李文鎧 郭維棟
摘要 回顧了青藏高原雪蓋的季節(jié)內(nèi)變化及其影響研究的新進(jìn)展。高原大部分地區(qū)雪蓋不穩(wěn)定且持續(xù)時(shí)間短,導(dǎo)致高原雪蓋具有顯著的季節(jié)內(nèi)快速變化特征。局地氣溫和降水的季節(jié)內(nèi)變化是控制高原雪蓋季節(jié)內(nèi)變化的直接原因,這種直接關(guān)系是區(qū)域大氣環(huán)流季節(jié)內(nèi)活動(dòng)的結(jié)果。高原雪蓋季節(jié)內(nèi)變化還與大尺度大氣環(huán)流的季節(jié)內(nèi)活動(dòng)有關(guān),熱帶季節(jié)內(nèi)振蕩、北極濤動(dòng)和北大西洋濤動(dòng)引起的大氣季節(jié)內(nèi)過程可解釋部分高原雪蓋季節(jié)內(nèi)變率。高原雪蓋季節(jié)內(nèi)變化通過雪-反照率效應(yīng)迅速對(duì)大氣施加影響,雪蓋造成的冷異常通過大氣平流過程影響高原及其下游地區(qū),造成東亞高空急流和東亞大槽增強(qiáng)。由于高原雪蓋季節(jié)內(nèi)變化的重要影響,數(shù)值預(yù)報(bào)中高原雪蓋的初始場(chǎng)和預(yù)報(bào)場(chǎng)會(huì)影響次季節(jié)預(yù)報(bào)技巧。
關(guān)鍵詞陸氣相互作用;青藏高原;雪蓋;大氣季節(jié)內(nèi)變化;次季節(jié)預(yù)報(bào)
青藏高原在氣候系統(tǒng)中扮演了重要角色。葉篤正先生等青藏高原氣象學(xué)研究的先驅(qū)們率先發(fā)現(xiàn)了青藏高原的地形機(jī)械作用(Yeh,1950;顧震潮,1951)和熱力強(qiáng)迫作用(葉篤正等,1957;葉篤正和高由禧,1979)。這些早期的開創(chuàng)性工作提出了大地形熱力作用的概念,為青藏高原氣象學(xué)奠定了科學(xué)基礎(chǔ)。青藏高原海拔高、面積大,它作為抬升的大氣熱源、熱匯,直接作用于對(duì)流層中、高層大氣,改變海陸熱力差異狀況,深刻影響亞洲地區(qū)、乃至全球氣候格局(Wu and Zhang,1998;徐祥德等,2002;Duan and Wu,2005;Wu et al.,2007;周秀驥等,2009;劉屹岷等,2017,2020)。
青藏高原熱力強(qiáng)迫作用通過陸氣耦合過程影響高原上空大氣熱力狀況和大氣環(huán)流,影響局地及鄰近地區(qū)的大氣環(huán)流和天氣氣候。在東亞季風(fēng)區(qū),青藏高原熱力強(qiáng)迫作用的變化與我國(guó)氣候異常事件相聯(lián)系,例如可造成我國(guó)降水異常(趙平和陳隆勛,2001;段安民等,2003;Wang et al.,2014;Hu and Duan,2015;Wan et al.,2017;姚秀萍等,2019)。在全球增暖背景下,青藏高原熱力狀況和熱力強(qiáng)迫作用(如氣溫、大氣熱源、地表感熱通量等)發(fā)生了顯著變化(Liu and Chen,2000;吳紹洪等,2005;Duan and Wu,2009;陽坤等,2010;You et al.,2011,2016;王美蓉等,2012),對(duì)全球增暖響應(yīng)強(qiáng)烈,是全球氣候變化的重要部分,并影響我國(guó)氣候(丁一匯和張莉,2008;Wang et al.,2008;Liu et al.,2012;李菲等,2021)。
青藏高原還是大氣季節(jié)內(nèi)振蕩的重要活躍區(qū)和來源地,學(xué)者們對(duì)高原及其臨近地區(qū)的大氣季節(jié)內(nèi)振蕩現(xiàn)象及其天氣氣候效應(yīng)進(jìn)行了深入且系統(tǒng)的研究。青藏高原大氣季節(jié)內(nèi)振蕩,特別是青藏高原大氣熱源的季節(jié)內(nèi)變化,一方面具有局地活動(dòng)特征(徐國(guó)強(qiáng)和朱乾根,2000;周兵等,2000;Yang et al.,2017),另一方面還影響高原外地區(qū),造成東亞季風(fēng)季節(jié)內(nèi)變化(鞏遠(yuǎn)發(fā)等,2007;王躍男等,2009;Zhang et al.,2014;Wang and Duan,2015)。青藏高原大氣季節(jié)內(nèi)振蕩的來源與高原地表加熱有關(guān)(陳隆勛等,1985;彭玉萍等,2012),也與高原外部的大氣季節(jié)內(nèi)振蕩信號(hào)傳播有關(guān)(李崇銀,2004;Hu et al.,2016;Yang and Li,2017;Li and Mao,2018;陳悅等,2019)。
