• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Head-related transfer function-reserved time-frequency masking for robust binaural sound source localization

    2022-04-06 07:34:32HongLiuPeipeiYuanBingYangGeYangYangChen

    Hong Liu|Peipei Yuan|Bing Yang|Ge Yang|Yang Chen

    1Key Laboratory of Machine Perception, Shenzhen Graduate School,Peking University,Shenzhen,China

    2School of Artificial Intelligence, Chongqing University of Technology,Chongqing, China

    3Yanka Kupala State University of Grodno,Grodno,Belarus

    Abstract Various time-frequency (T-F) masks are being applied to sound source localization tasks.Moreover, deep learning has dramatically advanced T-F mask estimation.However, existing masks are usually designed for speech separation tasks and are suitable only for single-channel signals.A novel complex-valued T-F mask is proposed that reserves the head-related transfer function (HRTF), customized for binaural sound source localization.In addition, because the convolutional neural network that is exploited to estimate the proposed mask takes binaural spectral information as the input and output, accurate binaural cues can be preserved.Compared with conventional T-F masks that emphasize single speech source-dominated T-F units, HRTFreserved masks eliminate the speech component while keeping the direct propagation path.Thus, the estimated HRTF is capable of extracting more reliable localization features for the final direction of arrival estimation.Hence, binaural sound source localization guided by the proposed T-F mask is robust under noisy and reverberant acoustic environments.The experimental results demonstrate that the new T-F mask is superior to conventional T-F masks and lead to the better performance of sound source localization in adverse environments.

    1|INTRODUCTION

    Binaural sound source localization(SSL)aims to determine the azimuth, elevation or distance between the sound source and the center of the microphone array, which uses binaural microphones mounted on the left and right sides of the robot head.SSL is valuable for research and a variety of applications,such as speech enhancement, speech separation, speech recognition, human-robot interaction, teleconferencing, and hearing aids [1-5].

    Plenty of approaches have been proposed to estimate the direction of arrival (DOA), most of which are composed of two steps.In the first step, the localization features are extracted from the received waveform signals or spectral information.For binaural SSL,binaural cues in a biomimetic way are commonly used,including interaural time difference(ITD),interaural phase difference(IPD)and interaural level difference(ILD).In detail,ITD describes the time difference of a sound source arriving at binaural microphones,whereas IPD refers to the phase difference of a sound wave reaching each ear.Moreover, ILD represents the level difference of a sound source between binaural signals.In the second stage,the DOA is estimated according to the mapping relationship between input features and DOA.During that stage,many methods can be used to establish this mapping relationship, such as peak searching [6] and template matching [7, 8].In addition, probabilistic statistic models can be established using some methods such as gaussian mixture models [9] and deep learning-based models [10].

    Based on an auditory front end, the complex interaction of ITDs and ILDs is built by a probabilistic model trained under various acoustic conditions [11].In the meantime,DNNs are used to structure the relationship between the source azimuth and binaural cues, including the complete cross-correlation function (CCF) and ILDs [10].Most previous methods tried to exploit information in the binauralcue pairs and capture the complicated mapping relationship.However, the performance of traditional localization feature extraction approaches may seriously degrade in the presence of reverberation and noise.Therefore, it is necessary to add an extra step (weighting or enhancing the localization features) before the estimation of the DOA.With the cooperation of binaural coherence [12], the coherence test [13], a time-frequency(T-F) mask [14, 15], and so on, the features are finally obtained from more reliable T-F units.In addition, accurate binaural cues can be directly extracted from the received waveform signals or spectrum [16, 17].

    Because of the eminent learning ability of deep neural networks, T-F masks are capable of guiding the SSL to focus on single source-dominated T-F units [14, 18].Various T-F masks designed manually are listed in Wand and Chen [19].A ideal binary mask(IBM) and ideal ratio mask(IRM) are two popular masks for speech separation.The value of IBM is either 1 or 0, depending on whether the signal-to-noise ratio(SNR) is low enough in the specific two-dimensional T-F representation.The IRM is a soft mask that is similar to the IBM.It evaluates the ratio between the speech energy and the summation of the clean speech energy and noise energy.According to the definition of the IRM, it can weigh the target speech signal well only when additive noise exists in the acoustic environment.However,IRM may not suitable for T-F units full of reverberation, which can be regarded as uncorrelated interference.

    Two main issues exist in real-valued T-F mask-guided SSL:(1) most T-F masks are designed for a monoaural signal; and(2) T-F mask definitions usually involve only the spectral amplitude,signal power,or SNR.For the first issue,because a monoaural mask usually does not consider the difference between multichannel signals,the binaural cues may be destroyed during T-F unit selection.The localization information extracted from the binaural cues is incomplete or even promiscuous, which leads to inaccurate sound source results.In terms of the second issue,owing to the deficiency of the phase information, which is more significant than the amplitude information for the SSL task, the weight of T-F units may be measured ambiguously.Consequently, the mis-selected T-F units will also generate an inaccurate localization feature,leading to the degradation of performance.

