• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular docking study of xylogranatins binding to glycogen synthase kinase-3β

    2022-04-19 07:44:10ChristianBaillyrardVergoten
    Digital Chinese Medicine 2022年1期

    Christian Bailly,Gérard Vergoten

    a.Scientific Consulting Office,OncoWitan,Wasquehal,Lille 59290,France

    b.University of Lille,Inserm,INFINITE - U1286,Institut de Chimie Pharmaceutique Albert Lespagnol(ICPAL),Faculty of Pharmacy,3 rue du Professeur Laguesse,BP-83,F-59006,Lille,France

    ABSTRACT Objective The mangrove tree Xylocarpus granatum J.Koenig(X.granatum)is a medicinal plant used to treat various diseases in several Asian countries.Many bioactive natural products have been isolated from the plants,particularly several groups of limonoids,including 18 xylogranatins(Xyl-A to R),all of which bear a furyl-δ-lactone core commonly found in limonoids.Based on a structural analogy with the limonoids obacunone and gedunin,we hypothesized that xylogranatins could target the enzyme glycogen synthase kinase-3β(GSK-3β),a major target for the treatment of neurodegenerative pathologies,viral infections,and cancers.Methods We investigated the binding of the 18 xylogranatins to GSK-3β using molecular docking in comparison with two known reference GSK-3β ATP-competitive inhibitors,LY2090314 and AR-A014418.For each compound bound to GSK-3β,the empirical energy of interaction(ΔE)was calculated and compared to that obtained with known GSK-3β inhibitors and limonoid triterpenes that target this enzyme.Results Five compounds were identified as potential GSK-3β binders,Xyl-A,-C,-J,-N,and-O,for which the calculated empirical ΔE was equivalent to that calculated using the best reference molecule AR-A014418.The best ligand is Xyl-C,which is known to have marked anticancer properties.Binding of Xyl-C to the ATP-binding pocket of GSK-3β positions the furyl-δlactone unit deep into the binding-site cavity.Other xylogranatin derivatives bearing a central pyridine ring or a compact polycyclic structure are much less adapted for GSK-3β binding.Structure-binding relationships are discussed.Conclusion GSK-3β may contribute to the anticancer effects of X.granatum extract.This study paves the way for the identification of other furyl-δ-lactone-containing limonoids as GSK-3β modulators.

    Keywords Natural products Xylocarpus granatum Xylogranatins Glycogen synthase kinase-3β(GSK-3β)Limonoids Cancer Molecular modelling Structure-activity relationship

    1 Introduction

    The mangrove treeXylocarpus granatumJ.Koenig(X.granatum)is used in traditional medicine in different Asian countries to treat symptoms,such as fever,dysentery,and diarrhea,associated with diseases such as malaria and cholera[1,2].Extracts prepared from various parts of the plant,mostly the fruits,leaves,and bark,are used as folk medicines in India,Bangladesh,and other countries to reduce fever or treat diarrhea[3].These medicinal activities are linked to the presence of a large number of bioactive secondary metabolites in the extracts[4].The plant is a rich reservoir of active natural products,including flavonoids,alkaloids,terpenoids,and steroids[5].Many compounds with antioxidant,anti-inflammatory,antiparasitic,antidiabetic,and anticancer properties have been identified inX.granatumextracts in recent years[6].Limonoids are particularly abundant and diverse in this plant,including xylomexicanins A - N isolated from the leaves and twigs[7],hainanxylogranins A - X found in the leaves and bark[8],granatripodins A and B from the seeds[9],thaigranatins A - T,and krishnagranatins A - I isolated from the seeds[10-12]and many other related limononoids.An important series of limonoids found inX.granatumare named xylogranatins A - R,which are essentially isolated from the fruits[13-16]and seeds[17]of the Chinese mangrove.These represent a homogeneous series of 18 limonoids(Figure 1).The lead product in this series is xylogranatin C(Xyl-C),which has anticancer properties[18].Xyl-C suppresses tumor cell proliferationin vitroand exerts marked pro-apoptotic activities[18].The analog Xyl-B also exhibits anticancer effects,with significant cytotoxicity against colon cancer cell lines[19].However,the mechanisms of action of various xylogranatins remain unknown.Therefore,this study focused on identifying potential molecular targets for these natural products.

