• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The 2020/21 Extremely Cold Winter in China Influenced by the Synergistic Effect of La Ni?a and Warm Arctic※

    2022-04-06 08:49:28FeiZHENGYuanYUANYihuiDINGKexinLIXianghuiFANGYuhengZHAOYueSUNJiangZHUZongjianKEJiWANGandXiaolongJIA
    Advances in Atmospheric Sciences 2022年4期

    Fei ZHENG, Yuan YUAN, Yihui DING, Kexin LI, Xianghui FANG, Yuheng ZHAO,Yue SUN, Jiang ZHU, Zongjian KE, Ji WANG, and Xiaolong JIA

    1International Center for Climate and Environment Science (ICCES), Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing 100029, China

    2Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science & Technology, Nanjing 210044, China

    3National Climate Center, Beijing 100081, China

    4University of Chinese Academy of Sciences, Beijing 100049, China

    5Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences,Fudan University, Shanghai 200438, China

    6Beijing Municipal Climate Center, Beijing 100089, China

    ABSTRACT

    Key words: extremely cold winter, anomalous atmospheric circulation, synergistic effect, La Ni?a, warm Arctic

    During the first half part of winter 2020/21, mainly from 1st December 2020 to 10th January 2021, China has experienced three strong cold air processes with two cold surges invading from the northern into the southern regions. During this period, three cold air outbreaks occurred in China on 13th-15th December 2020, 29th December 2020-1st January 2021(cold surge), and 6th-8th January 2021 (cold surge), respectively. Persistently low temperatures were reported in most parts of China, and the areas with cumulative daily mean temperature drops of over 8°C occupied 1.42, 2.82, and 0.44 million square kilometers, respectively. Therefore, the average temperature during this time period (1st December 2020-10th January 2021) was about 1°C-2°C below normal in most of China, with the exception of the Tibetan Plateau. In parts of northern and southern China, the average temperature anomalies were even as low as -4°C (Fig. 1). Affected by these strong cold air processes, the daily minimum temperatures of at least 405 national stations reached the extreme event monitoring standard. These stations were mainly located in North China, northeast of Huanghuai, east of Jianghuai, the middle and lower reaches of Yangtze River, and in the eastern part of Northwest China. In Inner Mongolia, Hebei, Jiangsu, Shanghai,and other provinces, the lowest temperature in 58 cities (counties) either broke records or reached historical extreme values since the stations were established. These cities included Beijing, Shanghai, Nanjing, Hangzhou, Hefei, and Wuhan, among others.

    Fig. 1. Winter (DJF) averaged temperature anomalies in China for recent five La Ni?a events. (a) 2020/21 (1st Dec-10th Jan), (b) 2017/18, (c) 2011/12, (d) 2010/11, (e) 2007/08.

    Accordingly, the large-scale atmospheric circulation anomalies that were in place included: a negative phase of Arctic Oscillation (AO), an intensified Ural High, and an East Asian Trough. The combination of these factors directly contributed to the extremely cold conditions observed in most parts of China. During this period, the AO has changed from a positive phase to a negative phase since 1st December 2020 and lasted until mid-January 2021. The Siberian High was greatly intensified and the meridional geopotential height gradient over the mid-high latitudes was largely increased, with positive anomalies of 500-hPa geopotential heights over the North Pole and to the east of Europe and negative anomalies over northern East Asia (Figs. 2a and b). As a result, the combined effects of an intensified Ural High and deepened East Asian Trough led to strong cold air transport processes invading China. More importantly, such an anomalous circulation pattern showed a strong persistence from 1st December 2020 to 10th Jan 2021, which included the negative AO phase (Fig. 2c), the stronger meridional geopotential height gradient, and the intensified Siberian High (Fig. 2d). This was especially true during the period from late December 2020 to mid-Jan 2021, when the two cold surges occurred in China. During this time, the negative AO decreased below one standard deviation and the intensity of Siberian High increased above one standard deviation persistently (Figs. 2c and 2d).

