• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Relations between the Fractional Variation of the Ionizing Continuum and CIV Broad Absorption Lines with Different Ionization Levels

    2024-03-22 04:11:40YingRuLinCaiJuanPanandWeiJianLu

    Ying-Ru Lin, Cai-Juan Pan, and Wei-Jian Lu

    1 School of Information Engineering, Baise University, Baise 533000, China; yingru_lin@qq.com, william_lo@qq.com

    2 School of Materials Science and Engineering, Baise University, Baise 533000, China

    Abstract This paper explores the correlation between the fractional variation of the ionizing continuum and C IV broad absorption lines (BALs) with different ionization levels.Our results reveal anti-correlations between fractional variation of the continuum and fractional equivalency width(EW)variation of the C IV BALs without Al III BAL/mini-BALs at corresponding velocities,providing evidence for the widespread influence of the ionizing continuum variability on the variation of HiBALs.Conversely, for C IV BALs accompanied by Al III BAL/mini-BALs(LoBAL groups), no significant correction is detected.The absence of such a correlation does not rule out the possibility that variations in these low-ionization lines are caused by ionizing continuum variability, but rather suggests the influence of BAL saturation to some extent.This saturation effect is reflected in the distribution of the fractional EW variation, where the C IV BAL group accompanied by Al III BAL has a smaller standard deviation for the best-fitting Gaussian component than the two BAL groups without Al III BAL.However,the distribution of fractional variation of their continuum does not show any significant difference.Besides the saturation influence,another potential explanation for the lack of correlations in the LoBAL groups may be the effects of other variability mechanisms besides the ionization change, such as clouds transiting across the line of sight.

    Key words: (galaxies:) quasars: absorption lines – (galaxies:) quasars: general – galaxies: active

    1.Introduction

    Quasar outflows have been proposed as a kind of potential active galactic nucleus (AGN) feedback mechanism, which could play a role in terminating star formation in the interstellar medium (ISM) and regulating accretion onto the supermassive black hole (SMBH; Fabian 2012; King & Pounds 2015).In rest-frame UV spectra of quasars, outflows typically appear as broad absorption lines (BALs), with absorption widths greater than 2000 km s-1(Weymann et al.1991).“Mini-BALs” are defined as absorption troughs with full widths at half minimum from a few hundred to 2000 km s-1(Hamann & Sabra 2004).Most BALs have only high-ionization transitions,such as N V,Si IV, and C IV (referred to as HiBALs, as mentioned by Weymann et al.1991).A smaller fraction, about 15% in BAL quasars, also exhibits absorption from low-ionization transitions, including Al II, Al III and Mg II (known as LoBALs, as reported by Voit et al.1993 and Gibson et al.2009).Another subgroup, known as FeLoBALs, represents a small subset of LoBALs that exhibit absorption of Fe II or Fe III (Wampler et al.1995).

    BAL variability can serve as a means to assess BAL structures, wind locations, and dynamics, and constrain the physical mechanisms responsible for AGN outflows.Time variability in individual sources or samples with multi-epoch observations has been reported for HiBALs (e.g., Capellupo et al.2011, 2012; Filiz Ak et al.2013; Yi et al.2019a, 2019b;He et al.2019), for LoBALs (Zhang et al.2011; Vivek et al.2014;McGraw et al.2017;Sun et al.2017;Yi et al.2019a;Yi& Timlin 2021), and for FeLoBALs (Vivek et al.2012;McGraw et al.2015; Zhang et al.2015; Rafiee et al.2016;Stern et al.2017).The observed BAL variability can usually be explained by variations in the ionization parameter (e.g.,Barlow 1994;Crenshaw et al.2003;Filiz Ak et al.2013;Wang et al.2015; He et al.2017; Lu & Lin 2018; Lu et al.2018;Vivek 2019), clouds transiting across the line of sight (e.g.,Lundgren et al.2007;Gibson et al.2008;Hamann et al.2008;Krongold et al.2010; Hall et al.2011; Filiz Ak et al.2012;Vivek et al.2012;Capellupo et al.2014;Shi et al.2016;Vivek et al.2016; Capellupo et al.2017), or a combination of them(e.g., Capellupo et al.2012; Vivek et al.2014).One effective way to determine the variation mechanism of BAL in quasar sample is to investigate the correlation between variability in absorption lines and that of the continuum.Early study based on relatively small quasar samples reported no detectable correlation between changes in the BAL equivalency width(EW) and the continuum flux (Gibson et al.2008; Vivek et al.2014; Wildy et al.2014).However, recent studies have found anti-correlations between the fractional variation of the continuum and that of both C IV and Si IV BAL troughs in several BAL quasar samples (Lu & Lin 2018; Lu et al.2018;Vivek 2019).These anti-correlations reveal the widespread influence of ionizing continuum variability on BALs,providing evidence for photoionization-driven BAL variability.

