郭夢真 梁永和 聶建華 蔡曼菲 馮 立 鞠茂奇 劉艷麗 姜廣森 劉夢玄
1)武漢科技大學(xué)省部共建耐火材料與冶金國家重點實驗室 湖北武漢430081
2)錦州國泰實業(yè)有限公司 遼寧錦州121000
鈦鐵渣是冶煉鈦鐵合金產(chǎn)生的廢渣,一般渣與合金的質(zhì)量比約為1∶1,生成量相當大[1]。鈦鐵渣的主要物相為六鋁酸鈣(CA6)、二鋁酸鈣(CA2)和鈦酸鈣(CaTiO3),耐火度(≥1 790℃)高[2]。目前,針對鈦鐵渣的應(yīng)用研究主要是將其用于耐火材料的原料以進行固廢利用,降低生產(chǎn)成本[3]。但鈦鐵渣中的鈦仍未被合理利用,造成了含鈦資源的極大浪費。
TiCN是TiN與TiC形成的連續(xù)固溶體,具有高熔點、高強度、抗氧化、高硬度以及良好的導(dǎo)電性和化學(xué)穩(wěn)定性等優(yōu)異性能[4-5],被廣泛應(yīng)用于切削刀具[6-7]、耐磨涂層[8]和耐火材料[9-10]等。有研究[11-13]指出,含鈦高爐渣可經(jīng)碳熱還原氮化法制備TiCN,再結(jié)合磁選或酸浸等手段提取TiCN,從而實現(xiàn)鈦鐵渣的提鈦利用。而含鈦高爐渣中的鈦主要以CaTiO3形式存在,與鈦鐵渣相同,故以鈦鐵渣為原料制備含TiCN復(fù)合材料是有據(jù)可依的,但關(guān)于這方面的研究還沒見相關(guān)報道。因此,以鈦鐵渣為原料,通過碳熱還原氮化法來制備含TiCN的復(fù)合材料,探究制備條件對反應(yīng)產(chǎn)物的影響,并計算了反應(yīng)的動力學(xué)參數(shù),以期為鈦鐵渣進行高效利用提供參考。
試驗所采用的主要原料為:SiO2粉(分析純)、≤0.074 mm(即200目)的鈦鐵渣和焦炭。鈦鐵渣的主要化學(xué)組成(w)為:Al2O373.01%,TiO212.58%,CaO 10.40%,MgO 1.80%,F(xiàn)e2O30.74%,SiO20.61%,Na2O 0.29%。圖1為鈦鐵渣的XRD圖譜,表明鈦鐵渣中的主要物相為CA6、CA2、CaTiO3和Al2O3。
圖1 鈦鐵渣的XRD圖譜Fig.1 XRD pattern of ferrotitanium slag
試驗配方如表1所示。將配好的原料于行星球磨機中以350 r·min-1混合球磨5 h后,以30 MPa的壓力壓制成φ20 mm×2 mm的圓柱試樣,并置于高溫氣氛爐中在流動氮氣氣氛下進行1 100~1 500℃保溫1~4 h熱處理。熱處理升溫制度為:25~1 000℃,升溫速率為5℃·min-1;1 000~1 500℃,升溫速率為3℃·min-1。保溫結(jié)束后氮氣保護冷卻。
表1 試樣配比Table 1 Formulations of specimens
采用X’Pert Pro型X射線衍射儀(XRD)分析物相組成,Ni為濾片,Cu-Kα為射線源,工作電壓和電流分別為40 kV、30 mA,使用溫度為25℃,掃描區(qū)間為10°~95°,掃描速度為0.067°·s-1。
采用熱重分析儀(NetzschSTA449C)測定試樣S2在氮氣環(huán)境下的TG-DTA曲線。氮氣的流量保持在200 mL·min-1,試樣的初始質(zhì)量為(12±2)mg,加熱速率為5、10、15和20℃·min-1。根據(jù)試驗中所得的最大放熱峰溫度值TP以及溫度TP~轉(zhuǎn)化率α的關(guān)系,計算反應(yīng)的非等溫動力學(xué)參數(shù)。試驗中所涉及的動力學(xué)研究方法有Kissinger法、Ozawa法和Coats-Redfern法。
圖2為試樣S2經(jīng)不同溫度熱處理2 h后的XRD圖譜??芍?,經(jīng)1 200℃熱處理后試樣中的CaTiO3相消失,而經(jīng)1 300℃熱處理后試樣中生成了TiCN,TiCN中C和N的物質(zhì)的量比為2∶8。反應(yīng)產(chǎn)物主要為鈣長石(CaO·2SiO2·Al2O3)、Al2O3、TiC0.2N0.8和Ca2SiO4,以及少量的TiC和C5A3(5CaO·3Al2O3),未發(fā)現(xiàn)SiC、Si3N4、Al4C3和AlN等其他碳化物或氮化物。熱處理溫度為1 300℃時,鈣長石熔融形成液相,加快了離子擴散速度,使反應(yīng)充分進行。當熱處理溫度為1 400℃時,TiC0.2N0.8、TiC、Ca2SiO4和C5A3的衍射峰均有所增強,但熱處理溫度升至1 500℃時,TiC0.2N0.8和TiC的衍射峰變化不明顯,而Ca2SiO4和C5A3的衍射峰明顯增強。因此,1 400℃是合適的TiCN合成溫度。
