李 藝,張海春,劉 媛,韋姣騰,王 聰,梁 映,劉可慧1,**,于方明*
泗頂?shù)V區(qū)剖層土固氮微生物群落結構和豐度
李 藝1,2,張海春3,劉 媛2,韋姣騰2,王 聰2,梁 映2,劉可慧1,3**,于方明1,2*
(1.廣西師范大學,珍稀瀕危動植物生態(tài)與環(huán)境保護教育部重點實驗室,廣西 桂林 541004;2.廣西師范大學環(huán)境與資源學院,廣西 桂林 541004;3.廣西師范大學生命科學學院,廣西 桂林 541004)
以廣西柳州泗頂?shù)V區(qū)的上游區(qū)、下游區(qū)和尾礦區(qū)12個剖層土(每個區(qū)域分為4層)為研究對象,采用高通量測序技術和熒光定量PCR技術,分析了剖層土中固氮微生物的群落結構、豐度和多樣性特征.結果表明,變形菌門在各區(qū)域剖層土中均為優(yōu)勢菌門,所占比例超過70%;α-變形菌綱在上游區(qū)和下游區(qū)剖層土中均為優(yōu)勢菌綱.上游區(qū)、下游區(qū)和尾礦區(qū)剖層土固氮微生物H基因豐度的范圍分別為3.02×106~1.17×107、2.55×106~7.78×106和8.19×105~3.14×106基因拷貝數(shù)/g (干土).主要影響H基因豐度的土壤環(huán)境因素是土壤氮(總氮、銨態(tài)氮和硝態(tài)氮)和磷(總磷和有效磷)的含量.礦區(qū)固氮微生物群落組成的差異性主要由土壤鉛、鋅和鎘含量的變化所引起,上游區(qū)剖層土的Shannon指數(shù)和ACE指數(shù)顯著高于下游區(qū)和尾礦區(qū),表明上游區(qū)剖層土固氮微生物群落的多樣性和豐富程度相對較高.另外,土壤鉀、鈣和鈉含量的變化對固氮微生物群落的ACE指數(shù)和NMDS1指數(shù)也產(chǎn)生了不同程度的影響.研究結果表明土壤環(huán)境因子變化影響了礦區(qū)剖層土固氮微生物的群落結構、豐度和多樣性.研究為礦區(qū)的氮素調控、生態(tài)恢復和重建提供了理論依據(jù).
礦區(qū);固氮微生物;剖層土;群落結構;H基因豐度
采礦業(yè)在帶來巨大經(jīng)濟利益的同時也造成了礦區(qū)生態(tài)退化,產(chǎn)生了大量的礦業(yè)廢棄地,因此對礦區(qū)及其周邊廢棄地進行生態(tài)恢復迫在眉睫.一般而言,礦區(qū)的生態(tài)恢復包括廢棄地的植被修復與復墾、土壤肥力修復以及植被演替[1].在礦區(qū)及周邊土壤肥力修復過程中,由于土壤理化性質差,有機質、水分、養(yǎng)分等缺乏,成為生態(tài)恢復與重建的主要限制因子[2-3].其中,土壤氮素的極端不足又是養(yǎng)分不足中的核心問題[4].
氮在所有生物體的生長發(fā)育過程中具有不可替代的作用,是蛋白質和核酸等關鍵細胞成分合成所必需的元素[5].因此,氮循環(huán)在重金屬污染嚴重的礦區(qū)生態(tài)恢復過程中具有重要作用.作為氮循環(huán)中重要的環(huán)節(jié)之一,生物固氮是陸地生態(tài)系統(tǒng)外部氮源輸入的最大自然來源;并且可以在缺乏人為氮源輸入時維持生態(tài)系統(tǒng)的可持續(xù)性[7-8].生物固氮由固氮酶催化,固氮酶由兩個多亞基的金屬蛋白酶組成,分別是D和K基因編碼的鉬鐵蛋白和H基因編碼的鐵蛋白組成[6];其中,H基因作為標記基因,被廣泛用于檢測環(huán)境中固氮微生物的存在[5,9].固氮微生物廣泛存在于土壤環(huán)境中,如變形菌門(Proteobacteria),藍藻菌門(Cyanobacteria),擬桿菌門(Firmicutes)和疣微菌門(Verrucomicrobia)等[10-13].并且,固氮微生物的豐度、多樣性和群落組成會隨著土壤環(huán)境的變化而產(chǎn)生變化[14].
廣西被譽為“有色金屬之鄉(xiāng)”,擁有各類礦山6800多座[15],生物固氮在礦區(qū)及周邊生態(tài)系統(tǒng)的恢復和重建中發(fā)揮著重要作用.研究表明,土壤微生物在礦區(qū)碳、氮循環(huán)和能量流動過程中起著關鍵作用[16].而土壤pH值、養(yǎng)分含量、金屬濃度、含水率和覆土深度等被認為是礦區(qū)及周邊固氮微生物群落多樣性和豐度的主要限制因子[17-20].因此,提高固氮微生物的多樣性和群落組成,促進礦區(qū)氮素的累積,已成為礦區(qū)生態(tài)恢復的研究焦點.
因此,本研究以廣西柳州泗頂鉛鋅礦區(qū)為研究對象,運用高通量測序和熒光定量PCR技術,對泗頂?shù)V區(qū)上游、下游和尾礦區(qū)剖面各層土壤中固氮微生物群落結構、豐度和多樣性進行了研究,探討礦區(qū)不同區(qū)域剖層土土壤固氮微生物群落結構、豐度和多樣性的分布特征及其與土壤環(huán)境因子之間的關系,以期深入認識礦區(qū)不同區(qū)域剖層土壤中固氮微生物的群落結構特征,為礦區(qū)的氮素調控、生態(tài)恢復和重建提供理論依據(jù).
