• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Global characterization of modifications to the charge isomers of IgG antibody

    2022-04-07 12:46:52XinlingCuiWeiMiZhishngHuXioyuLiBoMengXinyunZhoXiohongQinToZhuWntoYing
    Journal of Pharmaceutical Analysis 2022年1期

    Xinling Cui,Wei Mi,Zhishng Hu,Xioyu Li,Bo Meng,Xinyun Zho,Xiohong Qin,To Zhu,Wnto Ying,**

    aState Key Laboratory of Proteomics,Beijing Proteome Research Center,National Center for Protein Sciences(Beijing),Beijing Institute of Lifeomics,Beijing,China

    bNational Institute of Metrology,Center for Advanced Measurement Science,Beijing,China

    cNational Institute of Metrology,Chemical Metrology&Analytical Science Division,Beijing,China

    dCanSino Bio Corporation Tianjin Key Laboratory of Recombinant Bacterial Recombination and Bacterial Vaccines,Tianjin,China

    Keywords:

    Antibody

    Charge isomers

    Mass spectrometry

    Posttranslational modification

    Glycopeptide

    A B S T R A C T

    Posttranslational modifications of antibody products affect their stability,charge distribution,and drug activity and are thus a critical quality attribute.The comprehensive mapping of antibody modifications and different charge isomers(CIs)is of utmost importance,but is challenging.We intended to quantitatively characterize the posttranslational modification status of CIs of antibody drugs and explore the impact of posttranslational modifications on charge heterogeneity.The CIs of antibodies were fractionated by strong cation exchange chromatography and verified by capillary isoelectric focusing-whole column imaging detection,followed by stepwise structural characterization at three levels.First,the differences between CIs were explored at the intact protein level using a top-down mass spectrometry approach;this showed differences in glycoforms and deamidation status.Second,at the peptide level,common modifications of oxidation,deamidation,and glycosylation were identified.Peptide mapping showed nonuniform deamidation and glycoform distribution among CIs.In total,10 N-glycoforms were detected by peptide mapping.Finally,an in-depth analysis of glycan variants of CIs was performed through the detection of enriched glycopeptides.Qualitative and quantitative analyses demonstrated the dynamics of 24 N-glycoforms.The results revealed that sialic acid modification is a critical factor accounting for charge heterogeneity,which is otherwise missed in peptide mapping and intact molecular weight analyses.This study demonstrated the importance of the comprehensive analyses of antibody CIs and provides a reference method for the quality control of biopharmaceutical analysis.

    1.Introduction

    Charge heterogeneity of monoclonal antibodies(mAbs)is formed by enzymatic and nonenzymatic processes during the manufacture of biopharmaceuticals.The development and manufacture of therapeutic mAbs is a highly regulated process,and the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use proposed a level of heterogeneity allowed for biopharmaceutical products.Charge heterogeneity has an important influence on the stability of mAbs and their biological functions and has become a critical quality attribute[1]that must be tested in the processes of stability research,release,and approval[2-5].Cleavage of C-terminal lysine results in the loss of one or two positively charged lysine residues,leading to the formation of basic variants[6,7].Deamidation of N-and O-linked glycans,glycation,and the presence of negatively charged sialic acid lead to an increase in negative charges and the appearance of acidic variants[8-10].

    There are many methods to detect charge isomers(CIs),including polyacrylamide gel electrophoresis[11].However,its low resolution and complicated operation results in fewer applications.Ion exchange chromatography uses either salt elution or pH gradient elution mode[12-15],with the subsequent collection of the flowthrough for the mass spectrometry(MS)analysis of protein modifications[16].The online liquid chromatography(LC)-MS method was developed using an organic salt buffer that can be tolerated by MS to perform CI separation[17],but the quality of the mass spectrum and universality of the methods should be considered,and the detailed interpretation of site-specific modifications is difficult.This challenge also exists for the approach of coupling capillary electrophoresis with MS[18,19].In this study,we aimed to characterize the global modification status of antibodies and reveal the dynamics of modifications along with different CIs of antibodies.The experimental design is shown in Fig.1.The method for detecting and separating the CIs of the IgG1 antibody was established by strong cation exchange chromatography(SCX-HPLC)and capillary isoelectric focusing-whole column imaging detection(cIEF-WCID),and the former was followed by fractionation to collect CIs.Highly accurate and high-resolution MS detection was used to analyze the differences in the molecular weight of each CI at the intact protein level.We further investigated the effects of various modifications of CIs at the peptide level.Finally,the effects of glycans on CIs were explored by the hydrophilic interaction liquid chromatography(HILIC)enrichment of glycopeptides and LC-MS/MS analysis.

    Fig.1.Experimental design for the in-depth structural analysis of charge isomers(CIs)of IgG antibody.SCX-HPLC:strong cation exchange chromatography;cIEF-WCID:capillary isoelectric focusing-whole column imaging detection.