雪蓋是特殊而又重要的大氣下墊面,雪蓋-大氣作用過程是陸-氣相互作用過程的重要部分。雪蓋的存在顯著影響地表熱力學(xué)特征(Zhang,2005),并通過反照率效應(yīng)和水文效應(yīng)來影響大氣(段安民等,2018;魯萌萌等,2020)。隨著雪蓋資料的豐富和數(shù)值模式的發(fā)展,大量研究揭示了雪蓋對(duì)氣候的顯著影響(楊修群和黃士松,1992;Yang and Xu,1994;陳海山等,1999;Liu and Yanai,2002;Wu and Kirtman,2007;Wu et al.,2009,2011;左志燕等,2011;Li and Wang,2014;陳紅,2017;Zhang et al.,2017;Han and Sun,2018;Jia et al.,2018)。雪蓋還會(huì)影響水文循環(huán),積雪形式的降水累積以及通過融雪釋放的徑流是水文循環(huán)的重要成分(Jeelani et al.,2012;Fayad et al.,2017)。
世界“第三極”——青藏高原,海拔高度高、氣溫寒冷,具有較高的積雪覆蓋率,這與同緯度其他地區(qū)有非常明顯的差異。超過一個(gè)世紀(jì)的研究表明,青藏高原雪蓋的年際、年代際變化顯著影響包括我國(guó)在內(nèi)的亞洲氣候。青藏高原雪蓋對(duì)大氣的影響首先是局地效應(yīng),進(jìn)而是非局地效應(yīng)。青藏高原雪蓋通過反照率效應(yīng)和水文效應(yīng)影響高原局地地表能量平衡和水循環(huán),進(jìn)而影響高原熱力強(qiáng)迫作用(Li et al.,2001,2018),并影響下游或其他地區(qū)的天氣和氣候。青藏高原雪蓋的天氣氣候效應(yīng)最早發(fā)現(xiàn)于南亞季風(fēng)(Blanford,1884)。青藏高原雪蓋對(duì)東亞地區(qū)的季風(fēng)活動(dòng)、天氣和氣候的影響非常重要,學(xué)者們對(duì)此進(jìn)行了大量的翔實(shí)且深入的研究,揭示了青藏高原雪蓋對(duì)東亞季風(fēng)的影響(范廣洲等,1997;楊秋明,1998;鄭益群等,2000;張順利和陶詩言,2001;Wu and Qian,2003;Zhao et al.,2007;Xu et al.,2012;Wu et al.,2016;Xiao and Duan,2016;Liu et al.,2017;Wang et al.,2017;Wang et al.,2018a;You et al.,2020;Jia et al.,2021)。青藏高原雪蓋還有顯著的年代際變化(Wang et al.,2018b;Qian et al.,2020),也對(duì)我國(guó)天氣和氣候造成影響(Zhang et al.,2004;Wu et al.,2012;Si and Ding,2013)。此外,青藏高原雪蓋在水文系統(tǒng)中也起著重要作用,長(zhǎng)江、黃河、雅魯藏布江和湄公河等河流的源頭都位于青藏高原,青藏高原雪蓋對(duì)下游地區(qū)的水資源管理至關(guān)重要(Immerzeel et al.,2009;Zhang et al.,2012,2013)。2972EF2B-7BD2-46CD-9D9B-0BFF3B3E2FF5