土壤樣品采自廣西柳州泗頂?shù)V區(qū)(北緯24°46′~25°34′,東經(jīng)109°13′~109°47′).區(qū)域地貌為外圍環(huán)形突起、中間洼地的峰林地,環(huán)形隆起高程400m以上,盆地高程為320m左右.該地區(qū)屬中亞熱帶季風氣候,常年溫暖潮濕,年均氣溫17.8℃,年降水量189.9mm.
礦區(qū)面積約為13.64km2,已于2006年開采完畢;冶煉廠附近有一條河流,冶煉污水通過排污口排入河流.其中,上游區(qū)位于河流上游,土壤屬于黏質黃土,植被類型主要有蜈蚣草、五節(jié)芒、蘆葦、馬唐等,植物生長茂盛;下游區(qū)位于河流下游,土壤屬于砂質棕土,植被類型主要有五節(jié)芒、蜈蚣草、辣蓼等;尾礦區(qū)位于礦山尾礦庫,土壤類型主要是選礦后篩出的泥土與礦石廢渣混合物,屬于砂質黑土,植被類型主要有五節(jié)芒、蘆葦、節(jié)節(jié)草、狗牙根等.因此,本文選擇上述3個區(qū)域作為代表區(qū)域進行研究.
2020年7月上旬,在泗頂?shù)V區(qū)的上游區(qū)(北緯25°02′53′′~25°02′58′′,東經(jīng)109°41′60′′~109°41′ 63′′)、尾礦區(qū)(北緯25°06′60′′~25°06′61′′,東經(jīng)109°41′66′′~109°41′67′′)、下游區(qū)(北緯25°08′73′′~25°08′75′′,東經(jīng)109°41′56′′~109°41′57′′)隨機均勻設置3個采樣點.每個采樣點自上而下垂直分為4層,每層15cm,每層隨機采集3個土壤樣品.其中上游區(qū)土壤簡稱為S,按照自上而下分別對應S-1(0~15cm), S-2(15~30cm), S-3(30~45cm)和S-4(45~60cm);同理,尾礦區(qū)土壤簡稱為W,下游區(qū)土壤簡稱為X.采集的同一類型土壤,在去除植物根系和碎石等雜物后充分混勻,采用四分法選取適當樣品置于無菌袋中,冷藏保存運回實驗室.每個土樣分為2個部分,一部分鮮土樣品通過2mm篩后置于-80℃冰箱保存以提取土壤微生物DNA;另一部分土壤自然風干后過0.149mm篩,用于分析土壤理化性質.土壤重金屬含量及其他理化性質采用《土壤農(nóng)業(yè)化學分析法》進行測定[21],結果見表1.
稱取0.5g土壤樣品,采用Fast?DNA SPIN Kit(MP Biomedical, Solon, OH, USA)對土壤DNA進行提取.引物為:HF(5′-AAAGGYGGWATCG GYAARTCCACCAC-3′)和HR(5′-TTGTTSGC SGCRTACATSGCCATCAT-3′)[22].PCR擴增體系(20μL)為:引物各0.8μL(5μmol/L), 2.0μL DNA, 4.0μL 5×FastPfu緩沖液, 2.0μL dNTPs (2.5 μmol/L), 0.4μL TransStart?FastPfu DNA聚合酶, 補無菌ddH2O至20μL. PCR的擴增條件為:95℃預變性3min, 95℃變性30s, 55℃退火30s, 72℃延伸45s,循環(huán)35次,最后72℃延伸10min.使用EZNA Gel Extraction Kit (Omega, USA)回收PCR混合產(chǎn)物進行純化.土壤樣品完成DNA提取后,送至上海美吉生物科技有限公司運用Illumina Miseq測序平臺進行高通量測序.
表1 泗頂?shù)V區(qū)剖層土土壤金屬含量及其理化性質
利用熒光定量PCR(Real-time PCR)技術分析剖面土H基因數(shù).反應引物同1.3所示,擴增片段長度為461bp.反應體系(20μL)為: 2X Taq Plus Master Mix 10μL,引物各0.8μL(5μmol/L), 1.0μL DNA,補無菌ddH2O至20μL.熒光定量PCR反應條件為:95℃預變性5min, 95℃變性30s, 55℃退火30s, 72℃延伸1min,循環(huán)35次.根據(jù)標準曲線計算基因豐度,H基因豐度最終被計算為每克干土的拷貝數(shù)(基因拷貝數(shù)/g(干土)).
數(shù)據(jù)處理采用Microsoft Excel 2019軟件完成,繪圖采用Origin 2019b軟件完成.利用Uparse軟件對高通量測序樣本進行聚類,默認以97%的一致性將序列聚類成為OTUs(Operational Taxonomic Units)[23].采用QIIME(Version 1.9.1)軟件對樣本序列進行抽平,α多樣性指數(shù)(Shannon、Simpson和ACE指數(shù))和β多樣性指數(shù)(NMDS1指數(shù))的計算利用QIIME平臺完成.H基因拷貝數(shù)和多樣性指數(shù)的單因素方差分析(One-way ANOVA,=3)、環(huán)境因子對Shannon、Simpson、ACE和NMDS1指數(shù)影響的多元線性回歸分析、環(huán)境因子對固氮微生物H基因數(shù)屬水平相對豐度影響的Spearman等級相關系數(shù)分析均采用SPSS 19.0軟件完成.其中,礦區(qū)不同區(qū)域間H基因數(shù)和α-多樣性的差異性通過T檢驗(Student’s-test)進行分析,采用SPSS 19.0軟件完成.環(huán)境因子對固氮微生物H基因數(shù)和屬水平相對豐度影響的熱圖采用Origin 2019b軟件完成.固氮微生物群落與環(huán)境因子關系的冗余度分析及繪圖采用Canoco 5.0軟件完成.