    2.Materials and methods

    2.1.Materials

    The IgG1 antibody used in this study was provided by the China National Institute of Metrology(Beijing,China),abbreviated as C_mAb,and its C-terminal lysine was knocked out at the gene level.RM8671 was purchased from National Institute of Standards and Technology(NIST)(Gaithersburg,MD,USA),named as NIST_mAb,formic acid(FA)was purchased from Fluka(Seelze,Germany),trifluoroacetic acid(TFA)was from ACROS(Walsham,MA,USA),and trypsin from Promega(Madison,WI,USA).Ampholyte(HR,AESlyte 3-10),SH AESlyte 2.5-5,isoelectric point standard 7.03,and isoelectric point standard 9.33 were purchased from CEinfinite(Ontario,Canada).Chemicals,including NaOH,H3PO4,NaH2PO4,Na2HPO4,and NaCl,were purchased from the Sinopharm Chemical Reagent Co.,Ltd.(Shanghai, China).Methyl cellulose (MC), NH4HCO3,tris(2-carboxyethyl)phosphine(TCEP),acetonitrile(ACN),PNGase F and iodoacetamide were purchased from Sigma(St.Louis,MO,USA).

    Instruments used included L-3120 HPLC(Beijing,China),CEInfinite C01 WCID(Ontario,Canada),Thermo Fisher Exactive Plus EMR and Thermo Fisher Q-Exactive?Plus(Walsham,MA,USA).

    Columns used included size-exclusion chromatography column(SEC)(4.6 mm×300 mm,3μm)and SCX(4.6 mm×250 mm,5μm)purchased from Sepax(Newark,DE,USA).A pre-column C18(150μm × 2 cm,3μm)(Beijing,China)and C18capillary column(150μm × 15 cm,1.9μm)(Beijing,China)were also used.

    2.2.Methods

    2.2.1.Separation of CIs

    cIEF-WCID:The samples were first diluted to 10 mg/mL with deionized water.Then,5μL of samples were mixed with 1μL of HR AESlyte 3-10,3 μL of SH AESlyte 2.5-5,40 μL of 0.5%MC,0.5 μL of isoelectric point standard(7.03),and 0.5μL of isoelectric point standard(9.33),then were centrifuged at 10,000 g for 2 min.For each analysis,5μL of the mixed sample was injected.The instrument parameters used were as follows:column temperature,25°C;cathode electrode solution,0.1 mol/L NaOH;anode electrode solution,0.08 mol/L H3PO4;and detection wavelength,280 nm.The focusing procedure was 1000 V for 1 min,2000 V for 1 min,and 3000 V for 4 min.The current was below 15μA.

    For SCX-HPLC,the sample was diluted to 1 mg/mL with deionized water,and 10μg was injected for each analysis.Then 10 mmol/L of phosphate(pH 6.0;buffer A)and 0.5 mol/L of NaCl in buffer A(pH 6.0;buffer B)at a flow rate of 0.6 mL/min were used for the separation with the gradient:0-5.0 min,0%B;5.0-43.0 min,0-25%B;43.0-43.5 min,25%-90%B;43.5-48.5 min,90%B;and 48.5-55 min,90%-0%B.

    2.2.2.Molecular weight detection

    Proteins were separated isocratically on the SEC column(20%ACN and 0.1% FA in 79.9% H2O).The detection wavelength was 280 nm,and the flow rate was 0.2 mL/min.The mass spectrometer was operated in positive ion mode,with an acquisition range from m/z 1000-6000 and maximum IT of 200 ms.The molecular weight calculation was performed with Protein Deconvolution 4.0 with 99% confidence.The mass tolerance was set at 20 ppm,and the relative abundance threshold ranged from 0% to 1%.

    2.2.3.Peptide mapping analysis

    First,5μg of each CI fraction was diluted with 50 mM NH4HCO3to a total volume of 50μL.Then,TCEP and CAA were added to 10 and 20 mM final concentrations,and the sample was incubated at 25°C for 0.5 h.Trypsin was added at a ratio of enzyme to protein 1:30(μg:μg),and digestion was maintained for 16 h at 37°C.The resultant peptides were desalted,and 500 ng was injected for nanoLC-MS/MS analysis[20].The mobile phase consisted of 0.1% FA in ACN(A)and 0.1% FA in 80% ACN(B)at a flow rate of 600 nL/min.The gradient was 0-14 min,8%-13%B;14-51 min,13%-25%B;51-68 min,25%-38%B;68-69 min,38%-95%B;and 69-75 min,95%B.

    MS parameters were as follows:for full MS,resolution 70000,AGC target value 3e6,maximum injection time 20 ms,and scan range 300-2000 m/z;for MS2,resolution 17500,AGC target value 1e6,maximum injection time 100 ms,loop count 5,isolation window 1.6 Da,scan range 200-2000 m/z,step NCE 20 and 30,and dynamic exclusion 18 ms.

    The mAb sequence matching was run through pFind with the following parameters:fixed modification of carbamidomethylation(C);variable modifications:deamidation(N/Q)and oxidation(M);precursor tolerance 20 ppm,fragment tolerance 20 ppm,peptide mass range 100-10000 Da,and peptide length 3-100 amino acids.

    MaxQuant search of the mAb sequence was based on the following parameters:fixed modification of carbamidomethylation(C);variable modification:deamidation(N/Q),oxidation(M),G0F,and G1F;min peptide length three amino acids;and match-between-run on.

    For the Byonic search,the data were searched against the mAb sequence and 52 common N-glycan databases.The fixed modification was carbamidomethylation(C).The variable modifications were deamidation(N/Q)and oxidation(M).