    Figure 1 Structures of the xylogranatins

    Certain limonoid triterpenes can modulate the activity of the serine/threonine kinase glycogen synthase kinase-3β(GSK-3β),which regulates a wide range of cellular processes(Figure 2).This is the case for the limonoid triterpene obacunone isolated from the root bark ofDictamnus dasycarpusTurcz[20]and the structurally related limonoid gedunin isolated from the plantAzadirachta indica,which also functions as an effective GSK-3βinhibitor[21].Obacunone is an antioxidant,anti-inflammatory,and anticancer agent found in diverse plants[22,23],whereas gedunin is an inhibitor of melanogenesis and an inducer of apoptosis[24,25].The compounds obacunone and gedunin possess a common furyl-δ-lactone core,which is also present in xylogranatins.This analogy prompted us to investigate the potential capacity of xylogranatins to bind GSK-3βusing molecular docking.Several crystal structures of GSK-3βare available in the protein data bank.We selected structure 1Q5K,which corresponds to GSK-3βbound to the anticancer inhibitor AR-A014418.This well-resolved three-dimensional(3D)structure(1.94 ?)corresponds to the activated form of human GSK-3βbound to AR-A014418 in its ATP pocket[26].We evaluated the capacity of each of the 18 xylogranatins to form stable complexes with GSK-3βand discovered that five compounds(Xyl-A,-C,-J,-N,and -O)could potentially be considered as bona fide GSK-3βligands,with the capacity to form stable complexes comparable to those of the two reference compounds tested in parallel:the GSK-3βATP-competitive inhibitors LY2090314 and AR-A014418.

    Figure 2 Structures of gedunin and obacunone,known to interfere with GSK-3β,an enzyme implicated in a diversity of diseases

    2 Materials and methods

    2.1 Molecular structures and software

    3D structures of GSK-3βin complex with a small-molecule inhibitor(AR-A014418)were retrieved from the Protein Data Bank(PDB)(www.rcsb.org)under PDB code 1Q5K[26].Docking experiments were performed using the GOLD software(GOLD 5.3 release,Cambridge Crystallographic Data Centre,Cambridge,UK).Before starting the docking procedure,the structure of the ligands was optimized using a classical Monte Carlo conformational search procedure,as described in the Biochemical and Organic Simulation System(BOSS)software,freely available to academic users[27].Potential GSK-3β-binding sites for the different products were searched using the web server CASTp 3.0(Computed Atlas of Surface Topography of proteins)and visualized with the molecular modeling system Chimera 1.15[28,29].

    2.2 In silico molecular docking procedure

    With each structure,based on the shape complementarity criteria,the drug-binding site,and surrounding amino acids were defined.Shape complementarity and geometry considerations favor a docking grid centered in the volume defined by the central amino acid.Within the binding site,the side chains of the specific amino acids were considered fully flexible.For structure 1Q5K,the flexible amino acids are Lys85,Val110,Leu132,Asp133,Tyr134,Val135,Glu137,Arg141,Leu188,and Cys199.The ligand was defined as flexible during docking.Up to 100 poses that were energetically reasonable were retained while searching for the correct binding mode of the ligand.The decision to maintain a trial pose is based on ranked poses,using the Piecewise Linear Potential(PLP)fitness scoring function(which is the default in GOLD version 5.3 used here)[30].The same procedure was used to establish molecular models for the various natural products listed in Table 1 and reference compounds.The empirical potential energy of the interactionΔE for the ranked complexes was evaluated using the simple expressionΔE(interaction)=E(complex)-[E(protein)+ E(ligand)].Therefore,the spectroscopic empirical potential energy function Spectroscopic Potential Algorithm for Simulating Biomolecular Conformational Adaptability(SPASIBA)and its corresponding parameters were used.The free energies of hydration(ΔG)were estimated using the molecular mechanics/generalized born surface area(MM/GBSA)model in Monte Carlo simulations using BOSS software[31].The stability of the receptor-ligand complex was evaluated using the empirical potential energy of interaction[32,33].The MM/GBSA procedure was used to evaluate the free energies of hydration(within the BOSS program)[27]in relation to aqueous solubility.Molecular graphics and analyses were performed using Discovery Studio Visualizer,Biovia 2020(Dassault Systèmes BIOVIA Discovery Studio Visualizer 2020;San Diego,Dassault Systèmes,2020).

    Table 1 Calculated potential energy of interaction(ΔE,kcal/mol)and free energy of hydration(ΔG,kcal/mol)for the interaction of xylogranatins with the GSK-3β protein(PDB:1Q5K)

    2.3 Monte Carlo simulations

    Molecular dynamics(MD)and Monte Carlo(MC)simulations are the two most widely used methods for investigating protein-ligand stability and affinity.MD simulation of proteins is a challenge that requires carefulconsideration of the 1st law of thermodynamics[34].Both methods use an empirical force field to control the total energy(MC,energy minimization)and forces(MD,Newton’s equations of motion).To use MD simulations confidently,a force field parameterized for dynamic properties is required.The development of a reliable and accurate force field for conformational analysis is important.This requires the accuracy of the force field over the entire potential surface rather than in the region of the global minimum[35].The most commonly used academic force fields(CHARMM,AMBER,and GROMOS)do not exhibit the required vibrational spectroscopic quality.Minimizing a protein structure with normal modes can result in the calculation of imaginary wavenumbers corresponding to maxima in the potential energy(transition states,mainly owing to inadequate barriers to internal rotation).The spectroscopic SPASIBA force field has been specifically developed to provide refined empirical molecular mechanics force field parameters,as described in other studies[32,36].Therefore,we used MC simulations rather than MD simulations,which require a substantial increase in computer time to achieve the same level of convergence[37].