    To solve these confusing issues, several methods [18, 20]based on the simultaneous processing of binaural signals exhibiting the ability to preserve binaural cues have been proposed.A phase-sensitive mask, including a measure of phase [21]; the complex IRM, employed for both magnitude and phase spectra [22] and the dereverberation mask [23] are proposed to yield a better estimation of clean speech.However, these T-F masks are elaborately designed for speech separation.If we apply these T-F masks directly to SSL, they eliminate the influence of the early and late reverberations to some extent, but still circuitously.

    Motivated by these studies, we propose a novel complex T-F mask-guided binaural SSL approach.This work mainly makes three contributions.First, different from previous monoaural T-F masks used in speech separation,the proposed mask is customized for binaural SSL.It is dedicated to highlighting the optimal T-F units while resisting the disturbances of noise and reverberation.Second, this complex mask is designed to reserve the direct path component of the headrelated transfer function(HRTF) from mixed binaural spectra,the HRTF-reserved mask.Third,the experiments demonstrate that the ITD and ILD,calculated from an estimation of HRTF,can lead to lower localization error compared with features extracted from the received binaural signals.

    Section 2 formulates the binaural signal model and related works.The definition of the HRTF-reserved mask and system overview are described in Section 3.Section 4 describes the experimental setup and exhibits experimental results with different acoustic environments.Finally, conclusions are given in Section 5.

    2|RELATED WORK

    2.1|Binaural signal model

    The received binaural signalsxi(n) in the time domain can be formulated as:

    where ?denotes the convolution operation,nis the time index ands(n) andvi(n) represent the clean sound signal and additive noise signal, respectively.landrrefer to the index of the left and right channels.Thehi(n) denotes the impulse response between the source and ear, consisting of an indoor acoustic property and head-related impulse response [7].

    After applying short-time Fourier transform (STFT), the binaural signal in the time domain is transformed to the timefrequency domain, which can be modeled as:

    whereXi(t,f),S(t,f) andVi(t,f) represent the spectra of the received binaural signal, clean speech and noise signal,respectively.Hi(f,θ) is the frequency-domain version of the binaural room impulse response (BRIR), in which the propagation path contains the direct path, early reflections and late reverberation.θdenotes the corresponding azimuth andtandfdenote the index of time frame and frequency bin,respectively.

    In conventional approaches,physical localization cues such as ITD (or IPD) and ILD are directly extracted from the received signals for each time frequency pair [24].

    IPD and ILD of the binaural signals in Equation(2)can be respectively extracted as:

    As mentioned, the additive noise and reverberation component will disturb the localization features in the specific T-F units.The features calculated from the single sourcedominated T-F pairs, which involve only direct path propagation, can lead to better performance.

    2.2|Direction of arrival estimation via template matching

    We exploit the template matching method [7] to estimate the sound source.First, the offline template establishment is conducted by:

    whereTrepresents the template, HRTFr(f,θ) and HRTFl(f,θ) denote the T-F domain (timetis omitted) HRTFs on the right and left ears for azimuthθ, respectively.Similarly, ITD templates(f,θ) can be established by:

    Because the azimuths are known in the template establish stage, we can calculate the theoretical ITD.

    Second, both the ITD and ILD are considered for SSL.Their estimation can be respectively calculated as:

    Finally,the DOA estimation is obtained by minimizing the hybrid distances, which can be formulated as:

    wherejis the azimuth index,denotes the distance between ITD estimation and ITD templates, anddenotes the distance between ILD estimation and ITD templates.

    3|CONVOLUTIONAL NEURAL NETWORK-BASED HEAD-RELATED TRANSFER FUNCTION-RESERVED MASK ESTIMATION

    The schematic diagram of the proposed binaural SSL is illustrated in Figure 1.In the binaural signal simulation phase, the binaural signals are generated by convolving the BRIR with the clean speech signal.Moreover,because different kind of noises with various SNRs always exist in real scenarios, we generated noisy binaural signals by adding a noise signal to the clean binaural signals.During training,the STFT is performed on the received signals.After that,the data block,which is composed of the imaginary and real parts of T-F units, is fed to a convolutional neural networkm (CNN).The ITD and ILD calculated directly by HRTF are regarded as feature templates for the DOA estimation.In the test stage, the HRTFs are estimated by multiplying the T-F units of binaural signals with the HRTF-reserved mask predicted from the trained CNN.With regard to template matching, we measure the distance between the templates and the binaural cues extracted from the estimated HRTFs.The azimuth corresponding to the minimum distance is determined as the final DOA [7].