圖2 不同溫度保溫2 h熱處理后試樣S2的XRD圖譜Fig.2 XRD patterns of S2 after heated at different temperatures for 2 h
圖3為試樣S2在1 400℃保溫不同時間熱處理后的XRD圖譜。
圖3 1 400℃下保溫不同時間熱處理后試樣S2的XRD圖譜Fig.3 XRD patterns of S2 w ith different holding times at 1 400℃
由圖3可知,當保溫時間為1 h時,反應(yīng)產(chǎn)物中仍有Ca4Ti3O10,說明此時反應(yīng)進行不完全。而隨著保溫時間的延長,TiC0.2N0.8和TiC的衍射峰均變強,當保溫時間達4 h時,TiC0.2N0.8和TiC的衍射峰明顯增強。這說明延長保溫時間有利于TiC0.2N0.8和TiC的生成。
圖4為不同焦炭添加量下,試樣經(jīng)1 400℃保溫2 h的XRD圖譜。由圖可知,當n(C)∶n(CaTiO3)=1.6∶1時試樣C1的反應(yīng)產(chǎn)物中仍有CaTi4O9,說明此時反應(yīng)不完全;隨著焦炭加入量增大,試樣中TiC0.2N0.8和TiC的衍射峰均增強,說明焦炭加入量的增大可促進TiC0.2N0.8和TiC的生成。
圖4 不同焦炭添加量下經(jīng)1 400℃保溫2 h反應(yīng)產(chǎn)物的XRD圖譜Fig.4 XRD patterns of reaction products w ith different amounts of coke insulated at1 400℃for 2 h
圖5為不同SiO2添加量下,試樣經(jīng)1 400℃保溫2 h的XRD圖譜。由圖可知,隨著SiO2的加入量增大,TiC0.2N0.8和TiC衍射峰的變化不明顯,而產(chǎn)物中C5A3的衍射峰明顯增強。這表明SiO2的主要作用是參與反應(yīng)生成鈣長石而降低了TiC0.2N0.8的生成溫度,所以SiO2加入量的增大對TiC0.2N0.8和TiC的生成量影響不大。
圖5 不同SiO2 添加量下經(jīng)1 400℃保溫2 h反應(yīng)產(chǎn)物的XRD圖譜Fig.5 XRD patterns of reaction products w ith different am ounts of SiO2 insu lated at1 400℃for 2 h
坯體試樣S2不同升溫速率下的TG-DTA曲線見圖6。由圖可知,試樣的質(zhì)量損失主要在1 100~1 350℃??紤]TiCN的制備反應(yīng)為質(zhì)量損失反應(yīng),且反應(yīng)溫度在1 100~1 350℃,故以熱分析曲線中1 100~1 350℃內(nèi)的放熱峰值溫度計算TiCN反應(yīng)的動力學(xué)參數(shù)。
圖6 不同升溫速率下試樣S2的TG-DTA曲線Fig.6 TG-DTA curves of specimen S2 w ith different heating rates
根據(jù)試樣的TG-DTA曲線計算了反應(yīng)峰值溫度TP的相關(guān)數(shù)據(jù)如表2所示。
表2 反應(yīng)峰值溫度的相關(guān)數(shù)據(jù)Table 2 Data about temperatures of reaction peak
根據(jù)Kissinger法計算反應(yīng)活化能的方程如下[14]:
式中,Tp為峰值溫度,β為升溫速率,A為指前因子,E為表觀活化能,R為摩爾氣體常量8.314。
用Ozawa法計算反應(yīng)活化能的方程如下[15]:
式中,β為升溫速率,Tp為峰值溫度,A為指前因子,E為表觀活化能,R為摩爾氣體常量8.314,α為轉(zhuǎn)化率,,m0為初始質(zhì)量,mi為給定時間處的質(zhì)量,m∞為反應(yīng)完全的最終質(zhì)量。G(α)為動力學(xué)機制函數(shù)的積分形式,它被定義為G(α)=。