利用Illumina Miseq測序平臺對泗頂?shù)V區(qū)上游、下游和尾礦區(qū)12個剖層土固氮微生物H基因進行測序分析,獲得質控后的序列數(shù)分別為:上游區(qū)(S-1~S-4)18569、15973、13758和15566條;下游區(qū)(X-1~X-4)15485、17134、16177和13933條;尾礦區(qū)(W-1~W-4)19238、12175、14873和17003條.把相似度水平397%的序列聚為OTUs,置信度閾值設為0.8.
由圖1(a)可知,礦區(qū)不同區(qū)域剖層土固氮微生物H基因豐度差異顯著(<0.05).上游區(qū)、下游區(qū)和尾礦區(qū)的剖面各層土壤H基因豐度范圍分別為3.02×106~1.17×107、2.55×106~7.78×106和8.19× 105~3.14×106基因拷貝數(shù)/g(干土).各區(qū)域表層土(0~15cm)的H基因豐度相對于其他層最大;上游區(qū)和下游區(qū)的H基因豐度隨著剖面深度的增加而顯著減小(<0.05).
由圖1(b)~圖1(d)可知,礦區(qū)不同區(qū)域剖層土固氮微生物群落的α-多樣性指數(shù)(Shannon、Simpson和ACE指數(shù))差異顯著(<0.05).上游區(qū)剖層土的Shannon指數(shù)和ACE指數(shù)范圍分別為4.31~4.39和595.12~795.89,顯著高于下游區(qū)和尾礦區(qū)(圖1(b)和圖1(d));表明上游區(qū)剖層土固氮微生物群落的多樣性和豐富程度相對較高.同時,下游區(qū)和尾礦區(qū)表層土(0~15cm)的Shannon指數(shù)和ACE指數(shù)相對于其他層最大.另外,上游區(qū)剖層土的Simpson指數(shù)范圍為0.03~0.04,顯著低于下游區(qū)和尾礦區(qū)(圖1(c));表明上游區(qū)剖層土固氮微生物的均勻性相對較低.
*<0.05, **<0.01, ***<0.001.其中: 右側箱型圖分別對應表示礦區(qū)不同區(qū)域間H基因數(shù)和α-多樣性指數(shù)的差異性
泗頂?shù)V區(qū)上游區(qū)、下游區(qū)和尾礦區(qū)12個剖層土的固氮微生物群落相對豐度如圖2所示,相對豐度<0.03%的門種類合并為其他(Others).其中,變形菌門在礦區(qū)各區(qū)域剖層土中均為優(yōu)勢菌門;在上游區(qū)、下游區(qū)和尾礦區(qū)的剖層土中所占比例范圍分別為82.1%~87.1%、92.8%~96.6%和71.4%-95.9%.其中,上游區(qū)和下游區(qū)剖層土的優(yōu)勢菌綱為α-變形菌綱(Alphaproteobacteria),所占比例范圍分別為26.2%~32.8%和60.6%~87.7%.另外,上游區(qū)剖層土β-變形菌綱(Betaproteobacteria)的豐度范圍為1.6%~3.1%.而在尾礦區(qū)剖層土中,除了α-變形菌綱,在W-1層中優(yōu)勢菌綱還有δ-變形菌綱(Deltaproteobacteria) (27.8%),在W-3層中優(yōu)勢菌綱還有γ-變形菌綱(Gammaproteobacteria) (30.4%).在上游區(qū)、下游區(qū)和尾礦區(qū)剖層土中,α-變形菌綱下的根瘤菌目(Rhizobiales)相對豐度較高,所占比例范圍分別為8.4%~14.6%、3.7%~67.4%和8.2%~32.7%.其中,在上游區(qū)剖層土中,根瘤菌目下的慢生根瘤菌屬()相對豐度較高,所占比例范圍為3.6%~11.9%.
除了變形菌門固氮微生物,在礦區(qū)上游區(qū)、下游區(qū)和尾礦區(qū)的剖層土中還存在藍藻菌門、擬桿菌門和放線菌門(Actinobacteria)固氮微生物.其中,尾礦區(qū)W-1層的藍藻菌門的相對豐度最高,為6.9%,主要為念珠藻科(Nostocaceae).尾礦區(qū)W-3層中擬桿菌門的相對豐度最高,為4.1%,主要為沼小桿菌屬().上游區(qū)各層剖層土、下游區(qū)X-4層和尾礦區(qū)W-1層中還存在放線菌門固氮微生物,主要為弗蘭克氏菌屬().
圖2 泗頂?shù)V區(qū)剖層土土壤固氮微生物屬水平群落組成
表2 多元線性回歸分析環(huán)境因子多樣性指數(shù)的影響
續(xù)表2
注: *<0.05, **<0.01, ***<0.001.