在北半球空間尺度上,雪蓋時(shí)間變化主要是年循環(huán),大部分地區(qū)的積雪是季節(jié)性積雪(例如冬季的西伯利亞地區(qū)積雪),雪蓋變化緩慢、維持時(shí)間至少達(dá)到一個(gè)季節(jié)。然而,在季節(jié)性積雪區(qū)和無積雪區(qū)(例如我國(guó)華南)的過渡帶,雪蓋并不像季節(jié)性積雪區(qū)那樣長(zhǎng)時(shí)間存在,一個(gè)季節(jié)內(nèi)的積雪可能會(huì)迅速變化(Clark and Serreze,2000;Wang et al.,2015;Suriano and Leathers,2018;Song and Wu,2019;Song et al.,2019a,2019b)。在季節(jié)內(nèi)時(shí)間尺度上,一些不穩(wěn)定積雪區(qū)的雪蓋并非固定不變。例如,Clark and Serreze(2000)發(fā)現(xiàn)東亞雪蓋在月時(shí)間內(nèi)有較強(qiáng)變化。Song et al.(2019b)發(fā)現(xiàn)中國(guó)東部季節(jié)性積雪變化的主要時(shí)間尺度是30 d內(nèi),華東西北部和長(zhǎng)江以北積雪變化有10~30 d周期。隨著衛(wèi)星遙感技術(shù)發(fā)展,青藏高原積雪監(jiān)測(cè)由點(diǎn)拓展到面。利用青藏高原地區(qū)高時(shí)空分辨率雪蓋資料,有學(xué)者注意到了青藏高原雪蓋的多尺度變化特征(Pu et al.,2007;Shen et al.,2015;Li et al.,2018;車濤等,2019;Song et al.,2019a),表明青藏高原雪蓋在季節(jié)內(nèi)時(shí)間尺度上有較強(qiáng)變化。
“雪-反照率效應(yīng)”的機(jī)制主要涉及雪蓋反射太陽短波輻射過程,而“雪-水文效應(yīng)”的機(jī)制則主要涉及土壤濕度變化、地表徑流等過程,由于兩者機(jī)制的不同,它們發(fā)生的時(shí)間尺度也不同,反照率效應(yīng)在雪蓋生成時(shí)可立即發(fā)生,而水文效應(yīng)則需滯后數(shù)天至數(shù)月才發(fā)生(Xu and Dirmeyer,2013;Lin,2018)。由于“雪-反照率效應(yīng)”對(duì)大氣的快速影響,積雪的季節(jié)內(nèi)快速變化對(duì)于理解大氣中期、延伸期過程非常重要(Clark and Serreze,2000;Li et al.,2018;韓世茹等,2019;Zhang et al.,2019)。青藏高原作為抬升的大氣冷熱源,其雪蓋的快速變化可通過“雪-反照率效應(yīng)”迅速影響高原和下游大氣。此外,青藏高原作為大氣季節(jié)內(nèi)活動(dòng)的重要活躍區(qū)和來源地,雪蓋的季節(jié)內(nèi)變化可能受到大氣季節(jié)內(nèi)振蕩的影響,也可能是該地區(qū)大氣季節(jié)內(nèi)振蕩產(chǎn)生的原因。
綜上所述,近年來的一些研究揭示出青藏高原雪蓋在季節(jié)內(nèi)時(shí)間尺度上有較強(qiáng)變化,且對(duì)大氣活動(dòng)有重要影響。但是,與被研究較多的青藏高原雪蓋年際變化和長(zhǎng)期變化相比,青藏高原積雪的季節(jié)內(nèi)變化仍受到較少關(guān)注。本文將梳理季節(jié)內(nèi)時(shí)間尺度上青藏高原雪蓋快速變化及其影響研究的新進(jìn)展,并提出一些未來有待研究的科學(xué)問題,希望引起更多學(xué)者參與解決這些科學(xué)問題。
1 青藏高原雪蓋季節(jié)內(nèi)變化特征
1.1 時(shí)空變化特征
青藏高原積雪并不同于其他中緯度地區(qū)或更高緯度地區(qū)的積雪,青藏高原積雪較淺且持續(xù)時(shí)間短(Qin et al.,2006)。青藏高原積雪的空間異質(zhì)性強(qiáng),穩(wěn)定積雪和瞬時(shí)性積雪同時(shí)存在,年積雪覆蓋日數(shù)從超過200 d到小于5 d都存在(車濤等,2019),并且大部分地區(qū)是非周期性不穩(wěn)定積雪區(qū)(張廷軍和鐘歆玥,2014)。即使是在冬季,絕大部分氣象臺(tái)站的積雪覆蓋日數(shù)都小于15 d(Xu et al.,2017)。這說明青藏高原積雪與冬季高緯度地區(qū)較厚的積雪(例如,冬季西伯利亞地區(qū)的穩(wěn)定積雪)不同,青藏高原大部分地區(qū)的積雪不能在某個(gè)季節(jié)穩(wěn)定維持。