    2.2.4.Glycopeptide enrichment and detection

    First,2 mg of HILIC medium was activated in 200μL of 0.1% TFA for 15 min at 25°C,and the upper layer solution was discarded after centrifugation.Then,three replicate washings of the HILIC media were performed with 200μL of 0.2% TFA in 80% ACN solution for 15 min.The digested 20μg peptides were dissolved in 0.2% TFA in 80% ACN solution,mixed with HILIC media,and incubated for 2 h.The mixtures were then added to a tip filled with a C8membrane at the end and washed twice with 80μL of 0.2% TFA in 80% ACN solution(non-glycopeptide).Then,80μL of 0.1% TFA was added to elute the glycopeptide twice.The samples were then dried using a SpeedVac at 45°C and analyzed by nanoLC-MS/MS.The MS parameters of N-glycopeptide were the same as those of the peptide mapping parameters.

    2.2.5.Statistical analysis

    Peptide mapping analysis:We calculated the fraction of total(FOT)for each peptide to normalize the intensity data.The detailed workflow is shown in Fig.S1.

    N-Glycoform analysis:Data calculation and graphics processing were performed using R v.3.2.1.Bubble plots were generated using the ggplot2 package based on the PSMs of N-glycoforms.

    3.Results and discussion

    3.1.SCX-HPLC and cIEF-WCID separation

    Two antibodies were used in the study.One was procured from the National Institute of Metrology,China(NIMC),named C_mAb.The other was purchased from the NIST(RM 8671),named NIST_-mAb,which was used as a reference for necessary comparisons.The theoretical pI was 8.2 for C_mAb and 8.41 for NIST_mAb(by Compute pI/Mw tool;http://ca.expasy.org/tools/pi_tool.html).We used cIEF-WCID to measure the actual isoelectric point first and verified the method with NIST_mAb.This method was easy to achieve with a high-resolution view of CI distribution with only a small sample quantity.We performed SCX-HPLC using a phosphate buffer system[9]and verified this method with NIST_mAb.The gradient was optimized so that the CI peaks were separated with better resolution and facilitated the collection of the CIs.

    Figs.2A and B show that the two methods generated similar profiles.For C_mAb,the SCX-HPLC acid peak proportion was 23.9%,the main peak was 71.9%,and the basic peak was 4.1%.The cIEF-WCID profile showed an acid peak of 31.08%,a main peak isoelectric point at 8.61 with a proportion of 61.43%,and a basic peak content of 7.48%.The results of the two methods were mutually verified,further illustrating their accuracy and feasibility.Both methods showed that C_mAb had a lower basic peak content,indicating that the C-terminal lysine knockout had a significant influence on the basic peak.For NIST_mAb,both results from cIEF-WCID and SCXHPLC had two basic peaks,corresponding to 1 or 2 C-terminal lysines.This result showed that the C-terminal lysine had a great influence on the distribution of antibody CIs.

    3.2.SCX-HPLC separation of CI fractions

    The collected CI fractions were reanalyzed by SCX-HPLC to evaluate their purity(Fig.3).We compared the CIs with the intact C_mAb at the same elution time.The purities of the A1,A2,A3,and MP fractions were 96%,98%,99%,and 99%,respectively.This antibody had only a 4.1% basic peak,which was mainly due to the absence of lysine at the C-terminus.The purity of B1 was 49%(contained part of the composition of the main peaks).Although B2 could not be detected by UV,we still collected this and conducted MS analysis.

    Fig.2.(A)Profiles from cIEF-WCID(upper panel)and SCX-HPLC(lower panel)separation of C_mAb;pI 7.03 and pI 9.33 denoted the pI markers.(B)Profiles from cIEF-WCID(upper panel)and SCX-HPLC(lower panel)separation of NIST_mAb;pI 7.65 and pI 10.10 denoted the pI markers.A1:acid peak1;A2:acid peak2;A3:acid peak3;MP:main peak;B1:basic peak1;B2:basic peak2.

    Fig.3.SCX-HPLC profiles of CI fractions.The purity of A1,A2,A3,MP,and B1 was 96%,98%,99%,99%,and 49%,respectively.

    3.3.Molecular weight detection

    The reSpect?algorithm was employed to resolve the spectra[21,22],which calculates the average mass using the form of the peak interval(used to represent the mass).In the current study,we optimized our data analysis strategy to confidently identify either high-or low-abundance species using a mass tolerance of 20 ppm.The molecular weight distributions are shown in Fig.4,and the N-glycoform abundance(common component)is shown in Fig.S2.

    Fig.4.Molecular weight distribution analysis of CIs.Pink solid frames indicated the components that were not present in the CIs.Blue dotted boxes indicated a deamidation modification on the CIs.A1:acid peak1;A2:acid peak2;A3:acid peak3;MP:main peak;B1:basic peak1;B2:basic peak2.(A)A1 vs.intact C_mAb;(B)A2 vs.intact C_mAb;(C)A3 vs.intact C_mAb;(D)MP vs.intact C_mAb;(E)B1 vs.intact C_mAb;(F)B2 vs.intact C_mAb;(G)reference:acid peak of NIST_mAb vs.intact NIST_mAb.