    Over the Arctic region it was warmer. Arctic warming has been widely recognized for a long time (e.g., Manabe and Wetherald, 1975; Maykut, 1982; Taylor et al., 2018; Cohen et al., 2020). This process is supported through the high sensitivity of sea ice and snow cover to external heat sources and the feedback effect of the related albedo. Interestingly, the Arctic region has become one of the most rapidly warming regions in the world and its annual average warming rate has reached 6-7 times the global average, which is called Arctic Amplification (AA; e.g., Cohen et al., 2014; Huang et al., 2017b).According to NOAA’s 15th annual Arctic Report Card, October 2019-September 2020 represented the second warmest 12-month period of observed surface air temperatures over Arctic land during the last century (Ballinger, et al., 2020). Accompanied by AA, Arctic sea ice is drastically reduced. During the autumn in 2020, the Arctic sea ice extent has reached the second-lowest level in September 2020 since 1979 (https://nsidc.org/arcticseaicenews/), which can significantly strengthen and reinforce the presence of the Siberian high, as observed during the 2020/21 winter (Wu and Wang, 2002; Wu et al.2011a). And this effect was also enhanced by the typical negative Arctic Dipole (AD) wind pattern in the summer of 2020(Wu et al. 2016), which ranked as the lowest since 1979 (figure not shown).

    La Ni?a, also known as the cold phase of ENSO (El Ni?o-Southern Oscillation), is a cool ocean state that develops over the central to eastern equatorial Pacific which sometimes follows an El Ni?o but causes nearly the opposite extreme climate effects (e.g., Chen et al., 2013). Essentially, the displacement of atmospheric and global wind cycle circulation observed during La Ni?a contributes to extensive changes in temperatures and weather around the world (e.g., Hu et al.,2014; Zheng et al., 2015). For example, under the influence of 2007/08 La Ni?a event, South China experienced a severe snow and ice storm during Jan-Feb 2008 (i.e., the mature phase of La Ni?a), which had exerted serious impacts on traffic,electricity, agriculture, mass production, and life (e.g. Ding et al., 2008; Gao, 2009; Wu et al., 2011b; Yuan and Yan, 2013).

    Fig. 2. Middle-high-latitude atmospheric circulation anomalies in the Northern Hemisphere from 1st December 2020 to 10th January 2021. (a) 500 hPa geopotential height, (b) sea level pressure, (c) daily Arctic Oscillation index, and(d) daily Siberian High index (1st December 2020 to 8th January 2021).

    The 2020/21 La Ni?a event started in August 2020 (i.e., the Ni?o-3.4 index exceed -0.5°C) and continued to gain strength into autumn (i.e., September-October-November, SON, 2020) before approaching its peak in the Northern Hemisphere winter (i.e., December-January-February, DJF). During these last three months, the Ni?o-3.4 SST anomaly over the tropical Pacific was much cooler than the La Ni?a threshold of -0.5°C, and has been lower than -1.0°C since October 2020, according to the ERSST v5 dataset (Huang et al., 2017a). Various GODAS and NCEP reanalysis data (Behringer and Xue, 2004) involving the atmospheric and oceanic processes responsible for the onset and development of the 2020/21 La Ni?a event are utilized to illustrate their coherent relationships. Figure 3 shows the temporal evolutions of the interannual variations in SST, 850 hPa zonal wind, 850 hPa meridional wind, and thermocline depth in the equatorial Pacific in 2020.The development of the 2020/21 La Ni?a event is quite clear at the equator, and there is a close relationship among these anomalous fields. The predominance of the anomalous southeasterly winds over the central equatorial region from January to April in 2020 has essentially prevented the enhancement of the observed westerly winds over the warm pool (Figs. 3a and b). A subsequent easterly wind burst in the lower atmosphere further initiated an oceanic upwelling Kelvin wave which served to be a facilitator of the 2020/21 La Ni?a condition. Forced by the upwelling Kelvin wave, cold water accumulated in the warm pool and started to propagate eastward, resulting in a shoaling of the thermocline and a net cooling of the subsurface layers in the eastern equatorial Pacific (Fig. 3d). These SST anomalies became increasingly negative during the entire summer of 2020 after the subsurface cold water reached the eastern tropical Pacific surface (Fig. 3c). The accumulated cold water in the eastern Pacific became more pronounced and caused the SST anomalies to get colder across the eastern to central equatorial Pacific. This was thought to be triggered by enhanced easterly trade winds that were observed over most of the equatorial Pacific, and the weak La Ni?a condition gradually strengthened to attain moderate intensity during autumn 2020.