以土壤重金屬含量(鉛、鋅、鎘、銅和錳含量)、土壤pH值、含水率、有機質、總氮、銨態(tài)氮、硝態(tài)氮、總磷和有效磷含量以及土壤中鉀、鈣、鈉和鎂含量作為環(huán)境變量,采用多元線性回歸分析環(huán)境因子變化對土壤固氮微生物群落的α-多樣性指數(shù)(Shannon、Simpson和ACE指數(shù))和β-多樣性指數(shù)(NMDS1指數(shù))的影響(表2).結果表明,土壤鉛、鋅和鎘含量的變化顯著影響了Shannon指數(shù)、ACE指數(shù)和NMDS1(<0.05),其中,鋅含量變化對NMDS1指數(shù)的影響尤其顯著(=33.89,<0.001).土壤鉀、鈣和鈉含量變化顯著影響了ACE指數(shù)(<0.05),其中,鈉含量變化對ACE指數(shù)的影響尤其顯著(=46.91,<0.001).同時,土壤鉀和鈉含量變化顯著影響了NMDS1指數(shù)(<0.05).另外,土壤含水率、有機質、總氮和硝態(tài)氮含量變化顯著影響了Shannon指數(shù)(<0.05).土壤含水率和總氮含量變化顯著影響了Simpson指數(shù)(<0.05).土壤總磷和銨態(tài)氮含量變化顯著影響了ACE指數(shù)(<0.05).土壤有機質和總磷含量變化顯著影響了NMDS1指數(shù)(<0.05).
圖(a) 固氮微生物與重金屬、pH值和含水率的冗余分析; 圖(b) 固氮微生物與有機質、總氮、銨態(tài)氮、硝態(tài)氮、總磷、有效磷和H基因數(shù)的冗余分析.其中:紅色實線箭頭代表屬水平上的土壤固氮微生物OUT,綠色虛線箭頭代表環(huán)境因子,紫色實線箭頭代表H基因數(shù)
土壤環(huán)境變化對固氮微生物H基因豐度和群落組成的冗余分析如圖3和表3所示.圖3(a)的RDA結果表明,第一軸(Axis 1)和第二軸(Axis 2)分別解釋了52.57%和47.92%的變異;同時,微生物群落數(shù)據(jù)變化的累計解釋量為98.94%;微生物組分變化-土壤環(huán)境因子累計解釋量為97.13%.表明土壤重金屬含量、土壤pH值和含水率對固氮微生物群落組成有顯著影響.圖3(b)的RDA結果表明,第一軸(Axis 1)和第二軸(Axis 2)分別解釋了53.11%和86.06%的變異;同時,微生物群落數(shù)據(jù)變化的累計解釋量為98.26%;微生物組分變化-土壤環(huán)境因子累計解釋量為98.83%.表明土壤有機質、氮(總氮、銨態(tài)氮和硝態(tài)氮)和磷(總磷和有效磷)對固氮微生物群落組成有顯著影響.
表3 土壤固氮微生物群落結構差異的解釋變量冗余分析
基于Spearman等級相關系數(shù)分析環(huán)境因子對固氮微生物H基因數(shù)和屬水平相對豐度影響的熱圖如圖4所示.可以看出,α-變形菌綱和根瘤菌目的豐度與鉛、鋅、鎘和有機質含量呈正相關(<0.05或<0.01).其中,根瘤菌目的豐度還與土壤pH值呈正相關(<0.05).慢生根瘤菌屬、珠藻科和弗蘭克氏菌屬的豐度與土壤中鉀和鈉含量呈正相關(<0.05或<0.01),與土壤鉛和鋅的豐度呈負相關(<0.05或<0.01).并且,慢生根瘤菌屬的豐度還與土壤中銨態(tài)氮、總磷和有效磷含量呈正相關(<0.05).另外,慢生根瘤菌屬、地桿菌屬()、珠藻科、除硫單胞菌目(Desulfuromonadales)、弗蘭克氏菌屬的豐度與土壤中鈣含量呈負相關(<0.05).同時,固氮微生物H基因豐度與土壤中銅、錳、鈉、總氮、銨態(tài)氮、硝態(tài)氮、總磷、有效磷含量及含水率呈正相關(<0.05或<0.01);與土壤中鈣和鎂的含量呈負相關(<0.01).表明土壤環(huán)境因子變化在不同程度上影響了固氮微生物H基因豐度和群落組成.
圖4 環(huán)境因子對固氮微生物nifH基因數(shù)和屬水平相對豐度影響的熱圖
*<0.05, **<0.01
微生物在生態(tài)系統(tǒng)的功能保持和維護過程中起著至關重要的作用,尤其是在氮循環(huán)過程中,固氮微生物直接影響土壤的固氮效率,對緩解土壤生態(tài)系統(tǒng)的氮素極端不足和實現(xiàn)氮循環(huán)的正常運轉至關重要[24].礦區(qū)及周邊土壤重金屬污染嚴重,各區(qū)域土壤中碳、氮和磷等含量差異較大,這會對土壤固氮微生物的豐度、多樣性和群落組成產(chǎn)生影響[9,25].