    3.1|Head-related transfer functionreserved time-frequency mask

    For T-F mask-guided SSL,several T-F masks are available[19].The complex-valued mask is considered owing to its ability to restore the STFT coefficient.The typical complex IRM that suppresses the contribution of the T-F unit,including the noise signal and reverberation, is defined as:

    whereHdp(f,θ)denotes the direct-path HRTF1In this paper, we relax the HRTF definition and use the term HRTF to describe the frequency response from a target source to binaural microphones.corresponding to azimuthθat frequencyf.The microphone index is omitted for the sake of simplicity.The STFT coefficient of the directpath signalXdp(t,f) is obtained after multiplying the received signalX(t,f) and thecIRM(t,f).This process can be formulated as:

    To reserve the HRTF from the direct-path speech signal,we define a novel T-F mask as:

    F I G U R E 1 Schematic diagram of proposed head-related transfer function-reserved mask-guided sound source localization method.The upper part is the training phase constructing a convolutional neural network-based mask estimator and the binaural feature templates.The lower part is the test phase to estimate the azimuth through template matching and time-frequency masking.

    According to Equations (11) and (12),cIRMreis a despeech operation.Therefore, the desired HRTF can be obtained by:

    CombiningcIRM(t,f) withcIRMre(t,f), a fused maskcIRMfu(t,f) can directly extract the HRTF from the received signal:

    Unlike previous manually designed T-F masks, we first emphasize the T-F units containing the direct-path signal.Then, the proposed T-F mask directly eliminates the speech component from the direct-path speech signal while preserving the HRTF of the sound source.

    With regard to neural network training, mask estimation networks are trained using two strategies:separately(cIRMandcIRMre) or in an integrated way (cIRMfu).

    3.2|Convolutional neural network-based mask estimation

    Different from monoaural T-F masking, the STFT coefficient of both left and right channels are stacked together as the input data, as shown in Figure 2.On the one hand, both phase and magnitude components, the complete information of the single-channel signal in the T-F domain, are simultaneously considered in a straightforward way.On the other hand, the full spatial information implied in binaural signals can be wellpreserved.The input matrix is formulated as:

    whererealrefers to the real part of the complex-value,whereasimgrefers to the imagination component andTandFdenote the number of time frames and frequency units, respectively.Binaural signals with a sampling rate of 44.1 kHz are processed by STFT with a Hanning window.The window length is 20 ms(882 samples) with a hop length of 10 ms.Seven frames with frequency bins ranging from 80 to 8000 Hz (159 samples) are packed into a data block.The size of the input data is 7×159×4(frame×frequency×channel).

    The architecture of the T-F mask estimation network is depicted in Figure 2.We employ a simple CNN with four twodimensional convolutional layers to predict the T-F mask[18].The kernel size of each layer is 3 × 3 with the stride keeping output the same size as input data.The number of filters of each layer is four,corresponding to the imaginary and real parts of the left and right channels.Because the network processes the binaural signals simultaneously, the direct-path propagation from the sound source to microphones can be captured and the binaural cues between T-F pairs can also be preserved.As aresult, the accurate localization feature of the direct-path component can be extracted directly from the ^Hdp(f,θ).

    F I G U R E 2 Architecture of time-frequency masking network.The shape of input composed of time,frequency and channel(7, 159 and 4) is the same as each layer output

    According to the definition of the HRTF-reserved mask in Equations (10), (12) and (14), the network output is similar to the input matrix:

    where thecould becIRM,cIRMreorcIRMfu.Each CNN corresponding to a specific T-F mask is trained separately and independently.

    The training configurations for three training targets are the same.All networks are conducted with the Pytorch with one NVIDIA GeForce Titan XP GPU.The batch size is set to 16.An Adam optimizer [25] is used to optimize the network parameters by minimizing the mean absolute error(MAE).The initial learning rate is set to 0.003.Then it is divided by 3 every 10 epochs until the performance of validation set no longer improves.

    4|EXPERIMENTS AND ANALYSIS

    4.1|Experimental setup

    For the binaural simulation, the HRTFs from the CIPIC HRTF database [26], audio signals from the TIMIT database[27] and noise signal from the Noisex-92 database [28] are exploited to synthesize the received signals.

    There are 45 different subjects in the CIPIC HRTF database.Each has 25 azimuths and 50 elevations.The sources are placed at 0 degrees elevation and all azimuths range from[-80 degrees,-60 degrees,-55 degrees,-45 degrees:5:45 degrees,55 degrees,65 degrees,80 degrees],in which 0 degrees is located at the middle front of the head.Subject 21(i.e.,Kemar head)is selected to simulate an acoustic environment for the T-F mask estimation in the following experiments.All subjects are used to build ITD and ILD offline templates,as proposed in Pang et al.[7].

    In the experiments, 25, seven, and seven utterances are selected randomly from the TIMIT to generate training, validation and a test set for T-F masking,respectively.Furthermore,to simulate the noisy acoustic environment, babble noise with various SNR,[0:10:30]dB for a training and validation set and[-5:10:25] dB for a test set are added to the noise-free binaural speech signals.The spectrum of the babble noise signal is similar tothat of thespeechsignal andthe SNRsareunmatched between the training, validation set and test set, which can increase the credibility of the following experiments of the method.