    This moderate La Ni?a event also contributed to the impact of Arctic air on the winter climate in East Asia. From a planetary scale, the combination of warm temperature anomalies in Arctic region and cold temperature anomalies in the tropical ocean largely reduced the Equator-Arctic temperature gradient and further provided for a favorable background state for the cold conditions observed in China during the first half of winter 2020/21. This process intensified the meridional height gradient over the mid-high latitudes in winter, leading to a stronger ridge over the Ural, an enhanced East Asian Trough over Japan, and a more northward subtropical westerly jet over East Asia (e.g., Liu and Ding, 1992; Huang and Chen, 2002; Yang et al., 2002; Zhang et al., 2008). This pattern favors a cold winter for most parts of East Asia, with snow and ice events expected in southern China during the La Ni?a mature Phase (e.g., Ding et al., 2008; Gao, 2009; Wu et al.,2011a; Yuan et al., 2014). Cold winter cases have been observed in five recent La Ni?a events (Figs. 1b to e), although the cold conditions did not always occur during the first half of winter.

    Fig. 3. Temporal evolutions of interannual anomalies along the equatorial Pacific (averaged between 5°S and 5°N) in 2020 for (a) 850 hPa zonal wind, (b) 850 hPa meridional wind, (c) SST, and (d) thermocline depth (TCD). The unit is m s-1 in (a) and (b), °C in (c), and m in (d).

    Moreover, from the perspective of interannual variability, Table 1 lists all La Ni?a events which occurred during 1980-2020, along with their strength, the Arctic sea ice extent in September, the AD pattern in summer, and the DJF averaged temperature anomaly in China, respectively. It shows clearly that not all La Ni?a events lead to a cold winter in China,and not all La Ni?a events are accompanied by reduced Arctic sea ice extent in September or by AD negative pattern in summer. Among all these La Ni?a events, only three cases are particularly similar to this year: 1995, 2007, and 2011. Together with 2020, they all displayed similar developing characteristics of La Ni?a (including the strength and SST pattern, figures not shown), reduced Arctic sea ice extent in September, and a typical AD negative pattern in summer.

    It should be noted that in the context of global warming, the variations of weather and climate tend not to be slightly abnormal when swinging around the average value, but tend to deviate farther and farther from the average state, with larger and larger amplitudes. The assessment report of the Intergovernmental Panel on Climate Change (IPCC) shows that global warming has led to an increase in the frequency and intensity of extreme weather and climate events in some regions, such as extreme high-temperature events and extreme precipitation events, as well as AA. Frequent extreme cold events are also a typical response to global warming, an example being the observed cold condition during the first half of winter 2020/21, and some other similar cases of cold surge observed in both January 2016 and January 2018 (Wang et al.,2020). As described above, over the past several months, the synergistic effect of the warm Arctic (i.e., mostly induced by global warming) and the cold tropical Pacific (i.e., La Ni?a, the cold phase of ENSO) brought an indispensable background for the anomalous meridional, hemispheric-scale temperature gradient in the Northern Hemisphere to intensify the intrusions of cold air from polar regions into mid-high latitudes (Li et al., 2019), which further influenced the cold conditions in China during the first half of winter 2020/21. This was accompanied by intra-seasonal activities of the anomalous atmospheric circulation, such as the enhanced Siberian High, the intensified Ural High and the deepened East Asian Trough(Fig. 4).

    Table 1. La Ni?a events during 1980-2020 with their strength, Arctic sea ice extent in September, AD winter pattern in summer, and winter (DJF) averaged temperature anomalies in China. The row with bold font represents similar developing characteristics of La Ni?a,reduced Arctic sea ice extent in September, and a typical AD negative pattern in summer.

    Fig. 4. A mechanism diagram on showing the process of cold air invading China as forced by the middle-high-latitude large-scale atmospheric circulation anomalies, under the synergistic effect of the warm Arctic and the cold tropical Pacific (La Ni?a).

    Before the end of this report, we further use the ensemble prediction system (EPS) developed at the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (Zheng et al., 2006, 2007, 2009; Zheng and Zhu, 2010, 2016; Zheng and Yu, 2017), to predict the following evolution of the 2020/21 La Ni?a event (Fig. 5). The performance of the prediction system is documented in Zheng and Zhu (2016), in which a 20-year retrospective forecast comparison shows that good forecast skill of the EPS with a prediction lead time of up to one year is possible. The most recent ensemble forecast suggests that there is at least a 95% chance that La Ni?a will persist through the 2020/21 winter, with a potential transition to ENSONeutral during spring 2021 (~50% chance). However, it is important to note that El Ni?o and La Ni?a are not the only factors that drive global and regional climate patterns. No two La Ni?a events are alike, and their effects on regional climates can vary depending on the time of year and other factors as we have demonstrated in this report. In this report, the synergistic effect of both the La Ni?a and the warm Arctic upon the cold winter in China is only explored and illustrated relative to the 2020/21 case. Future work on employing the synergistic diagnosis approach proposed by Li et al. (2019) can further demonstrate the importance of this synergistic effect in a universal sense.