以青藏高原北部部分區(qū)域(80°~92°E,33°~38°N)雪蓋覆蓋率在2018/2019年冬季的變化為例(圖1a),該區(qū)域平均的積雪覆蓋率呈現(xiàn)出明顯的季節(jié)內(nèi)變化(根據(jù)交互式多傳感器冰雪制圖系統(tǒng)雪蓋分析產(chǎn)品,即IMS雪蓋資料,Helfrich et al.,2007)。圖1a中紅色實(shí)線為1998—2020年多年平均的積雪覆蓋率,即年循環(huán),可被認(rèn)為是雪蓋變化的氣候背景。藍(lán)色實(shí)線為逐日積雪覆蓋率,對(duì)比年循環(huán),該冬季大部分日期的積雪覆蓋率高于正常年水平,但也有一些日期的積雪覆蓋率低于正常年水平。相對(duì)于緩變的年循環(huán),季節(jié)內(nèi)變化成分(圖1a中黑色實(shí)線)導(dǎo)致了最終逐日雪蓋覆蓋率的劇烈變化,變化周期短于一個(gè)季節(jié)。季節(jié)內(nèi)變化成分振幅較大,圖1a中的藍(lán)色陰影和橙色陰影標(biāo)記了超過正負(fù)一個(gè)標(biāo)準(zhǔn)差日期,正負(fù)一個(gè)標(biāo)準(zhǔn)差之間的差異超過25%,即超過四分之一高原面積。該冬季幾個(gè)典型日期的Terra/MODIS真彩色遙感圖像顯示:在2018年11月1日(圖1b),該區(qū)域僅有少量積雪覆蓋區(qū)域,地形輪廓、湖泊等清晰可見;僅一周后的11月7日(圖1c),雪蓋面積迅速擴(kuò)大,該區(qū)域較大部分被積雪覆蓋,雪覆蓋時(shí)呈現(xiàn)一定斑駁特征,雪蓋區(qū)域隱約有裸土的顏色,推斷積雪較淺;僅近一個(gè)月之后的12月5日(圖1d),該區(qū)域雪蓋又基本消失;此后,又發(fā)生多次反復(fù)劇烈變化(圖1e—g)。這種雪蓋的季節(jié)內(nèi)快速變化在整個(gè)青藏高原都存在,青藏高原雪蓋變化劇烈時(shí),積雪覆蓋面積在半個(gè)月內(nèi)的變化可達(dá)青藏高原面積的三分之一以上(Li et al.,2018)。
由于青藏高原大部分地區(qū)積雪的不穩(wěn)定存在,其逐日雪蓋并非緩慢變化,而是經(jīng)??焖僮兓?。這導(dǎo)致就青藏高原整體雪蓋而言,其變化較為復(fù)雜。這種逐日快速變化疊加在青藏高原雪蓋的緩變分量(例如年循環(huán)、年代際變化、長(zhǎng)期變化)之上,使得青藏高原雪蓋具有多時(shí)間尺度變化特征。通過統(tǒng)計(jì)學(xué)方法,例如集合經(jīng)驗(yàn)?zāi)B(tài)分解(Shen et al.,2015)、濾波(Li et al.,2018,2020a),可研究青藏高原雪蓋不同時(shí)間尺度變化特征。Li et al.(2020a)研究了青藏高原雪蓋的多時(shí)間尺度變化特征,并重點(diǎn)關(guān)注了季節(jié)內(nèi)時(shí)間尺度(10~90 d)變化。結(jié)果表明,青藏高原雪蓋通常以年循環(huán)變化為主,季節(jié)內(nèi)變化次之,而天氣尺度變化、季節(jié)變化、年際變化和長(zhǎng)期變化對(duì)青藏高原雪蓋的總?cè)兆兓暙I(xiàn)相對(duì)較少。雪蓋的季節(jié)內(nèi)變率在青藏高原中部和東部地區(qū)占主導(dǎo)地位,占總雪蓋變率的22%~40%。這種快速變化在冷季更加活躍,一些區(qū)域(如羌塘高原)的冷季雪蓋季節(jié)內(nèi)變化甚至占總?cè)兆兓?0%以上??臻g上,青藏高原雪蓋季節(jié)內(nèi)變化的活躍區(qū)分布不均勻。最主要的空間分布特征為:積雪覆蓋比例較高的橫斷山脈西側(cè)、念青唐古拉山、巴顏喀拉山、喜馬拉雅山及帕米爾高原地區(qū)在冬半年因?yàn)榉e雪穩(wěn)定存在而季節(jié)內(nèi)變化較弱,但夏半年積雪變得不穩(wěn)定之后季節(jié)內(nèi)變化較強(qiáng);積雪覆蓋比例較低的青藏高原其他地區(qū)(如羌塘高原),在冬半年季節(jié)內(nèi)變化較強(qiáng),但夏半年由于積雪很少存在而使季節(jié)內(nèi)變化較弱。概括而言,積雪覆蓋日數(shù)過高(例如60%比例)或過低(例如10%比例)不利于雪蓋的季節(jié)內(nèi)變化,適當(dāng)?shù)姆e雪覆蓋日數(shù)比例(例如30%)會(huì)導(dǎo)致較強(qiáng)的雪蓋季節(jié)內(nèi)變化。2972EF2B-7BD2-46CD-9D9B-0BFF3B3E2FF5