Kissinger法和Ozawa法可簡便地求出反應(yīng)活化能,但由于反應(yīng)機制尚不明確,故不能利用Ozawa法求出指前因子A,故需要以Coats-Redfern法對反應(yīng)的熱分析數(shù)據(jù)進行擬合,通過計算不同反應(yīng)機制下的活化能與Kissinger法和Ozawa法的計算結(jié)果進行對比,并結(jié)合相關(guān)系數(shù)r2確定反應(yīng)機制,計算反應(yīng)的指前因子A。
根據(jù)Arrhenius定律,鈦鐵渣制備TiCN的反應(yīng)動力學(xué)的基本方程為:
其中,α為轉(zhuǎn)化率,T為反應(yīng)溫度,k(T)是指關(guān)于溫度的函數(shù),f(α)為反應(yīng)的動力學(xué)模型函數(shù),A為指前因子,E為反應(yīng)活化能,R為摩爾氣體常量8.314。由于試驗的加熱速率β=dT/dt恒定,故結(jié)合(3)和(4)可得:
對方程(5)積分,得到一個新的方程:
其中,G(α)為動力學(xué)機制函數(shù)的積分形式,方程右邊的解析很困難,故以各種近似模型來求解這個方程的復(fù)雜部分。Coats-Redfern模型是一種被廣泛用于估算指前因子和活化能的擬合方法。其基本方程為[16]:
根據(jù)升溫速率β=10℃·min-1的TG數(shù)據(jù)(見圖6(b))得出9個溫度點對應(yīng)的轉(zhuǎn)化率α,如表3所示。
表4為5個常用的動力學(xué)機制函數(shù)及其微分形式,其中n為反應(yīng)級數(shù)。
借助表4中的5個機制函數(shù)的動力學(xué)機制函數(shù)G(α),將表3中的數(shù)據(jù)帶入公式(7)進行擬合,得到的相關(guān)系數(shù)r2和活化能E,列于表5。
表3 不同溫度對應(yīng)的轉(zhuǎn)化率α值Table 3 αvalues at different temperatures
表4 5個常用的動力學(xué)機制函數(shù)Table 4 Five commonly used dynam ic mechanism functions
表5 不同機制函數(shù)的線性擬合方程及其相關(guān)系數(shù)和相應(yīng)活化能Table 5 Fitted equations,correlation coefficientand activation energy in different dynam ic mechanism functions
根據(jù)擬合結(jié)果可知,第2號機制G(α)=[-ln(1-α)]3計算出的活化能E=115.34 kJ·mol-1,與Kissinger法計算出的E=113.78 kJ·mol-1、Owaza法計算出的E=110.68 kJ·mol-1最為接近,且其相關(guān)系數(shù)r2=0.993 3,說明該機制函數(shù)與試驗數(shù)據(jù)的擬合相關(guān)性最好。由此可得以鈦鐵渣為原料制備TiCN的反應(yīng)的最概然機制函數(shù)為G(α)=[-ln(1-α)]3,其相應(yīng)的微分形式為f(α)=1/3(1-α)[-ln(1-α)-2],反應(yīng)機制為隨機成核和隨后生長,反應(yīng)級數(shù)n=3。根據(jù)第2號機制函數(shù)的線性回歸方程y=-138 727.76x+105.2可知,。由β=10 K·min-1,E=115.34 kJ·mol-1,R=8.314 J·mol-1·K-1計算出指前因子A=6.76×1047min-1。
(1)反應(yīng)產(chǎn)物主要為鈣長石、Al2O3、TiC0.2N0.8和Ca2SiO4,以及少量的TiC和C5A3。TiCN最佳的合成條件為在流動氮氣下經(jīng)1 400℃保溫4 h,焦炭加入量增加可促進TiCN的生成,SiO2加入量的增加對TiCN的生成影響不大。
(2)以鈦鐵渣為原料制備TiCN的反應(yīng)的最概然機制函數(shù)為G(α)=[-ln(1-α)]3,反應(yīng)機制為隨機成核和隨后生長,反應(yīng)級數(shù)n=3。反應(yīng)的活化能E=115.34 kJ·mol-1,指前因子A=6.76×1047min-1。