    Fig. 5. Ensemble ENSO forecast started from Jan 2021 by the IAP EPS: (a) Forecasted Nino3.4 index with 100 ensemble members, and the black line represents the ensemble-mean forecast. (b) Probabilistic ENSO Forecast: The red cylinder represents the probability of occurrence of an El Ni?o event, the blue cylinder represents the probability of occurrence of a La Ni?a event, and the green cylinder represents the probability of occurrence of a neutral event.The statistical result is based on the 100-member ensemble forecast.

    How the future climate will evolve in the remaining part of winter is still subject to some uncertainty, and people should focus on the medium-term numerical weather forecasts and the latest sub-seasonal-to-seasonal prediction for atmospheric circulations to obtain the necessary date information and early warnings. We still need to pay attention to the possible large temperature fluctuations and increased snow and rainfall in China during the late winter.

    Acknowledgements. This work was supported by the national key R&D Program of China (Grant No 2018YFC1505603), the Key Research Program of Frontier Sciences, CAS (Grant No. ZDBS-LY-DQC010), and the National Natural Science Foundation of China(Grant Nos. 41876012; 41861144015).

    啦啦啦韩国在线观看视频| 村上凉子中文字幕在线| 九色成人免费人妻av| 午夜亚洲福利在线播放| 亚洲人与动物交配视频| 男女那种视频在线观看| 黄色一级大片看看| 2021天堂中文幕一二区在线观| 五月玫瑰六月丁香| 亚洲五月天丁香| videossex国产| 精品免费久久久久久久清纯| 国产一区二区三区在线臀色熟女| 久久精品国产自在天天线| 欧美日韩在线观看h| 天天躁夜夜躁狠狠久久av| 自拍偷自拍亚洲精品老妇| 亚洲精品成人久久久久久| 美女大奶头视频| 九九久久精品国产亚洲av麻豆| 寂寞人妻少妇视频99o| 高清午夜精品一区二区三区 | 乱人视频在线观看| 日本黄色片子视频| 亚洲无线观看免费| 亚洲精品亚洲一区二区| 听说在线观看完整版免费高清| 国产精品一区www在线观看| 国产色爽女视频免费观看| .