    The question of whether these correlations extend to lower and higher ionization levels is still under debate.Vivek et al.(2014) found no clear correlation between absorption line and the continuum flux variabilities from a quasar sample of 22 low-ionization quasars that include Mg II and Al III BALs.However,Vivek et al.(2014)pointed out that targets with large absorption line variability also present large variability in their light curves, and they concluded that the observed variability can be well explained by the combination of two mechanisms:one is the continuum variations, and another is the clouds transiting across our line of sight.

    In typical disk-wind models(e.g.,Murray et al.1995;Proga et al.2000; Higginbottom et al.2013), BALs with different ionization levels can be explained by viewing angle effect.More concretely, lower degrees of ionization are observed along lines of sight closer to the accretion disk plane(Hamann& Sabra 2004; Baskin et al.2013, and Figure 16 of Filiz Ak et al.2014).This view is supported by observations as well as simulation studies.For example, Filiz Ak et al.(2014) studied the variability characteristics of C IV BAL troughs and whether they also contained accompanying Si IV and/or Al III BAL troughs.The measurements that they conducted demonstrate the correlation between the changes in ionization level,kinematics, and column density, which is consistent with the prediction of accretion-disk wind models.For example, low ionization absorption features in line of sight typically exhibit deeper and broader C IV BAL troughs, but exhibit smaller minimum velocities and less variation.Recent numerical simulations have also shown that when low ionization absorption features presented, the BALs are wider and deeper,whereas high ionization species exhibit higher blue-edge velocities compared to the low ionization lines (Matthews et al.2016).

    Filiz Ak et al.(2014)have reported the correlated changes of BAL with different ionization levels.Building upon their work,this paper aims to explore the correlation between the fractional variation of the ionizing continuum and C IV BALs with different ionization levels.The rest of this paper is organized as follows.Section 2 presents the data preparation and measurements of BALs and spectra.Section 3 contains the results,discussions, and conclusions.

    2.Data Preparation and Measurements

    The initial sample of this paper containing 671 quasars with at least two-epoch observations was selected by Filiz Ak et al.(2014)from SDSS-I/II/III.The selection criteria for these 671 targets were described in Section 2 of Filiz Ak et al.(2014).In their study, Filiz Ak et al.(2014) identified C IV, Si IV and Al III BAL/mini-BALs in the spectra of these quasars andclassified the C IV BALs into six groups according to whether there are Si IV and/or Al III BALs/mini-BALs at corresponding BAL regions.Specifically, “C IV00” represents C IV BALs without accompanying Si IV and Al III BALs at corresponding velocities during both epochs; “C IVS0” represents C IV BALs with a Si IV BAL at corresponding velocities in one or both epochs, but no corresponding Al III BAL;“C IVSA” represents C IV BALs with both accompanying Si IV and Al III BALs in either epoch;“C IVs0”represents C IV BALs with a Si IV mini-BAL,but no accompanying Al III BAL/mini-BAL is detected; “C IVsa” represents C IV BALs with both accompanying Si IV and Al III mini-BALs, “C IVSa” represents C IV BALs with a Si IV BAL as well as an Al III mini-BAL.In addition,Filiz Ak et al.(2014)defined the corresponding Si IV BALs of C IVS0as“Si IVS0,”the corresponding Si IV and Al III BALs of C IVSAas “Si IVSA” and “Al IIISA,” respectively.It is worth noting that among these nine groups, C IV00,C IVs0,C IVS0and Si IVS0belong to HiBALs, while C IVsa,C IVSA, C IVSa, Si IVSAand Al IIISAbelong to loBALs.

    Table 1 Number and Spearman Rank Correlation Analysis Results of Nine Groups of BALs

    We calculated the EW variation (ΔW) of all these detected BAL/mini-BALs, adopting the EW values measured by Filiz et al.(2014)and applied Equation(1)from Lu et al.(2018).We then selected BALs/mini-BALs based on the criterion of ΔW>3σ.The number of BALs included in each of the nine groups from Filiz Ak et al.(2014) and those selected for this article are listed in Table 1.We then calculated the fractional EW variation (ΔEW/〈EW〉) of our selected C IV, Si IV, and Al III BALs using Equation(2) in Lu et al.(2018).

    Figure 1.Fractional variation of BALs (ΔEW/〈EW〉)as a function of the fractional variation of the continuum(ΔFcont/〈Fcont〉) for nine groups of BALs.For the C IV00,C IVs0,C IVS0,C IVsa,C IVSa,and C IVSA groups,the ΔEW/〈EW〉is measured for C IV BAL troughs.For the Si IVS0 and Si IVSA groups,the ΔEW/〈EW〉is measured for Si IV BAL troughs.For the Al IIISA group, the ΔEW/〈EW〉is measured for Al III BAL troughs.