變形菌門在礦區(qū)各區(qū)域剖層土中均為優(yōu)勢菌門(圖2).研究表明,變形菌門在土壤養(yǎng)分循環(huán)中發(fā)揮著重要的作用,廣泛的存在于各種環(huán)境中,并且呈現(xiàn)出高度的多樣化[8,24].變形菌門是加拿大安大略省北部礦區(qū)(主要污染物:鎳和銅)土壤中的優(yōu)勢菌門[26],也是斯洛伐克西南部礦區(qū)(主要污染物:鎳、鈷和鋅)土壤中的優(yōu)勢菌門[27].在本研究中,變形菌門固氮微生物主要由α-變形菌綱組成.α-變形菌綱下的根瘤菌目、慢生根瘤菌科、慢生根瘤菌屬和厭氧粘細菌等可以與豆科植物形成根瘤并進行共生固氮[28].其中,這些固氮微生物物種如根瘤菌目、慢生根瘤菌科和慢生根瘤菌屬被認為是可以定殖于礦區(qū)的先鋒微生物物種[29].礦區(qū)各區(qū)域剖層土中根瘤菌目相對豐度較高,并且在上游區(qū)剖層土中,慢生根瘤菌屬相對豐度較高;這些固氮微生物的高比例存在,表明這些區(qū)域存在共生固氮的可能.另外,在礦區(qū)各區(qū)域剖層土中還存在藍藻菌門固氮微生物.研究表明,藍藻菌門微生物是自養(yǎng)型微生物,廣泛存在于植物的根瘤中[11,30].這表明這些區(qū)域的剖層土壤中存在一定豐度的自養(yǎng)型固氮微生物.在尾礦區(qū)W-3層中還檢測到擬桿菌門固氮微生物,研究表明,擬桿菌門微生物也是常見的固氮微生物[31].Li等[32]指出擬桿菌門微生物對重金屬的耐受性較好,可以在重金屬污染嚴重的環(huán)境中生存.
礦區(qū)上游剖層土固氮微生物H基因豐度較高,并且各區(qū)域表層土(0~15cm)中的H基因豐度相對于同區(qū)域的其他層最大;上游區(qū)和下游區(qū)的H基因豐度隨著土壤剖層深度的增加而顯著減小(<0.05)(圖1(a)).Zhao等[33]的研究表明,重金屬污染可能對土壤微生物產(chǎn)生兩個明顯的影響,一是不適應高濃度或重金屬毒性的微生物種群數(shù)量減少;二是對高污染環(huán)境適應性較強的微生物種群數(shù)量增加.在本研究中,土壤銅和錳的含量在一定程度上影響了固氮微生物H基因豐度(圖4);然而,相對于尾礦區(qū),下游區(qū)的鉛、鋅和鎘含量更大(表1),H基因豐度更高.因此,本文認為土壤重金屬含量對泗頂?shù)V區(qū)各區(qū)域剖層土固氮微生物H基因豐度產(chǎn)生了一定的影響,但主要影響剖層土固氮微生物H基因豐度的因素是土壤氮(總氮、銨態(tài)氮和硝態(tài)氮)和磷(總磷和有效磷)的含量(圖4).研究表明,與氮相關的參數(shù)如總氮、銨態(tài)氮和硝態(tài)氮水平的變化是影響土壤固氮微生物豐度和群落結構的主要因素[25,34].磷作為生物生長所必須的營養(yǎng)元素之一,參與微生物的細胞生理過程,包括能力存儲、代謝和細胞分裂[35],也會對土壤固氮微生物豐度和群落結構產(chǎn)生影響[36-37].并且,由于礦區(qū)各區(qū)域剖層土中存在一定豐度的根瘤菌目和慢生根瘤菌屬固氮微生物,表明礦區(qū)土壤存在共生固氮的可能;Israel指出[38],土壤磷含量的增加可以有效促進共生固氮進程.因此,在氮和磷含量更為豐富的上游區(qū)和下游區(qū),固氮微生物H基因豐度相對更高.
同時,土壤氮和磷的含量變化,對固氮微生物群落的α-多樣性和β-多樣性也產(chǎn)生了不同程度的影響(表2).在總氮含量較高的上游區(qū),固氮微生物群落的Shannon指數(shù)較高而Simpson指數(shù)較低,表明土壤總氮含量對固氮微生物群落的多樣性和均勻性產(chǎn)生了影響;在銨態(tài)氮含量較高的上游區(qū),ACE指數(shù)相對較高,表明銨態(tài)氮含量對固氮微生物群落豐富程度產(chǎn)生了影響.說明在泗頂?shù)V區(qū),土壤氮含量的變化主要影響了土壤固氮微生物群落的多樣性、豐富程度和均勻性.這與Li等[39]和Wang等[25]的研究一致,表明土壤氮含量變化是影響土壤固氮微生物群落結構和多樣性的最主要因素之一.在總磷含量較高的上游區(qū),ACE指數(shù)相對較高,表明總磷含量也對固氮微生物群落豐富程度產(chǎn)生了影響;并且總磷含量同時影響了NMDS1指數(shù),說明在泗頂?shù)V區(qū),土壤總磷含量變化主要影響了土壤固氮微生物群落的均勻性和固氮微生物在各區(qū)域間的物種差異性.研究表明,銨態(tài)氮、總磷和有效磷的含量變化顯著影響慢生根瘤菌屬()的豐度(<0.05)(圖4).這與Wang等[40]的研究一致,表明土壤磷含量和銨態(tài)氮含量是影響土壤固氮微生物群落組成和多樣性的重要因素之一.