    The glycoform distribution of acid peak A1 differed significantly from that of the intact antibody(Figs.4A and S2).The differences in the molecular weight were presumed to be a consequence of deamidation[23],and this was later confirmed in the peptide mapping analysis.The A2 glycoform distribution was also inconsistent with the intact antibody distribution(Fig.4B).The A2 peak lacked the G0F/G0F-2HexNAc glycoform compared to the intact antibody;however,the difference was relatively small,and the deamidation modification also existed.For the A3 glycoform distribution,the G0F/G0F-2HexNAc and G1F/G1F glycoforms were absent(Fig.4C).The MP fraction had glycoform distributions almost identical to that of the intact antibody(Fig.4D).A small peak appeared in the deconvolution plot of MP,which was presumed to be oxidation modification[24]and confirmed in the following peptide mapping analysis.The distributions of the main peaks of A2,B1,and B2 were the same as those in the above results.Fig.4E shows the basic B1 peak.Although it contained a component that was 51% of the main peak,the glycoform still showed difference from the intact antibody,and deamidation also occurred.The basic peak B2 was significantly different from that of the intact antibody with respect to the glycoform distribution,and the G0F/G0F-2HexNAc and G1F/G1F glycoforms were missing(Fig.4F).We also presented the results of the acid peak of NIST_mAb(Fig.4G),and these verified that glycoforms and modifications affected the molecular weight distribution.We concluded from molecular weight analyses that glycoforms might affect the distribution of CIs[25,26]as well as deamidation.Usually,deamidation occurs in the variable domains,especially in the exposed and flexible complementaritydetermining regions as well as in the constant domains[27,28].Detailed information on the deconvoluted molecular weight can be found in Tables S1-7.

    3.4.Peptide mapping analysis

    The total ion chromatogram(TIC)of peptide mapping is shown in Fig.5A.The software pFind with the “Open Search”function[29,30]was first used to search the raw data to find peptide modifications.Next,the raw data were retrieved using MaxQuant software,and the “match-between-runs”function was used to extract the intensity of each identification[31].The heatmap of peptide mapping results showed that the acid peak had more deamidation(N/Q)(Fig.5B).Along with the weak acidic peaks,the intensity of the deamidation decreased.Other modifications are shown in Fig.S3.This result suggests that deamidation is an important factor that affects CIs and confirms the deamidation in the intact molecular weight analysis of CIs[32].

    Fig.5.LC-MS/MS analysis of CIs.(A)TIC of peptide mapping of each CI and(B)heatmap view of the 2 deamidation(NQ)modification from peptide mapping.A1:acid peak1;A2:acid peak2;A3:acid peak3;MP:main peak;B1:basic peak1.

    Next,we explored glycopeptide identifications in the peptide mapping analysis.Byonic software is a recommended tool for intact glycopeptide identification[33,34].Both the spectrum counting method[35](Fig.6)and extraction peak area method(Fig.S4)were used for glycopeptide quantitation.Both methods indicated that G0F and G1F were the major glycoforms of the antibody,and all the 10 types of high mannose components not present in molecular weight analysis were detected in this analysis,further suggesting that glycoforms(non-major glycoforms)might affect the distribution of CIs.

    Fig.6.Spectrum counts of N-Glycoforms for each CI.

    3.5.Identification of enriched glycopeptides

    An important feature of therapeutic proteins is glycosylation modification as it is an important factor in protein activity and stability[36,37].The above results indicated that N-glycoform variations might affect the distribution of CIs.To more accurately explain the effect of glycosylation on charge heterogeneity,it is necessary to carry out further exploration of the N-glycoform.Glycopeptides in each CI digest were enriched with HILIC media[36]and analyzed by nanoLC-MS/MS(Fig.S5).The mass spectrum signals for glycopeptides were significantly improved after HILIC enrichment.Spectra for one of the sialic acid-containing glycopeptides after HILIC enrichment are shown in Fig.S6.The results of the N-glycoforms and sialic acid content table are shown in a bubble plot(Fig.7).The main N-glycoforms in each of the CIs were G0F and G1F.In total,24 N-glycoforms were detected,which was higher than the number detected in the peptide mapping analysis.A fraction of sialic acidcontaining glycans was detected in the A1,A2,and A3 CIs with a decreasing tendency,while none was detected in the B1 and MP fractions.This result suggested that although sialic acid-containing glycans were not the dominant N-glycoforms,they were still an important factor affecting the distribution of CIs.

    Fig.7.Bubble plot of N-glycoform content after HILIC enrichment.The size of the bubble indicates the relative glycan content.Different colors represent different CIs.

    4.Conclusion

    In this study,we adopted two different chromatographic methods,SCX-HPLC and cIEF-WCID,for separation of the IgG antibody CIs in parallel.The two methods supported each other to provide a more complete view of the CIs.Based on proteomics technology,the effects of modifications on CIs were comprehensively characterized.Intact molecular weight distribution,peptide mapping,and in-depth glycopeptide analyses were performed.The results showed that at the protein level,the differences in N-glycoforms and abundances were the most important factors,followed by deamidation(N/Q)modification.At the peptide level,deamidation(N/Q)modification was more prominent.Upon further HILIC enrichment of glycopeptides,more N-glycoforms were detected,in which the sialylation modification appeared only in the acidic CIs.These results suggested that the sialic acid and deamidation modifications were the most critical factors affecting the charge heterogeneity.Therefore,we provide a stepwise and indepth approach to study the influence of CIs on protein biopharmaceuticals.

    CRediT author statement

    Xinling Cui:Methodology,Validation,Formal analysis,Investigation,Writing-Original draft preparation,Writing-Reviewing and Editing;Wei Mi:Formal analysis,Investigation,Writing-Original draft preparation;Zhishang Hu,Xiaoyu Li,Bo Meng,and Xinyuan Zhao:Software,Formal analysis;Xiaohong Qian,Tao Zhu,and Wantao Ying:Conceptualization,Reviewing,Editing,Supervision.