    To obtain the flux density values, we fitted a power-law continuum for each spectrum utilizing the same procedure in Lu et al.(2018).We then used the power-law continuum flux at 1350 ? from the two-epoch spectra of the same quasar to calculate the fractional variation of the ionizing continuum(ΔFcont/〈Fcont〉), following Equation (4) in Lu et al.(2018).Figure 1 depicts the fractional variation of BALs(ΔEW/〈EW〉) against the fractional variation of the continuum(ΔFcont/〈Fcont〉)for each group,and the corresponding results of the Spearman rank correlation analysis are listed in Table 1.

    3.Results and Discussions

    As shown in Table 1,anti-correlations between the fractional flux variations of the continuum and fractional EW variations of the BALs in C IV00, C IVs0, C IVS0and Si IVS0groups have been confirmed by the Spearman rank correlation analysis(with P-values of Spearman coefficient less than 0.01).It is worth noting that the C IV BALs with lower ionization exhibit smaller correlation coefficients.When the C IV BALs are accompanying with Al III BAL/mini-BALs (C IVsa, C IVSA,C IVSa, Si IVSAand Al IIISA), no significant correction is detected.These statistical results are consistent with the expectations of the disk-wind model and provide important insights into the variation mechanism of BALs with different ionization levels.

    On one hand, we confirm the anti-correlations between the fractional variations of the continuum and BALs in four groups(C IV00, C IVs0, C IVS0and Si IVS0) of HiBALs.Previous studies have observed anti-correlations between the fractional variations of the continuum and absorption lines in several BAL samples (Lu &Lin 2018;Lu et al.2018;Vivek 2019)as evidence for ionization-driven BAL variation.However, these studies did not compare the impact of different ionization states of BAL on the correlation.Our study expands on this by finding anti-correlations between the fractional flux variations of the continuum and fractional EW variations for four BAL groups without Al III BAL/mini-BAL, covering a wider ionization-potential range.This finding provides further evidence of the widespread impact of ionizing continuum variability on the variation of HiBALs (e.g., Weymann et al.1991).Additionally, in accordance with the typical disk-wind model (e.g., Murray et al.1995; Proga et al.2000;Higginbottom et al.2013), if different groups of BALs represent different viewing inclinations, the anti-correlations observed in our study provide evidence for the ubiquitous effects of ionizing continuum variability across a wide range of viewing inclinations.

    Figure 2.ΔFcont/〈Fcont〉 and ΔEW/〈EW〉distributions for the BALs in our CIV00 (dotted–dashed blue), C IVS0 (dashed green), and C IVSA (solid red) groups.

    On the other hand, we found no significant correlations between the fractional flux variations of the continuum and fractional EW variations for the five BAL groups with Al III BAL/mini-BAL (C IVsa, C IVSA, C IVSa, Si IVSAand Al IIISA),with P-values of Spearman coefficient greater than 0.01.We speculate that the lack of correlations in these groups may be due to the effects of BAL saturation or other variability mechanisms besides the ionization change, such as clouds transiting across the line of sight.

    The observations of BAL profiles suffering from saturation have been reported in several previous studies(e.g.,Arav 1997;Hamann 1998; Arav et al.2001; Leighly et al.2009; Borguet et al.2012;Xu et al.2018).For instance,Filiz Ak et al.(2014)have shown that when BAL troughs from lower ionization transitions are present, C IV troughs tend to be stronger and wider (see their Figure 5) and exhibit more saturation, but less fractional EW variation(see their Figure 11).This suggests that C IV troughs might experience more saturation when BAL troughs from lower ionization transitions are present.Hamann et al.(2019) also obtained empirical results showing that compared to the HiBALs, the C IV BALs in the composite spectrum of the LoBALs are deeper and wider (see their Figure 5).Using two sub-samples differing on the absorption trough depth,Vivek (2019)found that the shallow trough subsample exhibits an even stronger correlation while the deep trough sub-sample appears to be no correlation between the BAL variability and the continuum variability (see their Table 3).These results point out that the saturation of the BALs has a considerable effect in the correlation between the BAL variability and the continuum variability.The saturation can also be inferred from our Figure 2, which shows that the ΔEW/〈EW〉distribution of the C IVSAgroup has a smaller standard deviation (σ) for the best-fitting Gaussian component(σ=0.213) compared to the C IV00(σ=0.390) and C IVS0(σ=0.357) groups.This is because for saturated troughs, the fractional EW variation measurements can only reflect the lower limits of the true variations in optical depth and column density, thus weaken the correlation between the absorption line variability and continuum variability.However, the ΔFcont/〈Fcont〉distribution of the C IVSAdoes not show any significant difference compared to the C IV00and C IVS0groups(according to the K-S test results,with P>0.026).Considering the significant impact of line-saturation in the C IVSAgroup,we speculate that the effects of ionizing continuum variability may also exit in the BALs that accompany Al III BAL/mini-BALs.In other words, the ubiquitous effects of ionizing continuum variability may extend to even lower viewing inclinations.