    To evaluate the robustness of the proposed binaural localization method, room impulse responses are also simulated through the Roomsim toolbox [29].Table 1 shows the room configurations including room size (W, L and H denote the width, length and height of the room, respectively), the distance between the head and source (R), and the head location and reverberation time(RT60).Figure 3 illustrates the simulated acoustic environments for room1 in Table 1.

    In total, there are 4500, 1576 and 936 utterances in the training set, validation set and test set, respectively.

    4.2|Results

    To evaluate the performance of the proposed T-F mask, we directly measure the MAE of template matching withdifferent types of masks or without a mask.For the DOA estimation stage in the third step of the framework, we use joint ITD and ILD template matching [7], denoted as TM in Table 2.Moreover, HRTFM denotes the proposed HRTFreserved masks including integrated training (fuse) in Equation (14) and independent training (separation, sepa) of two masks in Equations (12) and (10).The comparison of TM-HRTFM with TM can be considered ablation experiments.The bold number in Table 2 means that the corresponding method performs the best under specific acoustic environment.

    F I G U R E 3 Simulated scene and parameters of acoustic environments for room1

    TA B L E 1 Room configuration for training and test dataset

    TA B L E 2 The MAE of DOA estimation(degrees) for models trained in multiconditional environment

    The comparison of the azimuth localization performance is shown in Table 2.The HRTF-reserved mask reduces localization error compared with the SSL method without a mask or with complex IRM.This demonstrates that the design of the HRTFM is able to realize a de-speech operation and reserve the HRTF corresponding to the direct-path speech signal.In addition, the proposed mask leads to more effective and accurate binaural SSL results compared with no masks or with the complex IRM.

    The performance of TM-HRTFM(sepa)is worse than that of TM-HRTFM (fuse).This is because exploiting a singlenetwork to estimate the fused mask directly can avoid introducing a non-negligible accumulated error.

    The TM-HRTF (fuse) does not perform as well as TM-complex IRM in the low-SNR environment, whereas TM-HRTF (fuse) performs better in high-reverberant environments.The main reason is that background noise with no specific direction obscures the directional information of the sound source whereas HRTFM is more suitable for reverberation acoustic environments that contain sufficient directional information.

    5|CONCLUSION

    A T-F mask is proposed to reserve the HRTF directly from received signals and lead to the extraction of robust binaural cues in the presence of reverberation and noise.A simple CNN is exploited to estimate the HRTFreserved mask.The HRTF containing the direct-path propagation from the source to the head is available after multiplying the mask with binaural signals in the T-F domain.Then the ITD and ILD can be extracted efficiently from the HRTFs.Thus, experimental results demonstrate that the performance of template matchingbased, probability model-based and other two-stage SSL methods can be promoted, especially in a reverberant environment.

    Compared with previous handcrafted monoaural T-F masks, the proposed T-F mask is robustly superior to binaural SSL.The contribution of T-F units dominated by the direct-path speech signal can be precisely evaluated.Furthermore, the direct path component of the HRTF is able to be reserved from a mixture of binaural spectra.Thus, SSL guided by the proposed mask adapts to unknown and adverse acoustic environments, especially in the presence of reverberation.

    ACKNOWLEDGEMENT

    This work is supported by the National Natural Science Foundation of China (Nos.61673030 and U1613209) and the National Natural Science Foundation of Shenzhen (No.JCYJ20190808182209321).