国产精品久久| 国产不卡一卡二| 观看美女的网站| 麻豆乱淫一区二区| 国产精品人妻久久久久久| 91久久精品电影网| 国产精品日韩av在线免费观看| 久久午夜亚洲精品久久| 啦啦啦韩国在线观看视频| 国产精品一区二区性色av| 久久精品国产清高在天天线| 禁无遮挡网站| av专区在线播放| 麻豆久久精品国产亚洲av| 免费电影在线观看免费观看| 一边摸一边抽搐一进一小说| 亚洲av成人精品一区久久| 欧美区成人在线视频| 搡女人真爽免费视频火全软件| 观看美女的网站| 青春草国产在线视频 | 爱豆传媒免费全集在线观看| 国产淫片久久久久久久久| 老师上课跳d突然被开到最大视频| 大香蕉久久网| 久久亚洲精品不卡| 午夜免费激情av| 色尼玛亚洲综合影院| 久久久久国产网址| 精品国产三级普通话版| 亚洲精品久久国产高清桃花| 久久久精品大字幕| 一区二区三区高清视频在线| 91久久精品国产一区二区三区| 一进一出抽搐动态| 青春草视频在线免费观看| av.在线天堂| 日韩欧美三级三区| 毛片女人毛片| 日韩大尺度精品在线看网址| 久久精品91蜜桃| 国产精品一及| 久久国内精品自在自线图片| 成人综合一区亚洲| 我的老师免费观看完整版| 久久精品国产清高在天天线| 免费观看的影片在线观看| 又爽又黄a免费视频| 日韩,欧美,国产一区二区三区 | 深爱激情五月婷婷| 蜜桃久久精品国产亚洲av| 国产精品国产高清国产av| 中文欧美无线码| 成人特级av手机在线观看| 麻豆国产av国片精品| 大又大粗又爽又黄少妇毛片口| 两个人的视频大全免费| 欧美一区二区国产精品久久精品| 特大巨黑吊av在线直播| 免费无遮挡裸体视频| 男人舔女人下体高潮全视频| 亚洲精品国产av成人精品| 精品人妻一区二区三区麻豆| 日本黄色视频三级网站网址| 亚洲av成人av| 99热6这里只有精品| 少妇的逼水好多| 神马国产精品三级电影在线观看| 一个人免费在线观看电影| 成人鲁丝片一二三区免费| 欧美+日韩+精品| 中文欧美无线码| 一夜夜www| 免费看日本二区| 内射极品少妇av片p| 亚洲欧美日韩无卡精品| 久久午夜福利片| 老师上课跳d突然被开到最大视频| 亚洲电影在线观看av| 亚洲一级一片aⅴ在线观看| 能在线免费看毛片的网站| 十八禁国产超污无遮挡网站| 午夜福利高清视频| 免费看美女性在线毛片视频| 亚洲国产精品久久男人天堂| 日本黄大片高清| 国产精品三级大全| 久久99热6这里只有精品| 亚洲在久久综合| 91av网一区二区| 91在线精品国自产拍蜜月| 精品日产1卡2卡| 婷婷精品国产亚洲av| 久久亚洲精品不卡| 国产精品一区www在线观看| 在线国产一区二区在线| 自拍偷自拍亚洲精品老妇| 狠狠狠狠99中文字幕| 午夜精品国产一区二区电影 | 欧美性猛交╳xxx乱大交人| 日本黄色片子视频| 网址你懂的国产日韩在线| 草草在线视频免费看| 午夜福利在线观看吧| 乱码一卡2卡4卡精品| 精品熟女少妇av免费看| 久久久久久久久久黄片| 一个人观看的视频www高清免费观看| 18禁裸乳无遮挡免费网站照片| 一级毛片我不卡| 99久久无色码亚洲精品果冻| 精品免费久久久久久久清纯| 欧美在线一区亚洲| 国产精品嫩草影院av在线观看| 免费搜索国产男女视频| 日韩av在线大香蕉| 综合色丁香网| 午夜免费激情av| 国产伦在线观看视频一区| 色5月婷婷丁香| 欧美三级亚洲精品| 少妇丰满av| 亚洲av免费在线观看| 噜噜噜噜噜久久久久久91| 一级毛片我不卡| 中出人妻视频一区二区| 亚洲丝袜综合中文字幕| 少妇高潮的动态图| 亚洲激情五月婷婷啪啪| 国产精品人妻久久久影院| av在线播放精品| 国产精品一区www在线观看| 日韩欧美国产在线观看| 亚洲性久久影院| 国产高潮美女av| 婷婷六月久久综合丁香| 日本av手机在线免费观看| 一级av片app| 三级男女做爰猛烈吃奶摸视频| 国产私拍福利视频在线观看| 欧美色视频一区免费| 国产成人一区二区在线| av免费在线看不卡| 久久久久性生活片| 99视频精品全部免费 在线| 麻豆国产97在线/欧美| 一级av片app| 小说图片视频综合网站| 深爱激情五月婷婷| 欧美一级a爱片免费观看看| 免费看a级黄色片| 99久久无色码亚洲精品果冻| 看黄色毛片网站| 国产一区二区在线观看日韩| 最近手机中文字幕大全| 国产午夜精品论理片| 婷婷六月久久综合丁香| a级毛色黄片| 免费av不卡在线播放| 