研究表明,土壤重金屬含量變化對固氮微生物群落的多樣性和組成均產(chǎn)生了不同程度的影響.其中土壤鉛、鋅和鎘含量變化對固氮微生物群落的Shannon指數(shù)和ACE指數(shù)產(chǎn)生了顯著的影響(< 0.05)(表2).在土壤鉛、鋅和鎘含量較低的上游區(qū), Shannon指數(shù)和ACE指數(shù)相對更高.表明土壤重金屬含量較高,會降低群落的Shannon指數(shù)和ACE指數(shù),影響微生物群落的多樣性和均勻性,這與Chodak等[41]的研究結果相似.并且,土壤重金屬含量過高,會對土壤的生物固氮過程產(chǎn)生抑制作用[42].同時,礦區(qū)土壤鉛、鋅和鎘含量的變化對固氮微生物群落的NMDS1指數(shù)也產(chǎn)生了顯著的影響(<0.01)(表2);其中鋅含量變化的影響最大(=33.89,<0.001).表明礦區(qū)各區(qū)域固氮微生物群落組成的差異性主要由土壤鉛、鋅和鎘含量的變化所引起,這也與Wang等[43]的研究結果相似.在土壤鉛、鋅和鎘含量相對更高的下游區(qū),α-變形菌綱和根瘤菌目的豐度更大.另外,土壤鉀、鈣和鈉含量的變化對固氮微生物群落的ACE指數(shù)和NMDS1指數(shù)也產(chǎn)生了不同程度的影響(表2);其中,土壤鈣(=15.63,<0.01)和鈉(= 46.91,<0.001)含量的變化對ACE指數(shù)的影響最大.表明礦區(qū)各區(qū)域微生物群落組成的豐富度變化主要由土壤鈣和鈉含量的變化所引起.并且,土壤鈉含量變化對固氮微生物群落的NMDS1指數(shù)也產(chǎn)生了顯著的影響(<0.01).Quesada等[44]的研究表明,在稻田土壤中,鈉含量與微生物固氮酶活性呈正相關關系.本研究的結果也表明鈉含量與土壤固氮微生物H基因豐度呈顯著的正相關關系(<0.01) (圖4);然而,在重金屬污染的礦區(qū)土壤中,鈉含量變化如何影響固氮微生物群落結構和多樣性組成還有待進一步研究.除此之外,土壤有機質含量變化對固氮微生物群落的Shannon指數(shù)和NMDS1指數(shù)產(chǎn)生了顯著的影響(<0.05) (表2).Eo等[45]指出,土壤有機質的來源主要是植物根系碎片和滲出物,其與微生物的活性呈正相關關系,是影響土壤微生物群落結構的主要因素之一[46].本研究中,在有機質含量較高的上游區(qū),Shannon指數(shù)相對更高;同時有機質含量變化也會引起礦區(qū)各區(qū)域微生物群落組成的差異性.
4.1 變形菌門在上游區(qū)、下游區(qū)和尾礦區(qū)剖層土中均為優(yōu)勢菌門,占比超過70%;α-變形菌綱在上游區(qū)和下游區(qū)剖層土中均為優(yōu)勢菌綱.
4.2 上游區(qū)、下游區(qū)和尾礦區(qū)剖層土固氮微生物H基因豐度的范圍分別為3.02×106~1.17×107、2.55×106~7.78×106和8.19×105~3.14×106基因拷貝數(shù)/g(干土).各區(qū)域表層土(0~15cm)的H基因豐度相對于其他層最大.主要影響H基因豐度的土壤環(huán)境因素是土壤氮和磷的含量;在氮和磷含量更為豐富的上游區(qū)和下游區(qū),H基因豐度相對更高.
4.3 上游區(qū)剖層土的Shannon指數(shù)和ACE指數(shù)顯著高于下游區(qū)和尾礦區(qū),表明上游區(qū)剖層土固氮微生物群落的多樣性和豐富程度相對較高.礦區(qū)各區(qū)域固氮微生物群落組成的差異性主要由土壤鉛、鋅和鎘含量的變化所引起.
4.4 土壤鈣和鈉含量的變化對ACE指數(shù)的影響最大.表明礦區(qū)各區(qū)域微生物群落組成的豐富度變化主要由土壤鈣和鈉含量的變化所引起.
[1] Hernandez-Santin L, Erskine P D, Bartolo RE. A review of revegetation at mine sites in the Alligator Rivers Region, Northern Territory, and the development of a state and transition model for ecological restoration at Ranger uranium mine [J]. Journal of Cleaner Production, 2020, 246: 119079.
[2] Pietrzykowski M, Antonkiewicz J, Gruba P, et al. Content of Zn, Cd and Pb in purple moor-grass in soils heavily contaminated with heavy metals around a zinc and lead ore tailing landfill [J]. Open Chemistry, 2018,16(1):1143-1152.
[3] Ke W, Zhang X, Zhu F, et al. Appropriate human intervention stimulates the development of microbial communities and soil formation at a long-term weathered bauxite residue disposal area [J]. Journal of Hazardous Materials, 2021,405:124689.
[4] Yu FM, Lin JM, Xie DY, et al. Soil properties and heavy metal concentrations affect the composition and diversity of the diazotrophs communities associated with different land use types in a mining area [J]. Applied Soil Ecology, 2020,155:103669.
[5] Kuypers M M M, Marchant H K, Kartal B. The microbial nitrogen- cycling network [J]. Nature Reviews Microbiology, 2018,16:263.
[6] 趙 輝,周運超.不同母巖發(fā)育馬尾松土壤固氮菌群落結構和豐度特征 [J]. 生態(tài)學報, 2020,40(17):6189-6201.