    3 Results

    3.1 Molecular models of reference compounds bound to GSK-3β

    The docking analysis was performed with the two limonoid triterpenes,obacunone and gedunin,which have been previously shown to inhibit GSK-3β.Their propensity to form stable complexes with the enzyme was compared to that of the reference compounds,tideglusib,LY2090314,and AR-A014418.For each compound,we calculated the empirical energy of interaction(ΔE)and energy of hydration(ΔG).In all cases,the ligand-binding site corresponded to the site found in the crystal structure.For LY2090314 and AR-A014418,the predicted docking poses in the ligand-protein complex were excellent(ΔE=-69.5 and-73.0 kcal/mol,respectively),whereas the docking score was much less favorable with tideglusib(ΔE=-44.9 kcal/mol).This is expected because this compound has been shown to bind the inactive(DFG-out)conformation of GSK-3β[38].This analysis aimed to identify natural products with GSK-3βbinding capacity at least equivalent or superior to those of LY2090314 and AR-A014418.

    3.2 Molecular models of xylogranatins bound to GSK-3β

    Obacunone and gedunin can form equally stable complexes with GSK-3β,withΔE values in the range -57 to-60 kcal/mol,that is,approximately 20% less than the values calculated with the two synthetic references(Table 1).Thereafter,we tested each of the 18 xylogranatins compounds bearing a furyl-δ-lactone core.The calculatedΔE values ranged from -48.6 kcal/mol for Xyl-E to-76.2 kcal/mol for Xyl-C,respectively the less adapted and the best suited compound for binding to GSK-3β.Compounds were categorized into three groups.The calculatedΔE values were >- 60 kcal/mol for Xyl-E,-F,-G,-H,and -I,suggesting that these five compounds are not well adapted to interact with GSK-3β.ΔE values comprised between -70 and -60 kcal/mol were measured for Xyl-B,-D,-K,-L,-M,-P,and -Q,respectively.Five compounds emerged from the analysis,withΔE values <

    - 70 kcal/mol:the lead compound Xyl-C and the analogs Xyl-A,-J,-N,and -O.For these top five compounds,the formation of a stable complex with GSK-3βcan be considered because theΔE values are comparable to those measured with the best reference,AR-A014418.

    3.3 Configuration of the Xyl-C-GSK-3β complex

    A molecular model of Xyl-C binding to GSK-3βis shown in Figure 3.This natural product binds to the ATP active site of the enzyme,which is deeply enfolded by two domains.The furyl-δ-lactone unit of Xyl-C points toward the interior of the site,whereas the acetyl group is oriented toward the external side of the cavity.This cavity is relatively large and accommodates a variety of molecules.The extended conformation of Xyl-C was well-adapted to fit into the pocket.In contrast,more rigid molecules,such as Xyl-E,-F,-G,and -H,which present a tetracyclic core,are much less suited to sit in the binding cavity.Compounds with a pyridine ring,such as Xyl-F,-G,and -H,do not offer a suitable skeleton for GSK-3βbinding.However,the structure-binding relationships are complex because Xyl-A,also equipped with a rigid skeleton,presents a good GSK-3βbinding affinity.The only common element among all molecules is the furyl-δ-lactone core,which is directly implicated in protein interactions.In the case of Xyl-C,the furan ring interacted with the protein via Hbonds with residues Asp-200 and Lys-85(Figure 4).This situation is slightly different from that of Xyl-N,which is another good binder,with the implication of Lys-85 and a π-sulfur interaction with Cys-199.For compounds such as Xyl-N,-O,and -A,the orientation in the binding pocket is slightly different;however,in all cases,there are key residues implicated in the H-bonds,such as Lys-85 and Asp-200,in addition to a range of van der Walls and alkyl contacts.The same situation was observed with Xyl-J,one of the top 5 GSK-3βbinders in our series.Here again,the compound inserts its furyl-δ-lactone unit into the site deep into the hydrophobic cavity(Figure 5).Xyl-I,-J,-K,and -L differed by the single carbon atom at R1/R2.Structure-binding relationships are complex;however,it appears that a methyl ester at position R2is preferred over an acid function.The nature of the R2substituent is less important and a bulky group is tolerated.The tigloyl or isobutyryl R2side chain of Xyl-O and -P protruded outside the cavity,with little interaction with the protein.

    Figure 3 Molecular model of Xyl-C bound to GSK-3β(PDB:1Q5K)

    Figure 4 Binding map contacts for Xyl-C and -N bound to GSK-3β

    Figure 5 Close-up view of Xyl-J bound to GSK-3β

    4 Discussion

    Xylogranatins A - R represent a small group of limonoids isolated from the fruits or seeds of the mangrove treeXylocarpus granatumJ.Koenig,used in traditional medicine[13-17].These natural products display anti-inflammatory effects,and at least two members of the series,xylogranatins B and C,have anticancer properties[18,19].Xyl-C was recently found to significantly suppress tumor cell proliferation and trigger apoptosis[18].However,the molecular targets of these compounds are currently unknown.Based on the analogy with other limonoids,such as gedunin and obacunone bearing a furyl-δ-lactone unit,we hypothesized that xylogranatins might interact with the enzyme GSK-3β,a serine/threonine kinase involved in a large range of cellular processes.This hypothesis was tested using molecular docking with the crystal structure of GSK-3β.