1.2 可能原因
從局地大氣環(huán)流來看,青藏高原雪蓋的季節(jié)內(nèi)變化直接受到區(qū)域氣溫和降水的影響(Li et al.,2020a)。青藏高原雪蓋季節(jié)內(nèi)變化與區(qū)域近地層氣溫和降水高度相關(guān),氣溫和降水是青藏高原雪蓋季節(jié)內(nèi)變化的直接控制因子。在季節(jié)內(nèi)時(shí)間尺度上,青藏高原雪蓋和氣溫是同期負(fù)相關(guān)關(guān)系,與前期5 d異常降水正相關(guān)。青藏高原雪蓋與氣溫和降水的直接關(guān)系是區(qū)域大氣環(huán)流季節(jié)內(nèi)變化的結(jié)果:異常垂直上升運(yùn)動(dòng)引起的絕熱冷卻引起增加青藏高原雪蓋的對(duì)流層溫度冷異常,有利于雪蓋增加,垂直下沉運(yùn)動(dòng)則相反;區(qū)域水汽平流異常、積雪升華造成的局地水汽變化影響降水,并最終影響雪蓋。
青藏高原雪蓋季節(jié)內(nèi)變化還與大尺度大氣環(huán)流的季節(jié)內(nèi)振蕩有關(guān)。Li et al.(2016)發(fā)現(xiàn)熱帶季節(jié)內(nèi)振蕩(Madden-Julian Oscillation,MJO)調(diào)制青藏高原雪蓋。當(dāng)MJO對(duì)流負(fù)異?;顒?dòng)區(qū)(對(duì)流正異常活動(dòng)區(qū))位于海洋性大陸時(shí),即在MJO第8—1位相(第4—5位相),青藏高原雪蓋顯著增加(減少)。但在隨后的MJO第2—3位相(第6—7位相),青藏高原雪蓋的變化不顯著。MJO抑制對(duì)流(增強(qiáng)對(duì)流)激發(fā)了Matsuno-Gill型響應(yīng),在造成的非絕熱冷卻(加熱)中心的西北側(cè)有反氣旋(氣旋)式異常低層水平風(fēng)場(chǎng)。當(dāng)反氣旋(氣旋)式異常風(fēng)場(chǎng)的西部的偏南風(fēng)(偏北風(fēng))位于阿拉伯海時(shí)會(huì)增加(減少)青藏高原來自上游地區(qū)的水汽輸送。異常的水汽通過平流過程被輸送進(jìn)入青藏高原,造成青藏高原上空水汽的正異常(負(fù)異常)。隨后青藏高原降水被影響,造成降水的正異常(負(fù)異常),并最終影響青藏高原雪蓋,造成雪蓋增加(減少)。數(shù)值試驗(yàn)證實(shí)了MJO影響青藏高原雪蓋的因果性(李文鎧,2017)。青藏高原雪蓋季節(jié)內(nèi)變化還受到中緯度大氣環(huán)流的影響(Song et al.,2019a),且調(diào)制高原西部和高原東部雪蓋季節(jié)內(nèi)變化的大氣過程并不相同:青藏高原西部的雪蓋季節(jié)內(nèi)變化受到北極濤動(dòng)引起的中緯度波列調(diào)制,而高原東部雪蓋季節(jié)內(nèi)變化則與北大西洋濤動(dòng)引起的副熱帶波列有關(guān)。兩種情況中的羅斯貝波列都會(huì)導(dǎo)致異常的水汽輻合和上升運(yùn)動(dòng),從而導(dǎo)致青藏高原雪蓋正異常。但引起青藏高原西部地區(qū)雪蓋異常的水汽來自里海,而引起高原東部地區(qū)雪蓋異常的水汽則來自孟加拉灣。
2 青藏高原雪蓋季節(jié)內(nèi)變化的影響
2.1 對(duì)大氣環(huán)流的影響