    色综合站精品国产| 日日夜夜操网爽| 少妇高潮的动态图| 精华霜和精华液先用哪个| 久久久久久大精品| 夜夜夜夜夜久久久久| 亚洲av中文字字幕乱码综合| ponron亚洲| 97超视频在线观看视频| 高清毛片免费观看视频网站| 首页视频小说图片口味搜索| 两性午夜刺激爽爽歪歪视频在线观看| 一级a爱片免费观看的视频| 美女黄网站色视频| 久久婷婷人人爽人人干人人爱| 亚洲美女黄片视频| 97人妻精品一区二区三区麻豆| 免费看a级黄色片| 国产真实伦视频高清在线观看 | 亚洲色图av天堂| 日本熟妇午夜| 国产精品国产高清国产av| 小说图片视频综合网站| 我的老师免费观看完整版| 国产精品影院久久| 国产一区二区在线观看日韩| 国产免费av片在线观看野外av| 88av欧美| 亚洲性夜色夜夜综合| 两个人视频免费观看高清| av视频在线观看入口| 中亚洲国语对白在线视频| 欧美xxxx黑人xx丫x性爽| 禁无遮挡网站| 青草久久国产| 精品熟女少妇八av免费久了| 亚洲五月婷婷丁香| 久久性视频一级片| 99久久无色码亚洲精品果冻| 亚洲av电影在线进入| 久久中文看片网| 亚洲美女黄片视频| 少妇丰满av| 国产精品久久久久久久电影| 搡老熟女国产l中国老女人| 尤物成人国产欧美一区二区三区| 三级毛片av免费| 在线免费观看的www视频| 久久久成人免费电影| 日韩欧美精品v在线| 一区二区三区激情视频| 午夜精品一区二区三区免费看| 欧美丝袜亚洲另类 | 欧美日韩综合久久久久久 | 成人国产一区最新在线观看| 欧美区成人在线视频| 久久精品国产亚洲av天美| 成年女人永久免费观看视频| 精品久久久久久久久亚洲 | 香蕉av资源在线| 日本免费一区二区三区高清不卡| 91午夜精品亚洲一区二区三区 | 日日摸夜夜添夜夜添小说| 亚洲av电影不卡..在线观看| 夜夜夜夜夜久久久久| 狂野欧美白嫩少妇大欣赏| 97热精品久久久久久| 精品久久久久久久末码| 免费看美女性在线毛片视频| 国产欧美日韩精品亚洲av| 一进一出好大好爽视频| 日韩欧美精品v在线| 午夜福利在线在线| av在线蜜桃| 久久国产乱子免费精品| 国产爱豆传媒在线观看| 亚洲精品在线美女| 一个人看的www免费观看视频| a级一级毛片免费在线观看| 国内久久婷婷六月综合欲色啪| 性欧美人与动物交配| 99久久精品国产亚洲精品| 狂野欧美白嫩少妇大欣赏| 国产成人啪精品午夜网站| 如何舔出高潮| 老司机午夜福利在线观看视频| 亚洲在线自拍视频| 国产av麻豆久久久久久久| 亚洲成a人片在线一区二区| 亚洲成人久久爱视频| 免费看美女性在线毛片视频| 亚洲av成人不卡在线观看播放网| 亚洲欧美日韩东京热| 欧洲精品卡2卡3卡4卡5卡区| 国产在视频线在精品| 九色国产91popny在线| 天堂影院成人在线观看| 尤物成人国产欧美一区二区三区| 亚洲国产精品合色在线| 亚洲电影在线观看av| 一本久久中文字幕| 久久久色成人| 中文字幕熟女人妻在线| 午夜亚洲福利在线播放| 嫩草影院精品99| 我要搜黄色片| 非洲黑人性xxxx精品又粗又长| 无人区码免费观看不卡| 国产色婷婷99| 日日摸夜夜添夜夜添小说| 午夜精品在线福利| 亚洲国产精品sss在线观看| 一级黄色大片毛片| 国产精品电影一区二区三区| 欧美成人免费av一区二区三区| 国产欧美日韩一区二区精品| 最近中文字幕高清免费大全6 | 99在线视频只有这里精品首页| 国产69精品久久久久777片| 搞女人的毛片| 人人妻,人人澡人人爽秒播| 黄片小视频在线播放| a级毛片a级免费在线| 在现免费观看毛片| av黄色大香蕉| 一级黄色大片毛片| 欧美一区二区精品小视频在线| 国产精品日韩av在线免费观看| 国产激情偷乱视频一区二区| 在线天堂最新版资源| 国产真实伦视频高清在线观看 | 国产一区二区在线观看日韩| av在线天堂中文字幕| 在现免费观看毛片| 男人狂女人下面高潮的视频| 亚洲午夜理论影院| 此物有八面人人有两片| 宅男免费午夜| 午夜激情欧美在线| 国产激情偷乱视频一区二区| 成人毛片a级毛片在线播放| a级毛片免费高清观看在线播放| 最后的刺客免费高清国语| 成人鲁丝片一二三区免费| 国产精品一区二区免费欧美| 国产野战对白在线观看| 日韩欧美免费精品| 欧美丝袜亚洲另类 | 中文资源天堂在线| 国产精品久久久久久亚洲av鲁大| 琪琪午夜伦伦电影理论片6080| 日韩有码中文字幕| 亚洲欧美日韩高清在线视频| 亚洲第一区二区三区不卡| 久久亚洲精品不卡| 美女cb高潮喷水在线观看| 亚洲av电影不卡..