    The discovery that GSK-3βcould contribute to the pharmacological action of certain xylogranatin derivatives is significant because it provides a potential molecular basis to explain the anticancer effects ofX.granatumextracts and Xyl-C[18,39].GSK-3βis considered a promising target for overcoming chemoresistance,particularly in pancreatic cancer[40,41].Overexpression of GSK-3βplays a direct role in tumor growth and modulates drug response[42,43].Therefore,it is important to identify novel GSK-3βinhibitors that can regulate the activity of this key enzyme.The discovery of new GSK-3βbinders such as Xyl-C could impact the design or development of novel therapeutics.Small molecules bearing a furyl-δ-lactone unit could be designed to target this enzyme.GSK-3βhas also been implicated in neurological disorders,multiple sclerosis,and diabetes[44-46].The targeting of GSK-3βwith xylogranatins may also partly explain the antidiabetic action ofX.granatumextracts[47].Natural and synthetic scaffolds that modulate GSK-3βactivity have been used to target glucose metabolism[48].This study provides new ideas for the design of GSK-3βligands based on furyl-δ-lactone units.

    Among the 18 xylogranatin derivatives tested,five compounds revealed a binding capacity comparable to that of the two synthetic products LY2090314 and ARA014418,which were used as reference inhibitors.The potential capacity of Xyl-A,-C,-J,-N,and -O to form stable complexes with GSK-3βwas superior to that measured with the two limonoid products at the origin of our analysis.The measuredΔE values(- 73/- 76 kcal/mol)were similar to those of the best-known binder,ARA014418.Therefore,we hypothesized that GSK-3βrepresents a potential protein target for these compounds,particularly the tumor-active product Xyl-C.We are aware of the limitations of molecular docking evaluation;however,it is a useful approach to guide the discovery of a target for these molecules with no mechanism of action defined at present.

    Many compounds are structurally affiliated with xylogranatins,such as xylogranatopyridines A - B and xylogranatumines A - G fromX.granatum[49],and other limonoids with a furyl-δ-lactone core.Synthetic approaches are also being developed,offering opportunities to design related limonoids[50-52].All of these compounds could be further tested as potential inhibitors of GSK-3β.Considering the implication of this enzyme in many vital biological processes,validation of ourin silicoproposal is eagerly awaited.Thus,Xyl-C may be a very useful GSK-3βmodulator.

    5 Conclusion

    The molecular docking study reported in this study identified five xylogranatin derivatives(Xyl-A,-C,-J,-N,and-O)as potential GSK-3βbinders.We compared the GSK-3βbinding capacity of all 18 xylogranatins identified thus far from the medicinal plantXylocarpus granatumJ.Koenig.Xyl-C is revealed as a potential GSK-3βligand,and its furyl-δ-lactone unit is directly implicated in protein interactions.Four other xylogranatins from the mangrove tree were considered GSK-3βbinders:xylogranatins A,J,N,and O.GSK-3βcould contribute to the antidiabetic and anticancer effects reported previously with extracts ofX.granatum.This discovery will orient future studies towards a more detailed analysis of the contribution of GSK-3βto the pharmacological effects of xylogranatins,notably the anticancer effects of Xyl-C.These observations will help to better understand and rationalize the antidiabetic effects ofX.granatumextract.

    6 Highlights

    (i)Xylogranatins A - R are limonoids isolated from the medicinal plantXylocarpus granatumJ.Koenig.

    (ii)Molecular docking revealed that xylogranatins A,C,J,N,and O can bind to GSK-3β.

    (iii)Structure-binding studies indicated a key role for the furyl-δ-lactone core of the products.

    (iv)GSK-3βlikely contributes to the neuroprotective and anticancer activities of Xyl-C.

    Competing interests

    The authors declare no conflict of interest.