    Another potential explanation for the lack of correlations in our LoBAL groups could be the transiting of the clouds across our line of sight.Transiting scenario has been reported to be a feasible cause of the absorption-line variability (e.g., Hamann et al.2008; Capellupo et al.2017).For example, if a highly saturated C IV BAL exhibits clear variability, it provides evidence in favor of the transiting scenario.This is because a highly saturated C IV BAL is not easily affected by small changes in ionization, but can easily exhibit variations due to the transiting of outflows (e.g., McGraw et al.2018).The presence of a P V BAL can serve as a detector for the highly saturated C IV BAL in the corresponding velocity (e.g.,Capellupo et al.2014, 2017; McGraw et al.2018).To put further constraints on the origin of variability of our LoBAL subsamples,it is necessary to check individual spectra,which is beyond the scope of this paper.

    In summary, we have discovered anti-correlations between the fractional variation of the continuum and fractional EW variation of the C IV BALs in four HiBAL groups, while no significant correlation was found in five LoBAL groups.The anti-correlations presented in four HiBAL groups demonstrates the widespread impact of ionizing continuum variability on the variation of outflow absorption.The lack of correlations in five LoBAL groups does not rule out the possibility that variations in these low-ionization lines are caused by ionizing continuum variability, but rather suggests the influence of BAL saturation to some extent.We have tested the ΔEW/〈EW〉and ΔFcont/〈Fcont〉distributions of the C IV00, C IVS0, and C IVSAgroups (Figure 2) to reveal the saturation influence.Another potential explanation for the lack of correlations in the LoBAL groups may be the effects of other variability mechanisms besides the ionization change, such as clouds transiting across the line of sight.

    Acknowledgments

    We wish to acknowledge the reviewer for the valuable comments on this paper.We also thank Filiz Ak et al.for making their data public.This research was supported by the Guangxi Natural Science Foundation (No.2021GXNSFBA220044), the National Natural Science Foundation of China (No.11903002),and the Research Project of Baise University(No.2019KN04).All observational data that support the findings of this study are available from the corresponding author (Wei-Jian Lu: william_lo@qq.com) on request.

    Funding for the Sloan Digital Sky Survey IV was provided by the Alfred P.Sloan Foundation, the U.S.Department of Energy Office of Science, and the Participating Institutions.SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah.The SDSS website is http://www.sdss.org/.

    SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University,the Chilean Participation Group, the French Participation Group,Harvard-Smithsonian Center for Astrophysics,Instituto de Astrofísica de Canarias, The Johns Hopkins University,Kavli Institute for the Physics and Mathematics of the Universe(IPMU)/University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP),Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), MaxPlanck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatories of China,New Mexico State University,New York University,University of Notre Dame,Observatário Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México,University of Arizona,University of Colorado Boulder, University of Oxford, University of Portsmouth,University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University,and Yale University.