在线观看| 熟妇人妻久久中文字幕3abv| 色吧在线观看| 高清毛片免费观看视频网站| 欧洲精品卡2卡3卡4卡5卡区| 国产一级毛片七仙女欲春2| 国产主播在线观看一区二区| 精品久久久久久久末码| 免费一级毛片在线播放高清视频| 亚洲精品亚洲一区二区| 国产一区二区在线av高清观看| 性色av乱码一区二区三区2| 国产久久久一区二区三区| 久久久久久久久久成人| 久久国产乱子伦精品免费另类| 啪啪无遮挡十八禁网站| 欧洲精品卡2卡3卡4卡5卡区| 免费av观看视频| 国产成人av教育| 99热6这里只有精品| 免费黄网站久久成人精品 | 有码 亚洲区| 免费搜索国产男女视频| 国内精品久久久久精免费| 精品一区二区三区视频在线观看免费| avwww免费| 午夜老司机福利剧场| 校园春色视频在线观看| 亚洲,欧美,日韩| 久久这里只有精品中国| 久久久久国内视频| 精品久久久久久久久久免费视频| 久久国产乱子伦精品免费另类| 久久精品综合一区二区三区| 一进一出抽搐动态| 国产精品国产高清国产av| 一级a爱片免费观看的视频| a级毛片a级免费在线| 中文字幕免费在线视频6| 亚洲国产日韩欧美精品在线观看| 99视频精品全部免费 在线| 一a级毛片在线观看| 亚洲aⅴ乱码一区二区在线播放| 成年免费大片在线观看| 国产aⅴ精品一区二区三区波| 国产爱豆传媒在线观看| 欧美性猛交黑人性爽| 欧美在线一区亚洲| 午夜日韩欧美国产| 人人妻人人澡欧美一区二区| а√天堂www在线а√下载| 三级男女做爰猛烈吃奶摸视频| 亚洲成人精品中文字幕电影| 91在线精品国自产拍蜜月| 首页视频小说图片口味搜索| 人妻丰满熟妇av一区二区三区| 欧美日本视频| 丁香欧美五月| 三级毛片av免费| 国产伦精品一区二区三区四那| 搡老岳熟女国产| 成人特级av手机在线观看| 别揉我奶头~嗯~啊~动态视频| av黄色大香蕉| 午夜影院日韩av| 天美传媒精品一区二区| 国产亚洲欧美98| 一级黄色大片毛片| 国产欧美日韩精品亚洲av| 男女视频在线观看网站免费| 国产在线精品亚洲第一网站| 国产爱豆传媒在线观看| 国产精品日韩av在线免费观看| 精品无人区乱码1区二区| 国产成人啪精品午夜网站| 每晚都被弄得嗷嗷叫到高潮| 欧美性猛交黑人性爽| 久9热在线精品视频| 一本综合久久免费| 一a级毛片在线观看| 精品熟女少妇八av免费久了| 成年版毛片免费区| 免费看美女性在线毛片视频| 亚洲三级黄色毛片| 精品一区二区免费观看| 亚洲成av人片免费观看| 亚洲,欧美,日韩| 五月伊人婷婷丁香| 欧美黑人巨大hd| 麻豆一二三区av精品| 亚洲真实伦在线观看| 久久久久久大精品| 亚洲在线自拍视频| 亚洲av成人不卡在线观看播放网| 最近中文字幕高清免费大全6 | www.www免费av| 免费一级毛片在线播放高清视频| 国产真实伦视频高清在线观看 | 亚洲狠狠婷婷综合久久图片| 亚洲精品乱码久久久v下载方式| 国产白丝娇喘喷水9色精品| 国产伦精品一区二区三区视频9| 99在线视频只有这里精品首页| 18+在线观看网站| av天堂在线播放| 色哟哟·www| 久久久久精品国产欧美久久久| 亚洲人成网站在线播放欧美日韩| 麻豆国产97在线/欧美| 十八禁人妻一区二区| 韩国av一区二区三区四区| 无遮挡黄片免费观看| 欧美成人性av电影在线观看| 乱码一卡2卡4卡精品| 免费在线观看影片大全网站| 久久久久亚洲av毛片大全| 国产高清有码在线观看视频| 男女那种视频在线观看| 99久久精品热视频| 简卡轻食公司| 免费av观看视频| 黄片小视频在线播放| 国产美女午夜福利| 免费看光身美女| 亚洲熟妇熟女久久| 亚洲一区高清亚洲精品| 国产白丝娇喘喷水9色精品| 最近视频中文字幕2019在线8| 首页视频小说图片口味搜索| av天堂中文字幕网| 国产三级在线视频| 成人高潮视频无遮挡免费网站| 婷婷精品国产亚洲av| 成人特级黄色片久久久久久久| 91字幕亚洲| 久久精品国产自在天天线| 亚洲av日韩精品久久久久久密| 99热6这里只有精品| 国产伦在线观看视频一区| 国产精品三级大全| 精品日产1卡2卡| 三级男女做爰猛烈吃奶摸视频| 色噜噜av男人的天堂激情| 嫁个100分男人电影在线观看| 男女那种视频在线观看| 国产精品综合久久久久久久免费| 久久天躁狠狠躁夜夜2o2o| 看免费av毛片| 丁香欧美五月| 一级黄片播放器| 