    Digital Chinese Medicine2022年1期

    Digital Chinese Medicine的其它文章
    Instructions for Authors
    亚洲色图综合在线观看| 日韩大片免费观看网站| 午夜福利高清视频| 中文精品一卡2卡3卡4更新| 一区二区av电影网| 午夜福利视频精品| 九九爱精品视频在线观看| 亚洲精品第二区| 久久久久久久亚洲中文字幕| 夜夜爽夜夜爽视频| 国产高清不卡午夜福利| 99久久精品热视频| 欧美日韩国产mv在线观看视频 | 99久久人妻综合| 不卡视频在线观看欧美| 久久国产乱子免费精品| 丝袜美腿在线中文| 又爽又黄a免费视频| 麻豆成人av视频| 国产极品天堂在线| 久久精品综合一区二区三区| 少妇熟女欧美另类| 欧美激情国产日韩精品一区| freevideosex欧美| 黄色怎么调成土黄色| 建设人人有责人人尽责人人享有的 | 一级毛片我不卡| 成人亚洲精品av一区二区| 91狼人影院| 男女啪啪激烈高潮av片| 国产精品精品国产色婷婷| 少妇 在线观看| 赤兔流量卡办理| 在线观看av片永久免费下载| 我要看日韩黄色一级片| 国产精品伦人一区二区| 黄色日韩在线| xxx大片免费视频| 国内精品宾馆在线| 国产在线男女| 日韩欧美精品v在线| 18禁在线播放成人免费| 女的被弄到高潮叫床怎么办| 免费av不卡在线播放| 成人国产麻豆网| 在线观看免费高清a一片| 国产91av在线免费观看| 三级男女做爰猛烈吃奶摸视频| 日本wwww免费看| 色播亚洲综合网| 亚洲精品国产av蜜桃| 九草在线视频观看| 美女国产视频在线观看| 99久久精品国产国产毛片| tube8黄色片| 日本免费在线观看一区| 色哟哟·www| 熟女人妻精品中文字幕| 日日摸夜夜添夜夜添av毛片| 亚洲精品日韩av片在线观看| 好男人视频免费观看在线| 国产久久久一区二区三区| 国产精品一区二区在线观看99| 日韩制服骚丝袜av| 成人无遮挡网站| 国产大屁股一区二区在线视频| 高清午夜精品一区二区三区| 久久99蜜桃精品久久| 黑人高潮一二区| 日本欧美国产在线视频| 99久久精品一区二区三区| 99精国产麻豆久久婷婷| 国产 一区精品| 一级二级三级毛片免费看| 午夜福利视频精品| 中文字幕免费在线视频6| 免费大片黄手机在线观看| 少妇被粗大猛烈的视频| 精品久久久精品久久久| 精品久久久噜噜| 国产女主播在线喷水免费视频网站| 久久久国产一区二区| 国产淫片久久久久久久久| 精品视频人人做人人爽| 中文欧美无线码| 久久97久久精品| 免费黄网站久久成人精品| 亚洲色图av天堂| www.色视频.com| 一级毛片我不卡| 免费少妇av软件| 1000部很黄的大片| 久久人人爽av亚洲精品天堂 | 精品少妇黑人巨大在线播放| av免费观看日本| 女人十人毛片免费观看3o分钟| 九九爱精品视频在线观看| 最近中文字幕2019免费版| 丰满人妻一区二区三区视频av| 亚洲最大成人手机在线| 亚洲丝袜综合中文字幕| 少妇人妻一区二区三区视频| 在线观看免费高清a一片| av黄色大香蕉| 日韩av不卡免费在线播放| 狂野欧美激情性xxxx在线观看| 人妻系列 视频| 欧美+日韩+精品| eeuss影院久久| 嫩草影院入口| 成年女人在线观看亚洲视频 | 亚洲美女搞黄在线观看| 国产欧美亚洲国产| 永久网站在线| 大香蕉97超碰在线| 婷婷色综合www| 一级黄片播放器| 久久精品国产鲁丝片午夜精品| 成人午夜精彩视频在线观看| 黄色一级大片看看| 国产永久视频网站| 国产精品秋霞免费鲁丝片| 久久人人爽av亚洲精品天堂 | 如何舔出高潮| 看十八女毛片水多多多| 日韩av免费高清视频| 免费黄色在线免费观看| 内射极品少妇av片p| 日韩精品有码人妻一区| 麻豆成人午夜福利视频| 日本熟妇午夜| 18禁在线无遮挡免费观看视频| 乱码一卡2卡4卡精品| 天堂中文最新版在线下载 | 真实男女啪啪啪动态图| 免费高清在线观看视频在线观看| 欧美xxxx黑人xx丫x性爽| 欧美一级a爱片免费观看看| 日韩一本色道免费dvd| 青青草视频在线视频观看| 精品99又大又爽又粗少妇毛片| 高清午夜精品一区二区三区| 欧美一区二区亚洲| 又黄又爽又刺激的免费视频.