如引言所述,學(xué)者們對(duì)青藏高原雪蓋的氣候效應(yīng)進(jìn)行了詳實(shí)研究,這些研究的著眼點(diǎn)一般是尋找氣候預(yù)測(cè)因子,因而大部分研究是利用某一季節(jié)平均的青藏高原雪蓋狀況做氣候異常的歸因或預(yù)測(cè)研究。青藏高原雪蓋季節(jié)內(nèi)變化可通過“雪-反照率效應(yīng)”對(duì)大氣造成快速影響。Clark and Serreze(2000)發(fā)現(xiàn)東亞雪蓋在月時(shí)間內(nèi)的較強(qiáng)變化影響大氣環(huán)流,并提出觀點(diǎn)認(rèn)為東亞積雪的影響對(duì)短期和中期天氣預(yù)報(bào)非常重要,而不應(yīng)僅注意其在長(zhǎng)期時(shí)間尺度的氣候效應(yīng)問題。但限制于當(dāng)時(shí)的觀測(cè)資料,該研究并未涉及青藏高原雪蓋。
由于青藏高原的特殊位置和地形,高原成為對(duì)流層中層的大氣下邊界,通過陸氣相互作用過程影響局地和下游大氣環(huán)流。青藏高原雪蓋在季節(jié)內(nèi)時(shí)間尺度上的不穩(wěn)定存在,使青藏高原成為不穩(wěn)定的大氣變化外強(qiáng)迫熱源。Li et al.(2018,2021)發(fā)現(xiàn)東亞大氣環(huán)流對(duì)青藏高原雪蓋季節(jié)內(nèi)變化的響應(yīng)是快速的,在一周以內(nèi)即可完成響應(yīng)過程(圖2)。在季節(jié)內(nèi),青藏高原雪蓋反復(fù)變化,有時(shí)偏多,有時(shí)偏少,且變化幅度較大(圖2a)。大面積雪蓋累積和消融使高原地表在無積雪和有積雪兩種狀態(tài)下反復(fù)且快速切換,并即刻改變地表反照率,通過雪-反照率效應(yīng)影響地表能量平衡(圖2b)。高原雪蓋季節(jié)內(nèi)正異常導(dǎo)致高原對(duì)大氣的異常冷卻,反之則是異常加熱。雪蓋正異常時(shí),雪蓋使高原充當(dāng)大氣對(duì)流層中部異常冷源,迅速影響局地上空的大氣熱力狀況,造成高原局地上空的冷異常響應(yīng)(圖2c),氣溫的冷異常響應(yīng)從高原地面可達(dá)對(duì)流層上層,并引起局地位勢(shì)高度負(fù)異常,局地大氣環(huán)流對(duì)雪蓋異常的響應(yīng)過程在2 d內(nèi)即可達(dá)到最強(qiáng)。高原上空的冷異常響應(yīng)通過大氣水平運(yùn)動(dòng)造成的溫度平流過程影響下游至西北太平洋地區(qū)的大氣環(huán)流(圖2d),造成下游位勢(shì)高度負(fù)異常,引起東亞大槽和東亞西風(fēng)急流強(qiáng)度顯著增強(qiáng),下游大氣環(huán)流對(duì)雪蓋異常的響應(yīng)過程在6 d內(nèi)即可達(dá)到最強(qiáng)。這表明青藏高原雪蓋的季節(jié)內(nèi)變化可迅速影響東亞范圍的大氣環(huán)流活動(dòng)。
2.2 對(duì)次季節(jié)預(yù)報(bào)的影響
天氣和氣候異常導(dǎo)致的自然災(zāi)害對(duì)社會(huì)經(jīng)濟(jì)有嚴(yán)重影響,對(duì)天氣和氣候異常情況進(jìn)行具有足夠預(yù)報(bào)時(shí)效(提前預(yù)報(bào)時(shí)長(zhǎng))的可靠預(yù)報(bào)有重大社會(huì)價(jià)值。隨著數(shù)值天氣預(yù)報(bào)技術(shù)和季節(jié)動(dòng)力預(yù)報(bào)系統(tǒng)的發(fā)展,災(zāi)害天氣的短期和中期(數(shù)小時(shí)至約兩周)確定性預(yù)報(bào)及氣候(3~6 mon)概率預(yù)測(cè)能力持續(xù)提高。但介于兩者之間的次季節(jié)至季節(jié)預(yù)報(bào)(從兩周左右到一個(gè)季節(jié)的預(yù)報(bào))能力薄弱,限制了無縫隙天氣-氣候預(yù)報(bào)系統(tǒng)的發(fā)展(徐邦琪等,2020;朱躍建等,2020)。