伦理电影大哥的女人| 午夜福利18| 简卡轻食公司| 精品福利观看| 亚洲国产欧美人成| 免费在线观看日本一区| 五月伊人婷婷丁香| 日韩高清综合在线| 久久久久免费精品人妻一区二区| 久久久成人免费电影| 1024手机看黄色片| 在线国产一区二区在线| 国产精品三级大全| 久久精品国产亚洲av天美| 亚洲中文字幕日韩| 在线观看美女被高潮喷水网站 | 国产亚洲欧美98| 欧美日本视频| 成人特级av手机在线观看| 女人被狂操c到高潮| 国产黄片美女视频| 我的女老师完整版在线观看| 麻豆av噜噜一区二区三区| 亚洲av中文字字幕乱码综合| 国产欧美日韩精品亚洲av| 女人被狂操c到高潮| 国产精品1区2区在线观看.| 日本免费a在线| 精品久久久久久久久久久久久| 我的老师免费观看完整版| АⅤ资源中文在线天堂| 亚洲av成人精品一区久久| 欧美又色又爽又黄视频| 亚洲精品久久国产高清桃花| 日韩精品中文字幕看吧| 亚洲精品粉嫩美女一区| 极品教师在线视频| 国产精品久久久久久亚洲av鲁大| 嫩草影院入口| 久久久久久久久中文| 宅男免费午夜| 一进一出抽搐动态| 国产精品不卡视频一区二区 | 欧美日韩福利视频一区二区| 国产午夜福利久久久久久| 俄罗斯特黄特色一大片| 国产成人啪精品午夜网站| 婷婷色综合大香蕉| 久久久久性生活片| 亚洲精品一区av在线观看| 国产精品久久视频播放| 麻豆一二三区av精品| 国产真实伦视频高清在线观看 | 亚洲精品影视一区二区三区av| 欧美一级a爱片免费观看看| 久久久久久九九精品二区国产| 亚洲最大成人手机在线| 又黄又爽又免费观看的视频| 天堂√8在线中文| 日韩大尺度精品在线看网址| 色噜噜av男人的天堂激情| 一个人观看的视频www高清免费观看| 18禁黄网站禁片午夜丰满| 欧美不卡视频在线免费观看| 国产精品久久久久久人妻精品电影| 亚洲在线观看片| 国产三级在线视频| 男人的好看免费观看在线视频| 变态另类成人亚洲欧美熟女| 在线观看美女被高潮喷水网站 | 日韩国内少妇激情av| 国产成人福利小说| 日本在线视频免费播放| 2021天堂中文幕一二区在线观| 97热精品久久久久久| 好看av亚洲va欧美ⅴa在| 久久精品久久久久久噜噜老黄 | 麻豆国产97在线/欧美| 中文字幕久久专区| eeuss影院久久| 一边摸一边抽搐一进一小说| 亚洲 欧美 日韩 在线 免费| 男女之事视频高清在线观看| 成人高潮视频无遮挡免费网站| 波多野结衣高清作品| 久久精品国产99精品国产亚洲性色| 免费看a级黄色片| 久久午夜亚洲精品久久| 欧美激情国产日韩精品一区| 成人午夜高清在线视频| 波多野结衣巨乳人妻| 国产一区二区在线观看日韩| 99热6这里只有精品| 精品不卡国产一区二区三区| 国产国拍精品亚洲av在线观看| 亚洲avbb在线观看| 日本五十路高清| 亚洲成a人片在线一区二区| 国产极品精品免费视频能看的| 日韩高清综合在线| 婷婷亚洲欧美| 舔av片在线| 搞女人的毛片| 久久精品影院6| 欧美中文日本在线观看视频| 日韩成人在线观看一区二区三区| 一进一出抽搐动态| 亚洲成人免费电影在线观看| 午夜福利视频1000在线观看| 老熟妇乱子伦视频在线观看| 深夜精品福利| 国产伦精品一区二区三区四那| 此物有八面人人有两片| 久久中文看片网| 亚洲最大成人av| 99国产综合亚洲精品| 日本一二三区视频观看| 90打野战视频偷拍视频| 亚洲五月天丁香| 老司机福利观看| 国产精品人妻久久久久久| 亚洲中文字幕日韩| 久久久成人免费电影| 最近中文字幕高清免费大全6 | 国产探花在线观看一区二区| 免费无遮挡裸体视频| 999久久久精品免费观看国产| 久久亚洲精品不卡| 亚洲精品久久国产高清桃花| 搞女人的毛片| 美女大奶头视频| 国产久久久一区二区三区| 自拍偷自拍亚洲精品老妇| 毛片女人毛片| 悠悠久久av| 中国美女看黄片| 久久久久免费精品人妻一区二区| 久久久久久久午夜电影| 欧美最黄视频在线播放免费| 午夜福利免费观看在线| 欧美潮喷喷水| avwww免费| 久久久久精品国产欧美久久久| 精品久久久久久久久久免费视频| 神马国产精品三级电影在线观看| 国产人妻一区二区三区在| 夜夜看夜夜爽夜夜摸| 日韩亚洲欧美综合| 国内精品美女久久久久久| 午夜精品在线福利| 999久久久精品免费观看国产| 中亚洲国语对白在线视频| 国产一区二区三区视频了| 亚洲精品影视一区二区三区av| 99久久成人亚洲精品观看| 