    Declaration of competing interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    We are grateful for the financial support from the National Key Program for Basic Research of China(Grant Nos.:2018YFC0910302 and 2017YFF0205400),the National Natural Science Foundation of China(Grant No.:81530021),and Innovation Foundation of Medicine(Grant Nos.:BWS14J052 and 16CXZ027).

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.jpha.2020.11.006.

    亚洲成人av在线免费| 观看免费一级毛片| 俺也久久电影网| 成熟少妇高潮喷水视频| 国产高清不卡午夜福利| 欧美+亚洲+日韩+国产| 国产一级毛片七仙女欲春2| 搡老妇女老女人老熟妇| 色综合站精品国产| 永久网站在线| 国产精品伦人一区二区| 在线免费观看的www视频| 久久欧美精品欧美久久欧美| 中文资源天堂在线| 亚洲欧美日韩高清专用| 波多野结衣高清作品| 1000部很黄的大片| 国产精品99久久久久久久久| 最近在线观看免费完整版| 免费av毛片视频| 久久人人精品亚洲av| 在线观看免费视频日本深夜| 国产在线男女| 国产中年淑女户外野战色| 国产私拍福利视频在线观看| 久久久久国产网址| 性插视频无遮挡在线免费观看| 久久热精品热| 国产精品99久久久久久久久| 蜜桃亚洲精品一区二区三区| 中文字幕熟女人妻在线| 菩萨蛮人人尽说江南好唐韦庄 | 九九热线精品视视频播放| 男女啪啪激烈高潮av片| 99久久精品一区二区三区| 亚洲成a人片在线一区二区| 欧美性猛交黑人性爽| 精品国产三级普通话版| 悠悠久久av| 中文字幕人妻熟人妻熟丝袜美| 国产精品美女特级片免费视频播放器| 偷拍熟女少妇极品色| 国产免费一级a男人的天堂| 热99re8久久精品国产| 精品久久久久久久久亚洲| 国产精品永久免费网站| 狂野欧美激情性xxxx在线观看| 国产精品不卡视频一区二区| 精品人妻熟女av久视频| 成人特级av手机在线观看| 成人三级黄色视频| 久久精品91蜜桃| 99久久精品一区二区三区| 国产单亲对白刺激| 欧美激情在线99| 能在线免费观看的黄片| 亚洲中文日韩欧美视频| 国产精品人妻久久久久久| 精品熟女少妇av免费看| 神马国产精品三级电影在线观看| 国产精品1区2区在线观看.| 91狼人影院| 伦精品一区二区三区| 在线观看免费视频日本深夜| 欧美日本亚洲视频在线播放| 国产精品福利在线免费观看| 国产精品综合久久久久久久免费| 国产男靠女视频免费网站| 精品一区二区免费观看| 国产一区二区在线av高清观看| 最近中文字幕高清免费大全6| 欧美日韩乱码在线| 日韩成人av中文字幕在线观看 | 嫩草影院精品99| 一级a爱片免费观看的视频| av在线观看视频网站免费| 日本-黄色视频高清免费观看| 国产精品亚洲一级av第二区| 看免费成人av毛片| 成人永久免费在线观看视频| 99热这里只有是精品50| 啦啦啦啦在线视频资源| 久久久久性生活片| 亚洲av免费在线观看| 精品少妇黑人巨大在线播放 | 国产午夜精品久久久久久一区二区三区 | 亚洲精品国产成人久久av| 欧美日本亚洲视频在线播放| 成年女人看的毛片在线观看| 人人妻人人澡人人爽人人夜夜 | 美女黄网站色视频| 久久这里只有精品中国| 国产精品久久久久久精品电影| 日韩中字成人| 2021天堂中文幕一二区在线观| 老熟妇乱子伦视频在线观看| 伦精品一区二区三区| 国产乱人偷精品视频| 一区二区三区四区激情视频 | 国产精品1区2区在线观看.| 美女 人体艺术 gogo| 成人午夜高清在线视频| 超碰av人人做人人爽久久| 久久久久久国产a免费观看| 免费av毛片视频| 一区福利在线观看| 99久久无色码亚洲精品果冻| 波多野结衣高清作品| 国产av不卡久久| 久久中文看片网| 久久久成人免费电影| 午夜福利18| 日韩一本色道免费dvd| 国语自产精品视频在线第100页| 免费无遮挡裸体视频| a级一级毛片免费在线观看| 赤兔流量卡办理| 伦精品一区二区三区| 亚洲成av人片在线播放无| 精品久久久久久久人妻蜜臀av| 青春草视频在线免费观看| 一级毛片aaaaaa免费看小| 又黄又爽又刺激的免费视频.