| 国产高潮美女av| 激情五月婷婷亚洲| 国产爽快片一区二区三区| 国产熟女欧美一区二区| 久久影院123| 免费看日本二区| 国产老妇女一区| 少妇的逼好多水| 干丝袜人妻中文字幕| 免费av不卡在线播放| 一级片'在线观看视频| 老司机影院成人| 97超碰精品成人国产| 深夜a级毛片| 色播亚洲综合网| 午夜精品一区二区三区免费看| 亚洲精品久久久久久婷婷小说| 嫩草影院新地址| 乱码一卡2卡4卡精品| 寂寞人妻少妇视频99o| 欧美另类一区| 国产在线一区二区三区精| 在线看a的网站| 中国国产av一级| 国产精品国产三级国产专区5o| 国产伦理片在线播放av一区| 亚洲怡红院男人天堂| 久久久久精品性色| 国产黄片美女视频| 青春草亚洲视频在线观看| 九九爱精品视频在线观看| 交换朋友夫妻互换小说| 久久韩国三级中文字幕| 成人美女网站在线观看视频| 亚洲成人中文字幕在线播放| 久久国内精品自在自线图片| 天天一区二区日本电影三级| 日本猛色少妇xxxxx猛交久久| 国产69精品久久久久777片| 国产精品一区二区在线观看99| 一级a做视频免费观看| 国产精品久久久久久精品古装| 欧美日韩综合久久久久久| 色哟哟·www| 亚洲国产成人一精品久久久| 亚洲av国产av综合av卡| 毛片女人毛片| 伦精品一区二区三区| 亚洲综合色惰| 又爽又黄无遮挡网站| 国产熟女欧美一区二区| 亚洲色图综合在线观看| 18+在线观看网站| 一区二区av电影网| 干丝袜人妻中文字幕| 国产精品久久久久久久电影| 精品少妇久久久久久888优播| 国产精品麻豆人妻色哟哟久久| 午夜日本视频在线| 亚洲最大成人手机在线| 不卡视频在线观看欧美| 国产亚洲最大av| 亚洲av在线观看美女高潮| 久久久亚洲精品成人影院| 卡戴珊不雅视频在线播放| 日韩一区二区视频免费看| 少妇被粗大猛烈的视频| 国产视频内射| 午夜福利网站1000一区二区三区| 能在线免费看毛片的网站| 欧美高清成人免费视频www| 国产精品av视频在线免费观看| 国产 精品1| 国产白丝娇喘喷水9色精品| 精品久久久久久久久av| 中文字幕制服av| 午夜福利高清视频| 美女cb高潮喷水在线观看| 国产精品99久久久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产成人精品久久久久久| 午夜免费鲁丝| 男女无遮挡免费网站观看| 婷婷色综合大香蕉| 熟女人妻精品中文字幕| 国产精品久久久久久久电影| 天美传媒精品一区二区| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久久亚洲| 国产 精品1| 免费av不卡在线播放| 欧美性猛交╳xxx乱大交人| 国产精品麻豆人妻色哟哟久久| 欧美日韩视频精品一区| 51国产日韩欧美| 三级男女做爰猛烈吃奶摸视频| 中国国产av一级| 国产精品麻豆人妻色哟哟久久| 亚洲天堂av无毛| 亚洲国产色片| 免费观看av网站的网址| 嫩草影院入口| 岛国毛片在线播放| 天美传媒精品一区二区| 熟女av电影| 亚洲精品色激情综合| 女的被弄到高潮叫床怎么办| 国产亚洲5aaaaa淫片| 毛片女人毛片| 国产黄片美女视频| 久久6这里有精品| 国产午夜精品一二区理论片| 成人国产av品久久久| av网站免费在线观看视频| 国产亚洲最大av| 最近的中文字幕免费完整| 中文在线观看免费www的网站| 成人高潮视频无遮挡免费网站| 97人妻精品一区二区三区麻豆| 成人毛片60女人毛片免费| 99久久中文字幕三级久久日本| 国语对白做爰xxxⅹ性视频网站| 亚洲av在线观看美女高潮| 亚洲成人av在线免费| 亚州av有码| 尾随美女入室| 国产真实伦视频高清在线观看| 国产视频首页在线观看| 国产日韩欧美在线精品| 丰满人妻一区二区三区视频av| 中文字幕亚洲精品专区| 夫妻性生交免费视频一级片| 亚洲欧美日韩卡通动漫| 99re6热这里在线精品视频| 国产成人福利小说| 大又大粗又爽又黄少妇毛片口| 久久99热这里只有精品18| 亚洲成人一二三区av| 中文天堂在线官网| 精品一区二区三区视频在线| 制服丝袜香蕉在线| 婷婷色综合www| 成人免费观看视频高清| 久久6这里有精品| 在线播放无遮挡| 大码成人一级视频| 一级爰片在线观看| 深夜a级毛片| av国产久精品久网站免费入址| 不卡视频在线观看欧美| 日本av手机在线免费观看| 国产午夜精品一二区理论片| 一级毛片电影观看| 夜夜爽夜夜爽视频| 啦啦啦在线观看免费高清www| av黄色大香蕉| 一级毛片 在线播放| 亚洲人成网站在线播| 