Zhao H, Zhou YC. Characteristics of structure and abundance of the nitrogen-fixing bacterial community insoil developed from different parent rocks [J]. Acta Ecologica Sinica, 2020,40(17):6189-6201.
[7] LeBauer D S, Treseder K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed [J]. Ecology, 2008,89(2):371-379.
[8] Chen J, Shen W J, Xu H, et al. The composition of nitrogen-fixing microorganisms correlates with soil nitrogen content during reforestation: A comparison between legume and non-legume plantations [J]. Frontiers in Microbiology, 2019,10:508-518.
[9] Hsu S F, Buckley D H. Evidence for the functional significance of diazotroph community structure in soil [J]. The ISME Journal, 2009, 3(1):124-136.
[10] Steenhoudt O, Vanderleyden J. Azospirillum, a free-living nitrogen- fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects [J]. FEMS Microbiology Reviews, 2000,24(4): 487-506.
[11] Martinez-Perez C, Mohr W, Loscher CR, et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle [J]. Nature Microbiology, 2016,1(11):10.1038/ nmicrobiol.2016.163.
[12] Penton C R, Yang C Y, Wu L Y, et al. NifH-harboring bacterial community composition across an Alaskan permafrost thaw gradient [J]. Frontiers in Microbiology, 2016,7:10.3389/fmicb.2016.01894.
[13] Delmont T O, Quince C, Shaiber A, et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes [J]. Nature Microbiology, 2018,3:804-813.
[14] Tischer A, Blagodatskaya E, Hamer U. Microbial community structure and resource availability drive the catalytic efficiency of soil enzymes under land-use change conditions [J]. Soil Biology and Biochemistry, 2015,89:226-237.
[15] 于方明,姚亞威,謝冬煜,等.泗頂?shù)V區(qū)6種土地利用類型土壤微生物群落結構特征 [J]. 中國環(huán)境科學, 2020,40(5):2262-2269.
Yu F M, Yao Y W, Xie D Y, et al. Study on the soil microbial community structure associated with six land use in Siding mining area [J]. China Environemntal Science, 2020,40(5):2262-2269.
[16] Li Y, Wu Z, Dong X, et al. Variance in bacterial communities, potential bacterial carbon sequestration and nitrogen fixation between light and dark conditions under elevated CO2in mine tailings [J]. Science of the Total Environment, 2019,652:234-242.
[17] Singh J S, Gupta V K. Soil microbial biomass: A key soil driver in management of ecosystem functioning [J]. Science of the Total Environment, 2018,634:497-500.
[18] Che RX, Deng YC, Wang F, et al. Autotrophic and symbiotic diazotrophs dominate nitrogen-fixing communities in Tibetan grassland soils [J]. Science of the Total Environment, 2018,639:997- 1006.
[19] Dashti N, Ali N, Khanafer M, et al. Plant-based oil-sorbents harbor native microbial communities effective in spilled oil-bioremediation under nitrogen starvation and heavy metal-stresses [J]. Ecotoxicology and Environmental Safety, 2019,181:78-88.
[20] Han LL, Wang Q, Shen JP, et al. Multiple factors drive the abundance and diversity of the diazotrophic community in typical farmland soils of China [J]. FEMS Microbiology Ecology, 2019,95(8):10.
[21] 魯如坤.土壤農(nóng)業(yè)化學分析法 [M]. 北京:中國農(nóng)業(yè)科技出版社, 1999.
Lu R K. Agrochemical analysis method of soil [M]. Beijing: China Agricultural Science and Technology Press, 1999.
[22] Chen J, Wang PF, Wang C, et al. Dam construction alters function and community composition of diazotrophs in riparian soils across an environmental gradient [J]. Soil Biology & Biochemistry, 2019,132: 14-23.
[23] Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads [J]. Nature Methods, 2013,10(10):996-998.
[24] Jing H M, Xia X M, Liu H B, et al. Anthropogenic impact on diazotrophic diversity in the mangrove rhizosphere revealed by nifH pyrosequencing [J]. Frontiers in Microbiology, 2015,6:13.
[25] Wang C, Zheng M, Song W, et al. Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in southern China [J]. Soil Biology and Biochemistry, 2017,113:240-249.
[26] Narendrula-Kotha R, Nkongolo KK. Bacterial and fungal community structure and diversity in a mining region under long-term metal exposure revealed by metagenomics sequencing [J]. Ecological Genetics and Genomics, 2017,2:13-24.
[27] Karelová E, Harichová J, Stojnev T, et al. The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metal-contaminated site [J]. Biologia, 2011,66(1): 18-26.
[28] Oldroyd G E D, Downie J A. Coordinating nodule morphogenesis with Rhizobial infection in legumes [J]. Annual Review of Plant Biology, 2008,59(1):519-546.
[29] Zhan J, Sun Q. Diversity of free-living nitrogen-fixing microorganisms in the rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings [J]. Microbiological Research, 2012,167(3):157-165.
[30] Schulz S, Engel M, Fischer D, et al. Diversity pattern of nitrogen fixing microbes in nodules of(L.) at different initial stages of ecosystem development [J]. Biogeosciences, 2013,10(2): 1183-1192.
[31] Inoue J, Oshima K, Suda W, et al. Distribution and Evolution of Nitrogen Fixation Genes in the Phylum Bacteroidetes [J]. Microbes and Environments, 2015,30(1):44-50.
[32] Rezaee L, Moosavi AA, Davatgar N, et al. Soil quality indices of paddy soils in Guilan province of northern Iran: Spatial variability and their influential parameters [J]. Ecological Indicators, 2020,117.