| 亚洲国产精品国产精品| 国产大屁股一区二区在线视频| 给我免费播放毛片高清在线观看| 亚洲最大成人av| 男女边吃奶边做爰视频| 久久热精品热| 天天一区二区日本电影三级| 少妇高潮的动态图| 国产aⅴ精品一区二区三区波| 一进一出抽搐动态| 狠狠狠狠99中文字幕| 夜夜爽天天搞| 美女内射精品一级片tv| 成人漫画全彩无遮挡| 精品久久国产蜜桃| 欧美一区二区国产精品久久精品| 国产精品爽爽va在线观看网站| 激情 狠狠 欧美| 99国产精品一区二区蜜桃av| 日本一二三区视频观看| 亚洲最大成人手机在线| 一本一本综合久久| 欧美色视频一区免费| 韩国av在线不卡| 热99re8久久精品国产| 午夜精品在线福利| 国产一区二区亚洲精品在线观看| 18禁黄网站禁片免费观看直播| 国产成人精品久久久久久| 亚洲中文字幕日韩| 插逼视频在线观看| 搡老熟女国产l中国老女人| 国产亚洲精品av在线| 国产高清三级在线| 老师上课跳d突然被开到最大视频| 亚洲人成网站高清观看| 联通29元200g的流量卡| 联通29元200g的流量卡| 久久久久久久久中文| 国产毛片a区久久久久| 在线观看66精品国产| 亚洲国产高清在线一区二区三| 久久久午夜欧美精品| 午夜福利高清视频| 亚洲美女黄片视频| 无遮挡黄片免费观看| 欧美bdsm另类| 国产一区二区在线观看日韩| 国产成年人精品一区二区| 国产一区二区三区在线臀色熟女| 日本爱情动作片www.在线观看 | 日本黄色片子视频| 日本一本二区三区精品| 级片在线观看| 青春草视频在线免费观看| 日韩成人伦理影院| 亚洲性久久影院| 精品少妇黑人巨大在线播放 | 大型黄色视频在线免费观看| 亚洲在线自拍视频| 日本三级黄在线观看| 黄色欧美视频在线观看| 搡老熟女国产l中国老女人| 国产三级在线视频| 亚洲真实伦在线观看| 日韩欧美一区二区三区在线观看| 久久久久久久午夜电影| 免费人成视频x8x8入口观看| 高清毛片免费观看视频网站| 久久精品国产99精品国产亚洲性色| 亚洲国产精品成人综合色| 一个人观看的视频www高清免费观看| 国产成人福利小说| 日韩精品有码人妻一区| 国产精品爽爽va在线观看网站| 99久久中文字幕三级久久日本| 国内揄拍国产精品人妻在线| 亚洲美女视频黄频| 2021天堂中文幕一二区在线观| 波多野结衣高清无吗| 久久精品国产亚洲av香蕉五月| 国产一区二区激情短视频| 夜夜爽天天搞| 久久精品国产亚洲网站| 色尼玛亚洲综合影院| 91在线观看av| 夜夜看夜夜爽夜夜摸| 国产精品无大码| 国产精品一区二区三区四区久久| 亚洲国产精品成人综合色| 中文字幕精品亚洲无线码一区| 精品日产1卡2卡| 日韩欧美国产在线观看| 久久久久免费精品人妻一区二区| 国产精品99久久久久久久久| 日韩欧美在线乱码| 久久精品国产亚洲网站| 嫩草影院入口| 欧美色视频一区免费| 国产视频内射| 露出奶头的视频| 狠狠狠狠99中文字幕| 午夜福利视频1000在线观看| 国产视频内射| 又爽又黄a免费视频| 小蜜桃在线观看免费完整版高清| 大香蕉久久网| 不卡一级毛片| 国产一区二区在线观看日韩| 日韩精品有码人妻一区| 国产真实伦视频高清在线观看| 亚洲成人中文字幕在线播放| 成年女人永久免费观看视频| av卡一久久| 干丝袜人妻中文字幕| 99久久精品一区二区三区| 婷婷精品国产亚洲av| 亚洲精品日韩在线中文字幕 | 一区二区三区高清视频在线| 麻豆久久精品国产亚洲av| 日日啪夜夜撸| 99热网站在线观看| 免费看美女性在线毛片视频| 麻豆国产av国片精品| 成年av动漫网址| 亚洲人成网站在线播| 国产精品不卡视频一区二区| 身体一侧抽搐| 日韩制服骚丝袜av| 少妇裸体淫交视频免费看高清| 国产真实乱freesex| 午夜久久久久精精品| 色综合色国产| 久久人人精品亚洲av| 亚洲熟妇中文字幕五十中出| 日韩av在线大香蕉| 国产视频内射| 国产精品伦人一区二区| 中文字幕精品亚洲无线码一区| 精品一区二区三区视频在线| 国产日本99.