大氣、陸地和海洋對(duì)不同時(shí)效預(yù)報(bào)的可預(yù)報(bào)性貢獻(xiàn)不同(圖3;WWRP/WCRP,2018)。大氣初值對(duì)可預(yù)報(bào)性的貢獻(xiàn)在一周內(nèi)迅速降低,超過兩周的更長(zhǎng)時(shí)間的預(yù)報(bào)的主要依據(jù)是大氣與地球系統(tǒng)其他變化較慢成分(如陸地或海洋)之間的相互作用(Mariotti et al.,2018;金蕊等,2020)。海洋是季節(jié)以上的氣候預(yù)測(cè)的主要可預(yù)報(bào)性來源。陸地-大氣耦合是次季節(jié)到季節(jié)預(yù)報(bào)的關(guān)鍵物理過程之一。特別是對(duì)次季節(jié)預(yù)報(bào)而言,陸面狀況(包括土壤濕度、積雪、植被狀態(tài)等)提供了大氣變化過程中幾天至幾周時(shí)間尺度的可預(yù)報(bào)性來源。如果預(yù)報(bào)系統(tǒng)中對(duì)陸面狀況的初始化或預(yù)報(bào)效果不好,則將降低次季節(jié)到季節(jié)預(yù)報(bào)技巧(Robertson et al.,2015;Dirmeyer et al.,2019)。
積雪是次季節(jié)至季節(jié)預(yù)報(bào)的可預(yù)報(bào)性來源之一。研究表明,數(shù)值模式中的積雪初始場(chǎng)通過積雪的局地輻射反饋、熱力學(xué)反饋和水文反饋影響數(shù)值預(yù)報(bào)或數(shù)值模擬,數(shù)值模式中更準(zhǔn)確的積雪初始化可以改善次季節(jié)至季節(jié)預(yù)報(bào)(Jeong et al.,2013;Lin et al.,2016,2020;Senan et al.,2016;Li et al.,2019;李菲等,2021)。在積雪初始場(chǎng)影響預(yù)報(bào)技巧的過程中,雪-反照率效應(yīng)起了關(guān)鍵作用,優(yōu)化積雪初始化對(duì)預(yù)報(bào)技巧的提高也集中在雪-反照率效應(yīng)強(qiáng)的地區(qū)(Jeong et al.,2013),優(yōu)化的積雪初始場(chǎng)還通過改進(jìn)模式中的局地雪-大氣耦合過程或?qū)α鲗雍推搅鲗哟髿猸h(huán)流過程提高預(yù)報(bào)技巧(Li et al.,2019)。由于青藏高原積雪在整個(gè)冰雪圈的重要地位,準(zhǔn)確的青藏高原積雪的初始化對(duì)次季節(jié)至季節(jié)預(yù)報(bào)意義重大。Senan et al.(2016)發(fā)現(xiàn)青藏高原地區(qū)積雪初始場(chǎng)影響模式對(duì)印度夏季風(fēng)爆發(fā)時(shí)間的預(yù)報(bào)技巧。Lin et al.(2016,2020)定量研究了積雪同化對(duì)全球模式季節(jié)預(yù)報(bào)的影響,發(fā)現(xiàn)使用積雪同化方案將改進(jìn)改進(jìn)季節(jié)氣溫預(yù)報(bào)技巧,這種技巧改進(jìn)在青藏高原和高緯度地區(qū)尤其明顯,并且青藏高原地區(qū)是優(yōu)化積雪初始化的關(guān)鍵地區(qū)。青藏高原位于中低緯地區(qū),受太陽短波輻射影響強(qiáng)烈,積雪同化通過雪-反照率效應(yīng)改進(jìn)該區(qū)域凈短波輻射和近地層氣溫預(yù)報(bào)技巧(Lin et al.,2016);在更長(zhǎng)的季節(jié)尺度上,冷季進(jìn)入暖季時(shí)青藏高原積雪融化吸收潛熱導(dǎo)致的陸面潛熱通量影響雪-大氣耦合過程,也會(huì)造成積雪同化對(duì)預(yù)報(bào)技巧的影響(Lin et al.,2020)。2972EF2B-7BD2-46CD-9D9B-0BFF3B3E2FF5
除積雪的初始場(chǎng)影響次季節(jié)預(yù)報(bào)之外,模式對(duì)積雪的預(yù)報(bào)技巧也會(huì)影響模式對(duì)其他大氣要素的預(yù)報(bào)技巧,特別是通過雪-氣溫耦合影響模式對(duì)氣溫的預(yù)報(bào)技巧(Diro and Lin,2020)。Li et al.(2020b)使用次季節(jié)至季節(jié)國(guó)際合作計(jì)劃數(shù)據(jù)庫(Vitart et al.,2017)中的歐洲中期天氣預(yù)報(bào)中心(ECMWF)、美國(guó)國(guó)家環(huán)境預(yù)報(bào)中心(NCEP)和中國(guó)氣象局(CMA)模式回報(bào)數(shù)據(jù),比較了這些模式對(duì)青藏高原雪蓋的預(yù)報(bào)技巧。