国产精品国产三级国产av玫瑰| 男人和女人高潮做爰伦理| 少妇的逼水好多| 久久精品国产自在天天线| 毛片女人毛片| 色综合色国产| 亚洲18禁久久av| 国产麻豆成人av免费视频| 一个人看视频在线观看www免费| 亚洲av男天堂| 少妇人妻精品综合一区二区 | av又黄又爽大尺度在线免费看 | 亚洲国产精品国产精品| 久久久午夜欧美精品| 欧美激情在线99| 亚洲欧美日韩高清在线视频| 18禁黄网站禁片免费观看直播| 欧美xxxx黑人xx丫x性爽| 免费观看精品视频网站| 日产精品乱码卡一卡2卡三| 国产成人a∨麻豆精品| 国产探花在线观看一区二区| 欧美bdsm另类| 久久久国产成人免费| 伊人久久精品亚洲午夜| 一级毛片电影观看 | 最近最新中文字幕大全电影3| 欧美一区二区精品小视频在线| 欧美日韩乱码在线| 精品久久久噜噜| 最好的美女福利视频网| 亚洲精品久久国产高清桃花| 九草在线视频观看| 亚洲国产欧美在线一区| 亚洲av电影不卡..在线观看| 亚洲精品亚洲一区二区| 给我免费播放毛片高清在线观看| 精品少妇黑人巨大在线播放 | 精品人妻熟女av久视频| 波野结衣二区三区在线| 综合色丁香网| 午夜视频国产福利| 色综合亚洲欧美另类图片| 久久人人爽人人片av| 亚洲成人av在线免费| 一边亲一边摸免费视频| 久久精品国产鲁丝片午夜精品| 国产爱豆传媒在线观看| 男插女下体视频免费在线播放| 熟妇人妻久久中文字幕3abv| 亚洲精品粉嫩美女一区| 国产在视频线在精品| 只有这里有精品99| 好男人在线观看高清免费视频| 欧美+日韩+精品| 五月玫瑰六月丁香| 色尼玛亚洲综合影院| 最好的美女福利视频网| 国产精品久久久久久精品电影小说 | 国内久久婷婷六月综合欲色啪| 男的添女的下面高潮视频| 成人午夜高清在线视频| 尾随美女入室| 91麻豆精品激情在线观看国产| 中文字幕精品亚洲无线码一区| 小说图片视频综合网站| 青青草视频在线视频观看| 又黄又爽又刺激的免费视频.| 只有这里有精品99| 国产成人aa在线观看| 人人妻人人澡人人爽人人夜夜 | 亚洲精品久久久久久婷婷小说 | 精品一区二区三区视频在线| 欧美激情久久久久久爽电影| 最近视频中文字幕2019在线8| 中文字幕制服av| 一进一出抽搐gif免费好疼| 男女视频在线观看网站免费| 国产伦理片在线播放av一区 | 人妻久久中文字幕网| 国产一级毛片七仙女欲春2| 我要搜黄色片| 性欧美人与动物交配| 免费人成在线观看视频色| 国产午夜精品论理片| 成人特级黄色片久久久久久久| 日韩欧美精品v在线| 黄色视频,在线免费观看| 青春草国产在线视频 | 日韩欧美精品v在线| 免费大片18禁| 美女高潮的动态| 搞女人的毛片| 午夜a级毛片| 亚洲精品久久国产高清桃花| 我要看日韩黄色一级片| 国产黄色视频一区二区在线观看 | 97超碰精品成人国产| 2022亚洲国产成人精品| a级毛片免费高清观看在线播放| 亚洲av免费高清在线观看| 内射极品少妇av片p| 国产av不卡久久| 欧美另类亚洲清纯唯美| 蜜臀久久99精品久久宅男| 亚洲国产精品成人久久小说 | 一本一本综合久久| 亚洲中文字幕日韩| 成人无遮挡网站| 麻豆成人av视频| 天堂√8在线中文| 亚洲精品乱码久久久v下载方式| 国产极品天堂在线| 狂野欧美白嫩少妇大欣赏| 亚洲国产高清在线一区二区三| 亚洲欧美日韩卡通动漫| 岛国毛片在线播放| 最近视频中文字幕2019在线8| 欧美潮喷喷水| АⅤ资源中文在线天堂| 欧美最黄视频在线播放免费| 亚洲国产欧洲综合997久久,| 又黄又爽又刺激的免费视频.| 国产伦精品一区二区三区视频9| 人妻少妇偷人精品九色| 高清午夜精品一区二区三区 | 欧美三级亚洲精品| 99riav亚洲国产免费| 一个人看视频在线观看www免费| 色综合站精品国产| 亚洲丝袜综合中文字幕| 变态另类丝袜制服| 中文字幕久久专区| 深夜精品福利| 成人综合一区亚洲| 亚洲精品色激情综合| 九九爱精品视频在线观看| 免费看a级黄色片| 午夜激情欧美在线| 国产爱豆传媒在线观看| 精品一区二区三区视频在线| 亚洲第一区二区三区不卡| 免费人成视频x8x8入口观看| 两性午夜刺激爽爽歪歪视频在线观看| 乱人视频在线观看| 欧美+日韩+精品| 91久久精品国产一区二区三区| 成人欧美大片| АⅤ资源中文在线天堂| 啦啦啦韩国在线观看视频| 亚洲精品色激情综合| 99久久成人亚洲精品观看| 免费观看a级毛片全部| 久久精品国产亚洲网站| 欧美又色又爽又黄视频| 久久精品夜色国产| 亚洲av中文av极速乱| 男人和女人高潮做爰伦理| .