    ORCID iDs

    Wei-Jian Lu https://orcid.org/0000-0002-1185-4146

    国产精品.久久久| 国产一区亚洲一区在线观看| 久久久久性生活片| 久久国内精品自在自线图片| 激情五月婷婷亚洲| 亚州av有码| 久久久久久伊人网av| 一区二区av电影网| 99久久精品热视频| 国产精品蜜桃在线观看| 五月天丁香电影| 能在线免费看毛片的网站| 国产在视频线精品| 亚洲av免费高清在线观看| 精品久久久精品久久久| 国产精品嫩草影院av在线观看| 一本久久精品| 丰满少妇做爰视频| 毛片女人毛片| 2021少妇久久久久久久久久久| 最后的刺客免费高清国语| 在线观看免费高清a一片| 一本久久精品| 黄色欧美视频在线观看| 身体一侧抽搐| 欧美国产精品一级二级三级 | 亚洲精品日韩在线中文字幕| 搡老乐熟女国产| 热99国产精品久久久久久7| 尤物成人国产欧美一区二区三区| 日本免费在线观看一区| 国产亚洲91精品色在线| 国产 精品1| 大又大粗又爽又黄少妇毛片口| 在线天堂最新版资源| 搡女人真爽免费视频火全软件| 久久99热这里只频精品6学生| 美女高潮的动态| 久久久欧美国产精品| 午夜福利高清视频| 激情 狠狠 欧美| 久久精品夜色国产| 尾随美女入室| 婷婷色麻豆天堂久久| 久久精品综合一区二区三区| 人妻系列 视频| 成人午夜精彩视频在线观看| 神马国产精品三级电影在线观看| 午夜免费鲁丝| 啦啦啦啦在线视频资源| 亚洲色图av天堂| 在线观看一区二区三区| 最后的刺客免费高清国语| 精品人妻一区二区三区麻豆| 制服丝袜香蕉在线| 国产一区二区亚洲精品在线观看| 麻豆精品久久久久久蜜桃| 欧美高清成人免费视频www| 男女啪啪激烈高潮av片| 少妇裸体淫交视频免费看高清| 日本黄色片子视频| 国产精品一区二区三区四区免费观看| 亚洲国产精品专区欧美| 久久久色成人| 欧美高清成人免费视频www| 国产精品国产三级专区第一集| 激情五月婷婷亚洲| 国产精品蜜桃在线观看| 一个人看的www免费观看视频| 日韩不卡一区二区三区视频在线| 99久久精品国产国产毛片| 久久久久久久亚洲中文字幕| 男女边摸边吃奶| 91久久精品国产一区二区三区| 午夜激情福利司机影院| 不卡视频在线观看欧美| 亚洲精品成人久久久久久| 亚洲欧美日韩无卡精品| 69av精品久久久久久| 熟妇人妻不卡中文字幕| 熟女电影av网| 一级毛片电影观看| 超碰97精品在线观看| 十八禁网站网址无遮挡 | 国产午夜福利久久久久久| 国产精品人妻久久久影院| 老司机影院成人| 男人添女人高潮全过程视频| 久久99蜜桃精品久久| 欧美一区二区亚洲| 蜜桃久久精品国产亚洲av| 亚洲成色77777| 国产精品久久久久久精品电影| 丰满少妇做爰视频| 亚洲人成网站在线观看播放| 日本午夜av视频| 亚洲色图综合在线观看| 老女人水多毛片| 肉色欧美久久久久久久蜜桃 | 看黄色毛片网站| 亚洲一区二区三区欧美精品 | www.av在线官网国产| 久久精品国产自在天天线| 欧美成人a在线观看| 亚洲天堂国产精品一区在线| 午夜福利高清视频| 国产av国产精品国产| 欧美成人午夜免费资源| 国产女主播在线喷水免费视频网站| 国产精品三级大全| 嘟嘟电影网在线观看| 精品酒店卫生间| 99久久精品热视频| 日韩 亚洲 欧美在线| 中国美白少妇内射xxxbb| 国产 一区精品| 国产成人免费无遮挡视频| 久久精品国产a三级三级三级| 在线天堂最新版资源| 久久久国产一区二区| 免费黄色在线免费观看| 国产欧美亚洲国产| xxx大片免费视频| 亚洲成人久久爱视频| 日日摸夜夜添夜夜添av毛片| 亚洲国产精品专区欧美| 男人爽女人下面视频在线观看| 国产又色又爽无遮挡免| 精品国产三级普通话版| 春色校园在线视频观看| 免费av观看视频| 亚洲精品成人久久久久久| 久久午夜福利片| 精品人妻一区二区三区麻豆| 三级经典国产精品| 熟女电影av网| 亚洲成人av在线免费| av在线观看视频网站免费| 777米奇影视久久| 日本av手机在线免费观看| 狠狠精品人妻久久久久久综合| 看免费成人av毛片| 只有这里有精品99| 欧美亚洲 丝袜 人妻 在线| 视频区图区小说| 国产成人免费观看mmmm| 精品久久国产蜜桃| 观看美女的网站| 日韩免费高清中文字幕av| 51国产日韩欧美| 久久精品国产亚洲av天美| 99久久精品一区二区三区| 夫妻性生交免费视频一级片| 