免费观看| 免费在线观看成人毛片| 美女高潮的动态| 久久久久久久久久久丰满| 亚洲美女搞黄在线观看 | 12—13女人毛片做爰片一| 日日啪夜夜撸| 成年女人永久免费观看视频| 久久久久国内视频| 精品99又大又爽又粗少妇毛片| 天堂网av新在线| 国产视频一区二区在线看| 亚洲精品日韩av片在线观看| 噜噜噜噜噜久久久久久91| 麻豆成人午夜福利视频| 天堂影院成人在线观看| 欧美激情久久久久久爽电影| 亚洲精品一区av在线观看| 久久人人爽人人爽人人片va| 国产国拍精品亚洲av在线观看| 午夜老司机福利剧场| 日韩欧美 国产精品| 在线a可以看的网站| 日韩中字成人| 变态另类丝袜制服| 夜夜爽天天搞| 老司机福利观看| 欧美一级a爱片免费观看看| 天天一区二区日本电影三级| 在线观看av片永久免费下载| 日韩欧美三级三区| 久久中文看片网| 一区二区三区四区激情视频 | 深爱激情五月婷婷| 在现免费观看毛片| 久久久久精品国产欧美久久久| 看免费成人av毛片| 日韩欧美精品v在线| 免费高清视频大片| 久久午夜亚洲精品久久| 国产又黄又爽又无遮挡在线| 亚洲经典国产精华液单| 97人妻精品一区二区三区麻豆| 久久综合国产亚洲精品| 久久99热6这里只有精品| 亚洲欧美日韩东京热| 日韩av不卡免费在线播放| 午夜a级毛片| 91在线精品国自产拍蜜月| 国产v大片淫在线免费观看| 啦啦啦韩国在线观看视频| 免费在线观看影片大全网站| 国产一区亚洲一区在线观看| 超碰av人人做人人爽久久| 日本黄色片子视频| 亚洲无线观看免费| av天堂在线播放| 我要看日韩黄色一级片| 最近2019中文字幕mv第一页| 欧美日本视频| 日韩人妻高清精品专区| 97在线视频观看| 国产麻豆成人av免费视频| 啦啦啦韩国在线观看视频| 永久网站在线| 免费高清视频大片| 午夜爱爱视频在线播放| 91在线精品国自产拍蜜月| 可以在线观看的亚洲视频| 干丝袜人妻中文字幕| 中文字幕av在线有码专区| 久久久久国产精品人妻aⅴ院| 午夜福利高清视频| 日韩精品有码人妻一区| 亚洲av成人av| 国产高清有码在线观看视频| 国产人妻一区二区三区在| 成熟少妇高潮喷水视频| 精品久久久久久久人妻蜜臀av| 精品福利观看| 精品人妻视频免费看| 亚洲国产欧美人成| 国产精品一二三区在线看| 国产伦一二天堂av在线观看| 国产精品无大码| 色播亚洲综合网| 国产精品嫩草影院av在线观看| 尤物成人国产欧美一区二区三区| 久久久久免费精品人妻一区二区| 日本黄大片高清| 久久久精品94久久精品| 国产视频内射| av天堂中文字幕网| 日本色播在线视频| а√天堂www在线а√下载| 中出人妻视频一区二区| 精品不卡国产一区二区三区| www.色视频.com| 在线观看美女被高潮喷水网站| 最近中文字幕高清免费大全6| 能在线免费观看的黄片| 国产在线男女| 三级国产精品欧美在线观看| 波多野结衣高清作品| 别揉我奶头~嗯~啊~动态视频| 99热这里只有是精品50| 久久精品91蜜桃| 亚洲精品色激情综合| 精品欧美国产一区二区三| 人妻丰满熟妇av一区二区三区| 亚洲第一区二区三区不卡| 国产男人的电影天堂91| 日韩欧美精品免费久久| 精品久久久噜噜| 国产成人精品久久久久久| 黑人高潮一二区| 最近在线观看免费完整版| 美女被艹到高潮喷水动态| 亚洲成人精品中文字幕电影| av视频在线观看入口| 蜜桃久久精品国产亚洲av| 女同久久另类99精品国产91| 久久精品影院6| 热99re8久久精品国产| 国产精品99久久久久久久久| 日本 av在线| 午夜福利视频1000在线观看| 少妇的逼水好多| 99国产极品粉嫩在线观看| 欧美性猛交黑人性爽| 日本黄色片子视频| 亚洲经典国产精华液单| 我的女老师完整版在线观看| 老司机影院成人| 欧美日韩国产亚洲二区| 3wmmmm亚洲av在线观看| 一本久久中文字幕| 久久亚洲国产成人精品v| 久久精品国产清高在天天线| 亚洲国产精品成人久久小说 | 中出人妻视频一区二区| 国产高清不卡午夜福利| 国产精品一区二区三区四区久久| 能在线免费观看的黄片| 内射极品少妇av片p| 美女免费视频网站| 成人无遮挡网站| 久久久久国产精品人妻aⅴ院| 免费在线观看影片大全网站| 深爱激情五月婷婷| 内地一区二区视频在线| 天天躁夜夜躁狠狠久久av| 亚洲熟妇中文字幕五十中出| 午夜免费激情av| 色尼玛亚洲综合影院| 国产黄片美女视频| 久久精品国产自在天天线| 搡老妇女老女人老熟妇| 国产69精品久久久久777片| 日韩在线高清观看一区二区三区| 久久热精品热| 一级毛片电影观看 | 丝袜喷水一区| 亚洲激情五月婷婷啪啪| 日本免费a在线| 亚洲在线自拍视频| 亚洲精品日韩在线中文字幕 | 国产精品三级大全| 美女高潮的动态| 全区人妻精品视频| 18禁在线播放成人免费| 尤物成人国产欧美一区二区三区| 国产高清视频在线播放一区| 国产黄色小视频在线观看| 又爽又黄a免费视频| 日本五十路高清| 亚洲va在线va天堂va国产| 日韩大尺度精品在线看网址| 国产三级中文精品| 久久久久久大精品| 男人狂女人下面高潮的视频| 在线天堂最新版资源| 99久久精品热视频| 国产激情偷乱视频一区二区| 人人妻人人看人人澡| 99久久精品热视频| 