国产精品久久| 六月丁香七月| 网址你懂的国产日韩在线| 亚洲七黄色美女视频| 一个人看视频在线观看www免费| 中文字幕熟女人妻在线| 国产成人午夜福利电影在线观看| 黄色视频,在线免费观看| 亚洲人成网站在线观看播放| 成人特级av手机在线观看| 中文字幕久久专区| 精品久久久久久久久av| 黄色欧美视频在线观看| 国产国拍精品亚洲av在线观看| 十八禁国产超污无遮挡网站| 爱豆传媒免费全集在线观看| 青春草视频在线免费观看| 深夜精品福利| 亚洲三级黄色毛片| 有码 亚洲区| 国内精品久久久久精免费| 亚州av有码| 精品久久久久久久久久久久久| 男女做爰动态图高潮gif福利片| 91精品国产九色| 国产真实伦视频高清在线观看| 夜夜夜夜夜久久久久| 午夜福利在线在线| 久久精品国产亚洲网站| 成人三级黄色视频| 国产v大片淫在线免费观看| 亚洲精品成人久久久久久| 亚洲精品456在线播放app| 少妇人妻一区二区三区视频| 亚洲人成网站在线播| 亚洲成人中文字幕在线播放| 国产久久久一区二区三区| 亚洲成人中文字幕在线播放| 亚洲人成网站在线播| 国产高清激情床上av| 亚洲欧美精品综合久久99| 日本色播在线视频| 99热这里只有精品一区| 搡女人真爽免费视频火全软件| 日本在线视频免费播放| 免费电影在线观看免费观看| 亚洲在线观看片| 亚洲内射少妇av| 美女被艹到高潮喷水动态| 亚洲精品粉嫩美女一区| 赤兔流量卡办理| 九九热线精品视视频播放| 国产av麻豆久久久久久久| 国产av不卡久久| 亚洲丝袜综合中文字幕| 97在线视频观看| 99热精品在线国产| 淫秽高清视频在线观看| 国产精品人妻久久久久久| 乱人视频在线观看| 大香蕉久久网| 亚洲高清免费不卡视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲最大成人手机在线| 欧美精品一区二区大全| 在线免费观看不下载黄p国产| 又粗又爽又猛毛片免费看| 乱系列少妇在线播放| 色哟哟哟哟哟哟| 可以在线观看的亚洲视频| 久久久久久九九精品二区国产| 久久久色成人| 亚洲精品亚洲一区二区| 欧美3d第一页| 黄片wwwwww| 国产v大片淫在线免费观看| 少妇被粗大猛烈的视频| 又爽又黄a免费视频| 免费av毛片视频| 精品久久久久久久久久久久久| 亚洲av免费在线观看| 中文字幕久久专区| 欧美性猛交╳xxx乱大交人| 麻豆成人av视频| 一区二区三区四区激情视频 | 好男人在线观看高清免费视频| 12—13女人毛片做爰片一| 欧美xxxx性猛交bbbb| av在线观看视频网站免费| 晚上一个人看的免费电影| avwww免费| 国产av一区在线观看免费| 亚洲18禁久久av| 久久这里有精品视频免费| 一级毛片电影观看 | 国产熟女欧美一区二区| 1024手机看黄色片| 久久精品人妻少妇| 久久人人爽人人片av| 18禁黄网站禁片免费观看直播| 成年av动漫网址| 日韩欧美一区二区三区在线观看| 99热精品在线国产| 听说在线观看完整版免费高清| 欧美激情国产日韩精品一区| 欧美成人a在线观看| 九草在线视频观看| 深爱激情五月婷婷| 亚洲天堂国产精品一区在线| 国产女主播在线喷水免费视频网站 | av在线播放精品| 日韩成人伦理影院| 美女黄网站色视频| 中文字幕制服av| 欧美又色又爽又黄视频| 婷婷六月久久综合丁香| 丰满人妻一区二区三区视频av| 久久精品国产99精品国产亚洲性色| 伊人久久精品亚洲午夜| 天堂√8在线中文| 久久精品国产亚洲av天美| 日日啪夜夜撸| 能在线免费看毛片的网站| 日韩,欧美,国产一区二区三区 | 国产一区二区激情短视频| 