亚洲欧美精品专区久久| 99热这里只有是精品在线观看| 纵有疾风起免费观看全集完整版| 一本一本综合久久| 永久网站在线| 成年人午夜在线观看视频| 国产精品久久久久久久电影| 国产在视频线精品| 日本免费在线观看一区| 免费观看的影片在线观看| 国产黄片美女视频| 国产高清有码在线观看视频| 不卡视频在线观看欧美| 69人妻影院| 人妻一区二区av| av一本久久久久| 中文字幕久久专区| 有码 亚洲区| 夜夜爽夜夜爽视频| 亚洲内射少妇av| 夜夜爽夜夜爽视频| 国产黄a三级三级三级人| tube8黄色片| 亚洲av.av天堂| 狠狠精品人妻久久久久久综合| 91午夜精品亚洲一区二区三区| 亚洲高清免费不卡视频| 一级爰片在线观看| 男女啪啪激烈高潮av片| 国产成人免费无遮挡视频| 精品少妇黑人巨大在线播放| 91在线精品国自产拍蜜月| 国产精品99久久久久久久久| 亚洲精品久久午夜乱码| 看免费成人av毛片| 亚洲aⅴ乱码一区二区在线播放| 不卡视频在线观看欧美| 欧美激情在线99| 日韩,欧美,国产一区二区三区| 亚洲av一区综合| 欧美日本视频| 青青草视频在线视频观看| 欧美老熟妇乱子伦牲交| 噜噜噜噜噜久久久久久91| 欧美变态另类bdsm刘玥| 色哟哟·www| 欧美潮喷喷水| 欧美少妇被猛烈插入视频| 午夜免费观看性视频| 高清av免费在线| 日韩电影二区| 亚洲精品国产成人久久av| 日韩一区二区视频免费看| 国产男女内射视频| 另类亚洲欧美激情| 偷拍熟女少妇极品色| av在线亚洲专区| 一级二级三级毛片免费看| 日日摸夜夜添夜夜添av毛片| 观看美女的网站| 亚洲无线观看免费| 日本爱情动作片www.在线观看| 日韩国内少妇激情av| 免费大片18禁| 国产欧美亚洲国产| av国产久精品久网站免费入址| 免费av不卡在线播放| 国产免费一区二区三区四区乱码| av.在线天堂| 午夜福利视频1000在线观看| 日本黄大片高清| 男人和女人高潮做爰伦理| 亚洲电影在线观看av| 最近手机中文字幕大全| 三级国产精品欧美在线观看| 水蜜桃什么品种好| 久久精品人妻少妇| 青春草国产在线视频| 国产精品成人在线| 晚上一个人看的免费电影| 精品久久久久久久久亚洲| 国产欧美日韩一区二区三区在线 | 日本三级黄在线观看| 男人舔奶头视频| 久久久久九九精品影院| 我的老师免费观看完整版| 一本一本综合久久| 日韩欧美 国产精品| 好男人在线观看高清免费视频| 成年版毛片免费区| 久久综合国产亚洲精品| 久久久久久久久久成人| 国产av国产精品国产| 久热这里只有精品99| www.色视频.com| 免费黄频网站在线观看国产| 久久人人爽人人爽人人片va| 人人妻人人看人人澡| 噜噜噜噜噜久久久久久91| av在线亚洲专区| 嫩草影院新地址| 伦理电影大哥的女人| 精品久久久久久久末码| 亚洲欧美一区二区三区黑人 | 精品久久久精品久久久| 麻豆久久精品国产亚洲av| 亚洲欧美中文字幕日韩二区| 日韩人妻高清精品专区| 成人二区视频| 精品一区二区免费观看| 久久久久久久亚洲中文字幕| 亚洲国产欧美人成| 日日摸夜夜添夜夜添av毛片| 亚洲aⅴ乱码一区二区在线播放| 人人妻人人澡人人爽人人夜夜| 97热精品久久久久久| 亚洲经典国产精华液单| 日本爱情动作片www.在线观看| 97超碰精品成人国产| 欧美变态另类bdsm刘玥| 夜夜看夜夜爽夜夜摸| 国产成人免费无遮挡视频| 欧美老熟妇乱子伦牲交| 大码成人一级视频| 九九爱精品视频在线观看| 汤姆久久久久久久影院中文字幕| 日本爱情动作片www.在线观看| 亚洲丝袜综合中文字幕| www.色视频.com| 嘟嘟电影网在线观看| av网站免费在线观看视频| 在线观看美女被高潮喷水网站| 久久精品熟女亚洲av麻豆精品| 精品一区二区免费观看| 亚洲精品456在线播放app| 欧美精品一区二区大全| 亚洲综合精品二区| 一个人看视频在线观看www免费| 国产亚洲午夜精品一区二区久久 | 亚洲av国产av综合av卡| 五月天丁香电影| 亚洲欧美日韩东京热| 亚洲av男天堂| 99热网站在线观看| 日韩 亚洲 欧美在线| 夫妻性生交免费视频一级片| 成人漫画全彩无遮挡| 日韩视频在线欧美| 日韩伦理黄色片| 国产人妻一区二区三区在| 99精国产麻豆久久婷婷| 99九九线精品视频在线观看视频| 秋霞伦理黄片| 色吧在线观看| 男人狂女人下面高潮的视频| 日韩欧美精品免费久久| 一个人看视频在线观看www免费| 