一级黄片播放器| 一级黄色大片毛片| 中国国产av一级| 国产大屁股一区二区在线视频| 人人妻,人人澡人人爽秒播| 嫩草影院入口| 尾随美女入室| 五月玫瑰六月丁香| 欧美极品一区二区三区四区| 悠悠久久av| 一区二区三区四区激情视频 | aaaaa片日本免费| 三级经典国产精品| 亚洲无线在线观看| 久久久久久久久久久丰满| 男女啪啪激烈高潮av片| 亚洲五月天丁香| 国产精品野战在线观看| 国内揄拍国产精品人妻在线| 99久国产av精品国产电影| 特级一级黄色大片| 国产精品一区二区三区四区久久| 国产精品伦人一区二区| 我的老师免费观看完整版| 一个人免费在线观看电影| 国产aⅴ精品一区二区三区波| 男女啪啪激烈高潮av片| 卡戴珊不雅视频在线播放| 如何舔出高潮| 一级黄色大片毛片| 久久久久久大精品| 国产又黄又爽又无遮挡在线| 2021天堂中文幕一二区在线观| 中文字幕熟女人妻在线| 能在线免费观看的黄片| a级一级毛片免费在线观看| 成人毛片a级毛片在线播放| 97在线视频观看| 91精品国产九色| 三级男女做爰猛烈吃奶摸视频| 亚州av有码| 欧美3d第一页| 波野结衣二区三区在线| 哪里可以看免费的av片| 韩国av在线不卡| 亚洲av五月六月丁香网| 国产av不卡久久| 欧美3d第一页| 一进一出抽搐gif免费好疼| 午夜亚洲福利在线播放| 天堂网av新在线| 美女大奶头视频| 最近手机中文字幕大全| 亚洲国产精品合色在线| 我要看日韩黄色一级片| 啦啦啦观看免费观看视频高清| 精品国产三级普通话版| 99热全是精品| 两个人的视频大全免费| 高清毛片免费观看视频网站| 日本熟妇午夜| 激情 狠狠 欧美| 国产成人a区在线观看| 久久亚洲精品不卡| 国产69精品久久久久777片| ponron亚洲| 午夜福利在线观看吧| av专区在线播放| 黑人高潮一二区| 精品久久久久久久久久久久久| av在线观看视频网站免费| 一本一本综合久久| 成人亚洲欧美一区二区av| 精品免费久久久久久久清纯| 亚洲中文日韩欧美视频| 久久精品综合一区二区三区| 午夜精品一区二区三区免费看| 亚州av有码| 精品一区二区三区av网在线观看| 亚洲国产精品合色在线| 激情 狠狠 欧美| 国产激情偷乱视频一区二区| 免费电影在线观看免费观看| 成人亚洲精品av一区二区| 国产三级在线视频| 最近的中文字幕免费完整| 国产午夜福利久久久久久| 夜夜爽天天搞| 特级一级黄色大片| 九九热线精品视视频播放| 午夜精品一区二区三区免费看| 人妻夜夜爽99麻豆av| 中国美女看黄片| 99久久九九国产精品国产免费| 少妇裸体淫交视频免费看高清| 久久久欧美国产精品| 国产黄a三级三级三级人| 一本精品99久久精品77| 国产一区二区三区av在线 | 欧美性猛交╳xxx乱大交人| 亚洲在线观看片| 亚洲综合色惰| 亚洲欧美精品综合久久99| 亚洲真实伦在线观看| 久99久视频精品免费| 亚洲成人久久性| 男人和女人高潮做爰伦理| 看十八女毛片水多多多| 国产黄色小视频在线观看| 中国美白少妇内射xxxbb| 色综合站精品国产| 青春草视频在线免费观看| 深夜精品福利| 久久久久精品国产欧美久久久| 久久这里只有精品中国| 成熟少妇高潮喷水视频| 国产 一区精品| 最新在线观看一区二区三区| 嫩草影视91久久| 国产黄色视频一区二区在线观看 | 欧美日韩乱码在线| 天堂av国产一区二区熟女人妻| 99久久精品热视频| 成熟少妇高潮喷水视频| 亚洲国产精品sss在线观看| 97超级碰碰碰精品色视频在线观看| 成人毛片a级毛片在线播放| 国产精华一区二区三区| 在线观看66精品国产| 午夜福利在线观看吧| 老熟妇乱子伦视频在线观看| 亚洲av第一区精品v没综合| 搞女人的毛片| 97超视频在线观看视频| 国产aⅴ精品一区二区三区波| 丰满的人妻完整版| 亚洲国产精品久久男人天堂| 婷婷色综合大香蕉| 人妻久久中文字幕网| 一a级毛片在线观看| 蜜桃久久精品国产亚洲av| 午夜a级毛片| 欧美高清性xxxxhd video| 久久这里只有精品中国| 亚洲第一电影网av| 一进一出好大好爽视频| 国产综合懂色| 美女黄网站色视频| 亚洲在线自拍视频| 少妇的逼好多水| 青春草视频在线免费观看| 亚洲精品粉嫩美女一区| 久久久欧美国产精品| 亚洲国产欧洲综合997久久,| 乱码一卡2卡4卡精品| 久久亚洲精品不卡| 国内久久婷婷六月综合欲色啪| 成人三级黄色视频| 国产精品一二三区在线看| 久久欧美精品欧美久久欧美| 久99久视频精品免费| 成人毛片a级毛片在线播放| 能在线免费观看的黄片| 国产高清视频在线播放一区| 好男人在线观看高清免费视频| 人妻夜夜爽99麻豆av|