| 欧美日韩av久久| 午夜福利在线观看吧| 国产精品亚洲一级av第二区| 麻豆av在线久日| 999久久久精品免费观看国产| 精品一区二区三区四区五区乱码| 啦啦啦免费观看视频1| 久久国产精品人妻蜜桃| 色综合站精品国产| 亚洲一区中文字幕在线| 波多野结衣一区麻豆| 婷婷精品国产亚洲av在线| 免费久久久久久久精品成人欧美视频| 18禁国产床啪视频网站| 久久国产亚洲av麻豆专区| 69av精品久久久久久| 国产精品亚洲一级av第二区| 亚洲人成电影免费在线| 国产在线观看jvid| 久久人妻av系列| 19禁男女啪啪无遮挡网站| 国产在线精品亚洲第一网站| 成人免费观看视频高清| 亚洲自偷自拍图片 自拍| 丝袜人妻中文字幕| 嫩草影视91久久| 国产亚洲欧美98| 国产又色又爽无遮挡免费看| 人妻丰满熟妇av一区二区三区| 欧美日韩亚洲综合一区二区三区_| 精品少妇一区二区三区视频日本电影| 国产极品粉嫩免费观看在线| 一级a爱片免费观看的视频| √禁漫天堂资源中文www| 啦啦啦 在线观看视频| 亚洲自偷自拍图片 自拍| 99riav亚洲国产免费| 伊人久久大香线蕉亚洲五| 中出人妻视频一区二区| 国产精品免费一区二区三区在线| 精品一区二区三区av网在线观看| 国产精品爽爽va在线观看网站 | 黑丝袜美女国产一区| 老司机在亚洲福利影院| 久久香蕉激情| 欧美在线黄色|