国产精品国产三级专区第一集| 爱豆传媒免费全集在线观看| 嫩草影院新地址| 国产 精品1| 国产亚洲av片在线观看秒播厂| 国产一区二区三区综合在线观看 | av在线app专区| 性插视频无遮挡在线免费观看| 高清av免费在线| 国产亚洲91精品色在线| 亚洲精品影视一区二区三区av| 婷婷色av中文字幕| 亚洲国产精品999| 一级毛片黄色毛片免费观看视频| 又大又黄又爽视频免费| 精品一区在线观看国产| 久久国内精品自在自线图片| 蜜桃亚洲精品一区二区三区| 国产久久久一区二区三区| 国产精品人妻久久久久久| 最近中文字幕2019免费版| 街头女战士在线观看网站| 少妇的逼好多水| 嫩草影院入口| 美女高潮的动态| 久久精品熟女亚洲av麻豆精品| 99视频精品全部免费 在线| 精华霜和精华液先用哪个| 国产国拍精品亚洲av在线观看| 国产成人免费无遮挡视频| 涩涩av久久男人的天堂| 国产黄色免费在线视频| 禁无遮挡网站| 国产成人精品福利久久| 精品久久久久久久久av| 亚洲不卡免费看| 亚洲av日韩在线播放| 少妇裸体淫交视频免费看高清| av黄色大香蕉| 亚洲欧美日韩无卡精品| 麻豆成人午夜福利视频| 国产精品一区二区在线观看99| 少妇的逼好多水| 干丝袜人妻中文字幕| 插逼视频在线观看| 午夜亚洲福利在线播放| 精品视频人人做人人爽| 草草在线视频免费看| 亚洲欧美中文字幕日韩二区| 亚洲av二区三区四区| 国产成人福利小说| 久久精品国产鲁丝片午夜精品| 男女啪啪激烈高潮av片| 亚洲最大成人中文| 久久久久久国产a免费观看| 久久99热6这里只有精品| 成人亚洲精品一区在线观看 | 国内揄拍国产精品人妻在线| 男插女下体视频免费在线播放| 欧美高清成人免费视频www| 亚洲欧美成人综合另类久久久| 中文乱码字字幕精品一区二区三区| 国产精品人妻久久久久久| 精品久久久久久电影网| 啦啦啦啦在线视频资源| 午夜福利高清视频| 最后的刺客免费高清国语| 久久亚洲国产成人精品v| 我的女老师完整版在线观看| 免费看日本二区| 成年女人看的毛片在线观看| 色播亚洲综合网| 亚洲丝袜综合中文字幕| 亚洲av男天堂| 女的被弄到高潮叫床怎么办| 亚洲激情五月婷婷啪啪| 国内精品宾馆在线| .国产精品久久| 久久久精品94久久精品| 亚洲在线观看片| 日本午夜av视频| 下体分泌物呈黄色| 你懂的网址亚洲精品在线观看| 我要看日韩黄色一级片| 男女无遮挡免费网站观看| 精品久久久久久久久亚洲| 久久久久精品性色| 日本-黄色视频高清免费观看| 色视频在线一区二区三区| 亚洲av成人精品一区久久| 深夜a级毛片| 国产老妇伦熟女老妇高清| 久久久久国产网址| 国产亚洲最大av| videos熟女内射| 蜜臀久久99精品久久宅男| 男插女下体视频免费在线播放| 国产精品99久久久久久久久| 欧美少妇被猛烈插入视频| 精品人妻一区二区三区麻豆| 日韩伦理黄色片| 国产美女午夜福利| 两个人的视频大全免费| 一级毛片我不卡| 在线精品无人区一区二区三 | 禁无遮挡网站| 成人亚洲欧美一区二区av| av在线天堂中文字幕| 99热这里只有是精品50| 99久久精品热视频| 国产91av在线免费观看| 国产精品成人在线| 最近2019中文字幕mv第一页| 永久免费av网站大全| 一个人观看的视频www高清免费观看| 午夜视频国产福利| 黑人高潮一二区| 欧美极品一区二区三区四区| 深夜a级毛片| 国产精品一区www在线观看| 国产男女超爽视频在线观看| 国产av国产精品国产| 免费看不卡的av| 爱豆传媒免费全集在线观看| 尤物成人国产欧美一区二区三区| 成人国产麻豆网| 日韩一区二区三区影片| 国产永久视频网站| 亚洲av免费高清在线观看| 成人免费观看视频高清| 亚洲av福利一区| 成年免费大片在线观看| 精品视频人人做人人爽| 在线观看av片永久免费下载| 久久精品国产自在天天线| 国精品久久久久久国模美| 少妇人妻精品综合一区二区| 网址你懂的国产日韩在线| 日韩三级伦理在线观看| 一区二区三区免费毛片| 亚洲人成网站在线播| 熟女电影av网| 又粗又硬又长又爽又黄的视频| 免费看av在线观看网站| 秋霞伦理黄片| 欧美最新免费一区二区三区| 国产一区亚洲一区在线观看| 麻豆乱淫一区二区| 亚洲经典国产精华液单| 一级毛片 在线播放| 老司机影院成人| 夜夜爽夜夜爽视频| 亚洲av日韩在线播放| 久久久久久久精品精品| 亚洲图色成人| 中文天堂在线官网| 国产亚洲午夜精品一区二区久久 | 日韩一本色道免费dvd| 嫩草影院入口| 国产大屁股一区二区在线视频| av在线蜜桃| 亚洲内射少妇av| 国产爽快片一区二区三区| 大话2 男鬼变身卡| 一本色道久久久久久精品综合| 麻豆精品久久久久久蜜桃| 九九在线视频观看精品| 三级国产精品欧美在线观看| 在线观看国产h片| 三级国产精品片| 99视频精品全部免费 在线| 成人特级av手机在线观看| 晚上一个人看的免费电影| 国产免费福利视频在线观看| 国产国拍精品亚洲av在线观看| 91精品国产九色| 精品熟女少妇av免费看| 噜噜噜噜噜久久久久久91| 精品亚洲乱码少妇综合久久| 国产伦在线观看视频一区| 日韩大片免费观看网站| 日韩一区二区三区影片| 成年女人看的毛片在线观看| 又大又黄又爽视频免费| 国产精品久久久久久精品电影小说 | 国产av码专区亚洲av| 麻豆国产97在线/欧美| 麻豆乱淫一区二区| 亚洲精品一二三| 亚洲精品视频女| 午夜福利视频精品| 国产免费又黄又爽又色| av播播在线观看一区| 色哟哟·www| 内地一区二区视频在线| 永久网站在线| 亚洲一级一片aⅴ在线观看| a级毛色黄片| 国产午夜精品一二区理论片| 久久99热这里只有精品18| 春色校园在线视频观看| 80岁老熟妇乱子伦牲交| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美日韩卡通动漫| 亚洲久久久久久中文字幕| 欧美激情久久久久久爽电影| 欧美日韩视频精品一区| 国产亚洲精品久久久com| 午夜精品一区二区三区免费看| 亚洲精品视频女| 丰满少妇做爰视频| 成人午夜精彩视频在线观看| 搡女人真爽免费视频火全软件| 亚洲欧美清纯卡通| 日韩欧美一区视频在线观看 | 久久久久精品性色| 人人妻人人看人人澡| 久久99精品国语久久久| 春色校园在线视频观看| 中国美白少妇内射xxxbb| 日韩制服骚丝袜av| 少妇 在线观看| 国产精品一区二区在线观看99| 国产精品三级大全| 亚洲久久久久久中文字幕| 中文天堂在线官网| a级毛片免费高清观看在线播放| 99热这里只有精品一区| 国内精品美女久久久久久| 久久ye,这里只有精品| 97在线人人人人妻| 亚洲精品日韩在线中文字幕| 18禁在线无遮挡免费观看视频| 波多野结衣巨乳人妻| 亚洲美女视频黄频| 秋霞在线观看毛片| 五月开心婷婷网| 国产精品爽爽va在线观看网站| 免费黄频网站在线观看国产| 亚洲一级一片aⅴ在线观看| 久久久a久久爽久久v久久| 亚洲精品色激情综合| 国产成人精品一,二区| 国产欧美另类精品又又久久亚洲欧美| 青春草视频在线免费观看| 久久人人爽人人爽人人片va| 久久久精品免费免费高清| 男女边吃奶边做爰视频| 久久亚洲国产成人精品v| 欧美日韩视频高清一区二区三区二| av在线亚洲专区| 亚洲精品国产色婷婷电影| 中文资源天堂在线| 国产综合精华液| 亚洲无线观看免费| 18禁在线播放成人免费| 日日摸夜夜添夜夜添av毛片| 国产精品女同一区二区软件| 99re6热这里在线精品视频| 亚洲av一区综合| kizo精华| 午夜亚洲福利在线播放| 国产一区二区三区综合在线观看 | 一级二级三级毛片免费看| 国产精品人妻久久久久久| 亚洲国产欧美人成| 久久亚洲国产成人精品v| 久久人人爽av亚洲精品天堂 | 日本-黄色视频高清免费观看| 美女cb高潮喷水在线观看| 肉色欧美久久久久久久蜜桃 | 国产女主播在线喷水免费视频网站| 日本欧美国产在线视频| 午夜福利网站1000一区二区三区| 简卡轻食公司| 亚洲一区二区三区欧美精品 | 久久国产乱子免费精品| 狠狠精品人妻久久久久久综合| 久久精品久久久久久噜噜老黄| 亚洲人成网站在线播| 日韩精品有码人妻一区| 亚洲av在线观看美女高潮| 国产精品久久久久久精品电影| 精品人妻一区二区三区麻豆| 精品午夜福利在线看| 99久久人妻综合| 亚洲美女视频黄频| 真实男女啪啪啪动态图| 国产成人福利小说| 18+在线观看网站| 我要看日韩黄色一级片| 亚洲最大成人中文| videossex国产| 在线a可以看的网站| 一本久久精品| 国产女主播在线喷水免费视频网站| 国产黄色视频一区二区在线观看| av播播在线观看一区| 亚洲av不卡在线观看| 久久精品久久久久久噜噜老黄| 久久精品国产亚洲av天美| 久久亚洲国产成人精品v| 色网站视频免费| 中文精品一卡2卡3卡4更新| 男人狂女人下面高潮的视频| 精品熟女少妇av免费看| av在线播放精品| 午夜免费观看性视频| www.