尤物成人国产欧美一区二区三区| 亚洲自拍偷在线| 干丝袜人妻中文字幕| 久久亚洲精品不卡| 国产精品麻豆人妻色哟哟久久 | 亚洲自偷自拍三级| 免费av观看视频| 两个人视频免费观看高清| 女同久久另类99精品国产91| 精品一区二区三区视频在线| 成人三级黄色视频| 老师上课跳d突然被开到最大视频| 成年女人永久免费观看视频| 精品少妇黑人巨大在线播放 | 老女人水多毛片| 国产成人精品婷婷| 在线播放无遮挡| 亚洲aⅴ乱码一区二区在线播放| 国产亚洲精品久久久久久毛片| 亚洲欧美中文字幕日韩二区| 亚洲国产精品sss在线观看| 色尼玛亚洲综合影院| 麻豆国产97在线/欧美| 亚洲性久久影院| 国模一区二区三区四区视频| 国产女主播在线喷水免费视频网站 | a级毛片a级免费在线| 亚洲最大成人中文| 美女cb高潮喷水在线观看| 91午夜精品亚洲一区二区三区| 中文字幕制服av| 亚州av有码| 亚洲成av人片在线播放无| 性插视频无遮挡在线免费观看| av.在线天堂| 99热全是精品| 九九久久精品国产亚洲av麻豆| 99热精品在线国产| 嫩草影院新地址| 永久网站在线| 久久精品久久久久久久性| 久久婷婷人人爽人人干人人爱| 午夜精品一区二区三区免费看| 国产视频首页在线观看| 国语自产精品视频在线第100页| 麻豆国产av国片精品| 国产精品无大码| 亚洲国产精品国产精品| 色综合站精品国产| 波野结衣二区三区在线| 日韩 亚洲 欧美在线| 少妇丰满av| 亚洲在线自拍视频| 少妇裸体淫交视频免费看高清| 国产白丝娇喘喷水9色精品| 久久久色成人| 深夜a级毛片| 亚洲av成人精品一区久久| 一级二级三级毛片免费看| 插逼视频在线观看| a级毛色黄片| 久久精品国产清高在天天线| 看片在线看免费视频| 日日摸夜夜添夜夜爱| 国产精品一区二区性色av| 女人被狂操c到高潮| 久久中文看片网| 波多野结衣巨乳人妻| 少妇猛男粗大的猛烈进出视频 | 久久久久性生活片| 丰满的人妻完整版| kizo精华| 日韩高清综合在线| 国产av在哪里看| 亚洲不卡免费看| 亚洲欧洲日产国产| 白带黄色成豆腐渣| 非洲黑人性xxxx精品又粗又长| 国产高清激情床上av| 久久久久久久久中文| 毛片一级片免费看久久久久| 国产爱豆传媒在线观看| 直男gayav资源| 最近视频中文字幕2019在线8| 三级男女做爰猛烈吃奶摸视频| 人妻系列 视频| 日日撸夜夜添| 欧美变态另类bdsm刘玥| 一个人观看的视频www高清免费观看| 男女啪啪激烈高潮av片| 亚洲国产精品久久男人天堂| 嫩草影院精品99| 美女脱内裤让男人舔精品视频 | 麻豆久久精品国产亚洲av| 欧美丝袜亚洲另类| 国产精品一及| 国产伦在线观看视频一区| 精品欧美国产一区二区三| 美女大奶头视频| 免费观看精品视频网站| av卡一久久| 亚洲精品乱码久久久久久按摩| 日韩欧美国产在线观看| 观看美女的网站| 麻豆久久精品国产亚洲av| 亚洲久久久久久中文字幕| 色综合站精品国产| 一级黄色大片毛片| 女人被狂操c到高潮| 亚洲国产欧洲综合997久久,| 欧美不卡视频在线免费观看| 一进一出抽搐动态| 色吧在线观看| 亚洲在久久综合| 99在线视频只有这里精品首页| 久久这里只有精品中国| 国产精品野战在线观看| 最后的刺客免费高清国语| 欧美日本亚洲视频在线播放| 最近最新中文字幕大全电影3| 在线观看美女被高潮喷水网站| 亚洲中文字幕一区二区三区有码在线看| 国产一级毛片在线| 床上黄色一级片| 国产精品.久久久| 99热6这里只有精品| 久久中文看片网| www.av在线官网国产| 最近的中文字幕免费完整| 日韩欧美三级三区| 看免费成人av毛片| 欧美xxxx性猛交bbbb| 高清日韩中文字幕在线| 成人高潮视频无遮挡免费网站| 国产成人aa在线观看| 丰满人妻一区二区三区视频av| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产色片| 久久亚洲精品不卡| 日韩成人伦理影院| 日韩亚洲欧美综合| 成人国产麻豆网| 久久亚洲国产成人精品v| 免费观看的影片在线观看|