亚洲av成人av| 成人美女网站在线观看视频| 少妇的逼好多水| 国产高清三级在线| 一区福利在线观看| 久久人妻av系列| 久久精品夜夜夜夜夜久久蜜豆| 亚洲成人久久爱视频| 欧美日韩黄片免| 精品久久久久久久末码| 1000部很黄的大片| 亚洲欧美日韩高清专用| ponron亚洲| 成人av在线播放网站| 女同久久另类99精品国产91| 在线观看美女被高潮喷水网站 | 日本成人三级电影网站| a级毛片a级免费在线| 亚洲最大成人中文| 一级毛片久久久久久久久女| 精品福利观看| 久久天躁狠狠躁夜夜2o2o| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人影院久久av| 天天一区二区日本电影三级| 禁无遮挡网站| 婷婷精品国产亚洲av| 麻豆国产av国片精品| 国语自产精品视频在线第100页| 亚洲最大成人av| 少妇熟女aⅴ在线视频| 男女床上黄色一级片免费看| 国产av麻豆久久久久久久| 国产一区二区在线观看日韩| 国产在视频线在精品| 亚洲综合色惰| 国产伦精品一区二区三区四那| 少妇的逼好多水| 国产精品亚洲美女久久久| 日韩欧美免费精品| 麻豆成人av在线观看| 嫩草影院新地址| 久久久久精品国产欧美久久久| 亚洲精品粉嫩美女一区| 日韩大尺度精品在线看网址| 色在线成人网| 桃色一区二区三区在线观看| 国产伦精品一区二区三区四那| 日本免费a在线| 免费看光身美女| 久9热在线精品视频| 在线观看66精品国产| 国产真实乱freesex| 欧美国产日韩亚洲一区| 久久精品综合一区二区三区| 免费一级毛片在线播放高清视频| 欧美日韩乱码在线| 色综合欧美亚洲国产小说| 麻豆久久精品国产亚洲av| 男人狂女人下面高潮的视频| 一区二区三区高清视频在线| 亚洲精品日韩av片在线观看| 麻豆国产av国片精品| 亚洲成人中文字幕在线播放| 首页视频小说图片口味搜索| 精品人妻偷拍中文字幕| 给我免费播放毛片高清在线观看| 成人永久免费在线观看视频| 免费观看的影片在线观看| 国产av麻豆久久久久久久| 69av精品久久久久久| 久久久久免费精品人妻一区二区| 美女高潮喷水抽搐中文字幕| 免费看日本二区| 国产高清视频在线播放一区| 麻豆av噜噜一区二区三区| 亚洲美女黄片视频| 国产美女午夜福利| 黄色女人牲交| 蜜桃亚洲精品一区二区三区| 久久人人爽人人爽人人片va | 精品久久久久久,| 久久久国产成人精品二区| 日韩人妻高清精品专区| 亚洲精品456在线播放app | 亚洲精品在线观看二区| 99热这里只有精品一区| 欧美bdsm另类| a级一级毛片免费在线观看| 老鸭窝网址在线观看| 国产午夜福利久久久久久| 国产精品嫩草影院av在线观看 | 女同久久另类99精品国产91| 一级黄片播放器| 国产私拍福利视频在线观看| 成熟少妇高潮喷水视频| 亚洲内射少妇av| 日韩精品中文字幕看吧| 精品熟女少妇八av免费久了| 人人妻人人澡欧美一区二区| 国产成人a区在线观看| 性色av乱码一区二区三区2| 国产黄片美女视频| 99热6这里只有精品| 村上凉子中文字幕在线| 亚洲人成网站高清观看| 精品久久久久久久久av| 欧美精品啪啪一区二区三区| 亚洲五月天丁香| 国内精品一区二区在线观看| 日韩 亚洲 欧美在线| 国产爱豆传媒在线观看| 麻豆av噜噜一区二区三区| 午夜福利18| 脱女人内裤的视频| 国产成人福利小说| 91狼人影院| 床上黄色一级片| 亚洲欧美精品综合久久99| 精品久久久久久,| 亚洲国产色片| 欧美日韩综合久久久久久 | 亚洲中文字幕一区二区三区有码在线看| 能在线免费观看的黄片| 亚洲美女黄片视频| 亚洲国产精品久久男人天堂| 美女高潮喷水抽搐中文字幕| 中文字幕高清在线视频| 国产黄色小视频在线观看| 亚洲经典国产精华液单 | 999久久久精品免费观看国产| 午夜激情欧美在线| 中文字幕人成人乱码亚洲影| 国产在视频线在精品| 精品久久国产蜜桃| 欧美日韩国产亚洲二区| 国模一区二区三区四区视频| ponron亚洲| 婷婷丁香在线五月| 97超视频在线观看视频| 免费av观看视频| 日日干狠狠操夜夜爽| 全区人妻精品视频| 热99re8久久精品国产| 97人妻精品一区二区三区麻豆| 级片在线观看| 欧美性猛交黑人性爽| 欧美精品啪啪一区二区三区| 最近最新免费中文字幕在线| 亚洲 国产 在线| 日本一本二区三区精品| 99久久无色码亚洲精品果冻| 日本与韩国留学比较| 中文字幕久久专区|