色视频.com| 99热这里只有是精品在线观看| 成人亚洲欧美一区二区av| 亚洲,一卡二卡三卡| 亚洲av中文字字幕乱码综合| 一级毛片 在线播放| 特大巨黑吊av在线直播| 人妻夜夜爽99麻豆av| 美女内射精品一级片tv| 国产伦理片在线播放av一区| 国产男人的电影天堂91| 内地一区二区视频在线| 国产一区二区在线观看日韩| 亚洲天堂国产精品一区在线| 国产男人的电影天堂91| 免费看不卡的av| 日韩成人av中文字幕在线观看| 成人免费观看视频高清| 男插女下体视频免费在线播放| 两个人的视频大全免费| 国产中年淑女户外野战色| 久久99蜜桃精品久久| 亚洲人成网站在线播| 亚洲综合色惰| 秋霞伦理黄片| 久久久久久久精品精品| 色网站视频免费| 国产亚洲av嫩草精品影院| 久久久亚洲精品成人影院| 韩国av在线不卡| 国产真实伦视频高清在线观看| 中文字幕制服av| 日韩大片免费观看网站| 久久久精品免费免费高清| 综合色丁香网| 国产精品一区二区在线观看99| 18禁裸乳无遮挡免费网站照片| 1000部很黄的大片| 久久久久性生活片| 亚洲欧美成人综合另类久久久| 国产成人a区在线观看| 激情五月婷婷亚洲| 伊人久久精品亚洲午夜| 欧美成人一区二区免费高清观看| 国内精品美女久久久久久| 三级国产精品片| 亚洲欧洲国产日韩| 欧美97在线视频| 久久影院123| 一个人看的www免费观看视频| 亚洲精品日本国产第一区| 亚洲欧美精品专区久久| 国产 一区 欧美 日韩| 欧美国产精品一级二级三级 | 亚洲成人中文字幕在线播放| av在线老鸭窝| 在线观看美女被高潮喷水网站| 国产老妇女一区| 少妇 在线观看| 视频区图区小说| 国产探花在线观看一区二区| 嫩草影院新地址| 亚洲第一区二区三区不卡| 久久精品久久久久久久性| 亚洲怡红院男人天堂| a级一级毛片免费在线观看| 国精品久久久久久国模美| 我的老师免费观看完整版| 国产一级毛片在线| 精品午夜福利在线看| 在线精品无人区一区二区三 | 又黄又爽又刺激的免费视频.| 丰满乱子伦码专区| 国产精品一区二区三区四区免费观看| 人妻少妇偷人精品九色| 免费播放大片免费观看视频在线观看| 欧美潮喷喷水| 国精品久久久久久国模美| 你懂的网址亚洲精品在线观看| 天堂俺去俺来也www色官网| 日日撸夜夜添| 国产成人一区二区在线| 婷婷色综合www| 久久99蜜桃精品久久| 国产 一区 欧美 日韩| 欧美性感艳星| 亚洲国产高清在线一区二区三| 久久精品久久久久久久性| 亚洲一级一片aⅴ在线观看| 日日摸夜夜添夜夜添av毛片| 99久久精品国产国产毛片| 亚洲欧美精品专区久久| 免费少妇av软件| 亚洲精品久久午夜乱码| 寂寞人妻少妇视频99o| 国产精品蜜桃在线观看| 一边亲一边摸免费视频| 国产精品.久久久| 亚洲最大成人手机在线| 国产精品无大码| 夜夜爽夜夜爽视频| 久久6这里有精品| 1000部很黄的大片| 免费黄网站久久成人精品| 国国产精品蜜臀av免费| 久久久久久久久久人人人人人人| 日韩一区二区三区影片| 国产精品国产三级国产av玫瑰| 在线精品无人区一区二区三 | 男人添女人高潮全过程视频| 久久6这里有精品| 男女啪啪激烈高潮av片| 久久精品国产鲁丝片午夜精品| 久久ye,这里只有精品| 一级毛片黄色毛片免费观看视频| 亚洲成人一二三区av| 久久久国产一区二区| 女人久久www免费人成看片| 精品99又大又爽又粗少妇毛片| 中文在线观看免费www的网站| 亚洲av.av天堂| 国产免费又黄又爽又色| 男人舔奶头视频| 日韩一区二区三区影片| 成人黄色视频免费在线看| av线在线观看网站| 日日撸夜夜添| 男人添女人高潮全过程视频| 国产男女内射视频| 亚洲国产精品999| 精品少妇久久久久久888优播| 99久久九九国产精品国产免费| 一级毛片我不卡| 永久免费av网站大全| 久久精品国产亚洲网站| 哪个播放器可以免费观看大片| 蜜桃久久精品国产亚洲av| 中国三级夫妇交换| 精品一区二区三卡| 久久久精品欧美日韩精品| 黄色配什么色好看| 大片免费播放器 马上看| 日本-黄色视频高清免费观看| 亚洲人与动物交配视频| 亚洲自拍偷在线| 亚洲久久久久久中文字幕| 日韩三级伦理在线观看| 亚洲av中文字字幕乱码综合| 午夜亚洲福利在线播放| 国产男女超爽视频在线观看| 在线 av 中文字幕| 免费高清在线观看视频在线观看| 九九爱精品视频在线观看| 美女xxoo啪啪120秒动态图|