欧美国产精品一级二级三级 | 免费不卡的大黄色大毛片视频在线观看| 国产91av在线免费观看| 男人舔奶头视频| 亚洲成人久久爱视频| 日本-黄色视频高清免费观看| 久久6这里有精品| 亚洲,欧美,日韩| 免费大片18禁| av天堂中文字幕网| 国产精品一区www在线观看| 亚洲欧美精品专区久久| av黄色大香蕉| 精品一区在线观看国产| 亚洲色图av天堂| 国产精品熟女久久久久浪| 亚洲av国产av综合av卡| 中文字幕免费在线视频6| 日韩三级伦理在线观看| 波多野结衣巨乳人妻| 成人漫画全彩无遮挡| 一个人看的www免费观看视频| 男人和女人高潮做爰伦理| 亚洲精品,欧美精品| 直男gayav资源| 国产成人福利小说| 人妻一区二区av| 久久人人爽av亚洲精品天堂 | 国产黄片美女视频| 2021少妇久久久久久久久久久| 亚洲精品日韩在线中文字幕| 亚洲不卡免费看| 大片电影免费在线观看免费| 十八禁网站网址无遮挡 | 91精品伊人久久大香线蕉| 三级国产精品欧美在线观看| 国产精品久久久久久精品古装| 七月丁香在线播放| 另类亚洲欧美激情| 亚洲精品影视一区二区三区av| 永久免费av网站大全| 欧美3d第一页| 97超视频在线观看视频| 国产精品不卡视频一区二区| 能在线免费看毛片的网站| 亚洲精品视频女| 亚洲精品乱码久久久v下载方式| 日韩av免费高清视频| 亚洲最大成人中文| 国产片特级美女逼逼视频| 在线观看国产h片| 岛国毛片在线播放| 久久久久精品性色| 久久精品国产自在天天线| 黄色欧美视频在线观看| 久久99热这里只频精品6学生| 夜夜看夜夜爽夜夜摸| 99热这里只有是精品在线观看| 精品一区二区免费观看| 久久久欧美国产精品| 六月丁香七月| 亚洲激情五月婷婷啪啪| 久久精品国产a三级三级三级| 欧美少妇被猛烈插入视频| 国产精品.久久久| 在线免费十八禁| 国产一区二区在线观看日韩| 成年女人在线观看亚洲视频 | 身体一侧抽搐| 欧美日韩亚洲高清精品| 九色成人免费人妻av| 欧美激情久久久久久爽电影| 在线 av 中文字幕| 在线观看一区二区三区| 久热这里只有精品99| 国产成人a∨麻豆精品| 日韩av不卡免费在线播放| 亚洲图色成人| 嫩草影院精品99| 插逼视频在线观看| 国产精品一二三区在线看| 丰满人妻一区二区三区视频av| 国产毛片在线视频| 热99国产精品久久久久久7| 哪个播放器可以免费观看大片| 亚洲av成人精品一区久久| 亚洲av一区综合| 亚洲欧美一区二区三区黑人 | a级毛色黄片| 丰满人妻一区二区三区视频av| 麻豆成人av视频| 在现免费观看毛片| 99热国产这里只有精品6| 美女被艹到高潮喷水动态| 少妇猛男粗大的猛烈进出视频 | 中文字幕制服av| 夫妻午夜视频| av天堂中文字幕网| 美女高潮的动态| 在线观看三级黄色| 黄色一级大片看看| 少妇人妻精品综合一区二区| 免费av毛片视频| 中文资源天堂在线| 热99国产精品久久久久久7| 3wmmmm亚洲av在线观看| 成人午夜精彩视频在线观看| 欧美日韩国产mv在线观看视频 | 69人妻影院| 久久热精品热| 国产日韩欧美亚洲二区| 午夜免费鲁丝| 国产爱豆传媒在线观看| 亚洲国产精品国产精品| 超碰av人人做人人爽久久| .国产精品久久| 男人爽女人下面视频在线观看| 国产黄色免费在线视频| 亚洲色图综合在线观看| 亚洲av在线观看美女高潮| 我的女老师完整版在线观看| 亚洲人成网站高清观看| 最近最新中文字幕免费大全7| 国产成人精品一,二区| 激情 狠狠 欧美| 久久久久国产网址| 国产在视频线精品| 久久久久久九九精品二区国产| 三级国产精品片| 成人黄色视频免费在线看| 欧美高清性xxxxhd video| 美女国产视频在线观看| 日韩电影二区| 成人漫画全彩无遮挡| 国产精品不卡视频一区二区| 精品少妇久久久久久888优播| 波野结衣二区三区在线| 免费观看的影片在线观看| 亚洲精品自拍成人| 欧美 日韩 精品 国产| 99热网站在线观看| 久热这里只有精品99| 精品少妇久久久久久888优播| 色网站视频免费| 欧美xxxx性猛交bbbb| 黄片wwwwww| 一级爰片在线观看| 亚洲av电影在线观看一区二区三区 | 成人免费观看视频高清| 一本一本综合久久| av在线观看视频网站免费| 成人亚洲精品av一区二区| 亚洲av.av天堂| 久久久久国产网址| a级毛色黄片| 日本猛色少妇xxxxx猛交久久|