[33] Zhao X, Huang J, Lu J, et al. Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine [J]. Ecotoxicology and Environmental Safety, 2019,170:218-226.
[34] Zhong Y, Yan W, Shangguan Z. Impact of long-term N additions upon coupling between soil microbial community structure and activity, and nutrient-use efficiencies [J]. Soil Biology and Biochemistry, 2015,91: 151-159.
[35] Bent E, Németh D, Wagner-Riddle C, et al. Residue management leading to higher field-scale N2O flux is associated with different soil bacterial nitrifier and denitrifier gene community structures [J]. Applied Soil Ecology, 2016,108:288-299.
[36] Samaddar S, Chatterjee P, Truu J, et al. Long-term phosphorus limitation changes the bacterial community structure and functioning in paddy soils [J]. Applied Soil Ecology, 2019,134:111-115.
[37] Azziz G, Bajsa N, Haghjou T, et al. Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop–pasture rotations in a no-tillage regime in Uruguay [J]. Applied Soil Ecology, 2012,61:320-326.
[38] Israel DW. Investigation of the role of phosphorus in symbiotic dinitrogen fixation [J]. Plant Physiology, 1987,84(3):835-840.
[39] Li C, Yan K, Tang L, et al. Change in deep soil microbial communities due to long-term fertilization [J]. Soil Biology and Biochemistry, 2014,75:264-272.
[40] Wang C, Zheng M M, Shen RF. Diazotrophic communities are more responsive to maize cultivation than phosphorus fertilization in an acidic soil [J]. Plant and Soil, 2020,452(1):499-512.
[41] Chodak M, Go??biewski M, Morawska-P?oskonka J, et al. Diversity of microorganisms from forest soils differently polluted with heavy metals [J]. Applied Soil Ecology, 2013,64:7-14.
[42] Sun X, Kong T, H?ggblom M M, et al. Chemolithoautotropic diazotrophy dominates the nitrogen fixation process in mine tailings [J]. Environmental Science & Technology, 2020,54(10):6082-6093.
[43] Wang C, Wu B, Jiang K, et al. Effects of different concentrations and types of Cu and Pb on soil N-fixing bacterial communities in the wheat rhizosphere [J]. Applied Soil Ecology, 2019,144:51-59.
[44] Quesada A, Leganés F, Fernández-Valiente E. Environmental Factors Controlling N2Fixation in Mediterranean Rice Fields [J]. Microbial ecology, 1997,34(1):39-48.
[45] Eo J, Park K-C. Long-term effects of imbalanced fertilization on the composition and diversity of soil bacterial community [J]. Agriculture, Ecosystems & Environment, 2016,231:176-182.
[46] Graham M H, Haynes RJ. Organic matter accumulation and fertilizer-induced acidification interact to affect soil microbial and enzyme activity on a long-term sugarcane management experiment [J]. Biology and Fertility of Soils, 2005,41(4):249-256.
Characteristics on the community structure and abundance of diazotrophsfrom the soil profile in the Siding mine area.
LI Yi1,2, ZHANG Hai-chun3, LIU Yuan2, WEI Jiao-teng2, WANG Cong2, LIANG Ying2, LIU Ke-hui1,3**, YU Fang-ming1,2*
(1.Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin 541004, China;2.College of Environment and Resources, Guangxi Normal University, Guilin 541004, China;3.College of Life Science, Guangxi Normal University, Guilin 541004, China)., 2022,42(4):1819~1828
In the present study, twelve soil profile samples (4 soil layers in each area) were collected from upstream, downstream and mine tailing areas in the Siding mine located in Liuzhou, Guangxi Province. The community composition, abundance and diversity of diazotrophs from the soil profile were examined using Illumina MiSeq high-throughput sequencing technology and fluorogenic quantitative real-time PCR technology. The results indicated that the phylum Proteobacteria was the most dominant taxon, with an abundance higher than 70%. Alphaproteobacteria was the dominant class in the soil profile from the upstream and downstream areas. TheH gene abundance in the soil profile ranged from 3.02×106~1.17×107, 2.55×106~7.78×106and 8.19×105~3.14×106gene copies/g (DW) in upstream, downstream and mine tailing areas, respectively. Nitrogen-related soil properties (including total nitrogen, ammonia and nitrate) and phosphorus-related soil properties (including total phosphorus and available phosphorus) were the main factors influencingH gene abundance. Soil lead, zinc and cadmium concentrations were found to mainly influence diazotrophic community composition. The Shannon index and ACE index of the diazotrophic community in upstream area were higher than those in the downstream and mine tailing areas, which indicated that the diversity and richness of the diazotrophic community in the soil profile were relatively higher in the upstream area. In addition, the soil potassium, calcium and sodium contents contributed to the ACE index and NMDS1index of the diazotrophic community to different degrees. Hence, the results indicated that variation in soil environmental factors had an impact on the community composition, abundance and diversity of diazotrophs from the soil profile. Our research will help to provide a scientific basis for nitrogen regulation, ecological restoration and reconstruction in mining areas.
mine area;diazotrophs;soil profile;community structure;H gene abundance
X172
A
1000-6923(2022)04-1819-10
李 藝(1986-),女,遼寧蓋州人,副教授,博士,主要從事環(huán)境污染生物修復研究.發(fā)表論文30余篇.
2021-09-16
國家自然科學基金資助項目(41967019,41907096)
*責任作者, 教授, fmyu1215@163.com; **教授, coffeeleave@126.com