這三家業(yè)務(wù)單位模式對(duì)青藏高原雪蓋變化能提前2周進(jìn)行有效預(yù)報(bào),但對(duì)3周及之后的青藏高原雪蓋則預(yù)測(cè)能力有限。與觀測(cè)資料相比,這三家預(yù)報(bào)模式都高估了青藏高原雪蓋面積,并且高估程度隨著預(yù)報(bào)時(shí)效增加(模式積分時(shí)間增長(zhǎng))而增加。青藏高原雪蓋的這種系統(tǒng)性偏差會(huì)影響局地陸面能量平衡,進(jìn)而影響模式預(yù)報(bào)的地面氣溫,造成預(yù)報(bào)模式中,青藏高原地表氣溫隨著預(yù)報(bào)時(shí)效增加而變得更冷。上述青藏高原雪蓋的系統(tǒng)性偏差是由于陸面模式低估了青藏高原雪蓋的消融過程,也與三家預(yù)報(bào)模式都強(qiáng)烈高估青藏高原的降水有關(guān)。韓世茹等(2019)也指出,青藏高原積雪對(duì)延伸期預(yù)報(bào)技巧有重要貢獻(xiàn),為東亞延伸期預(yù)報(bào)的潛在可預(yù)報(bào)源。這表明除了改進(jìn)積雪初始化之外,優(yōu)化積雪預(yù)測(cè)模型也可以提高次季節(jié)預(yù)報(bào)技巧。模式中積雪參數(shù)化方案(積雪模式)的改進(jìn),對(duì)提高次季節(jié)預(yù)報(bào)技巧至關(guān)重要。
3 總結(jié)和展望
3.1 總結(jié)
從季節(jié)平均視角來看,青藏高原積雪大多在秋季建立,并持續(xù)到第二年春季。但值得注意的是,與更高緯度地區(qū)的積雪相比,青藏高原雪蓋明顯淺且持續(xù)時(shí)間短,這種獨(dú)特的特征會(huì)導(dǎo)致高原雪蓋在季節(jié)內(nèi)快速變化。局地氣溫和降水的季節(jié)內(nèi)變化是控制青藏高原雪蓋快速變化的直接原因。青藏高原雪蓋和同期區(qū)域氣溫負(fù)相關(guān)、與前期降雪正相關(guān),這種直接關(guān)系是區(qū)域大氣環(huán)流季節(jié)內(nèi)變化的結(jié)果,包括大氣垂直運(yùn)動(dòng)引起的異常絕熱加熱和水汽平流異常、積雪蒸發(fā)。此外,青藏高原雪蓋季節(jié)內(nèi)變化還與大尺度大氣環(huán)流的季節(jié)內(nèi)活動(dòng)有關(guān),MJO、北極濤動(dòng)和北大西洋濤動(dòng)引起的大氣季節(jié)內(nèi)過程可解釋部分青藏高原雪蓋季節(jié)內(nèi)變率。
青藏高原雪蓋季節(jié)內(nèi)變化通過“雪-反照率效應(yīng)”對(duì)大氣造成快速影響。青藏高原雪蓋造成的地表反照率快速增強(qiáng),將迅速調(diào)制青藏高原地表熱力狀況,造成青藏高原對(duì)大氣加熱的冷異常,高原上空立即產(chǎn)生冷卻響應(yīng),氣溫在2 d內(nèi)迅速降低,位勢(shì)高度場(chǎng)相應(yīng)發(fā)生變化。雪蓋造成的冷異常通過大氣平流過程影響下游地區(qū),造成東亞高空急流和東亞大槽增強(qiáng),下游大氣環(huán)流對(duì)雪蓋異常的響應(yīng)過程在6 d內(nèi)即可達(dá)到最強(qiáng)。由于青藏高原雪蓋季節(jié)內(nèi)變化的重要影響,數(shù)值預(yù)報(bào)中青藏高原雪蓋的初始場(chǎng)和預(yù)報(bào)場(chǎng)會(huì)影響次季節(jié)預(yù)報(bào)技巧,模式中積雪初始化方案和積雪模式的改進(jìn)對(duì)提高次季節(jié)預(yù)報(bào)技巧至關(guān)重要。
3.2 挑戰(zhàn)與展望
次季節(jié)預(yù)報(bào)是天氣預(yù)報(bào)和氣候預(yù)測(cè)的間隙,目前氣象學(xué)界對(duì)次季節(jié)至季節(jié)預(yù)報(bào)的可預(yù)報(bào)性來源的認(rèn)識(shí)仍然有限,這對(duì)提高次季節(jié)預(yù)報(bào)技巧、實(shí)現(xiàn)無縫隙預(yù)報(bào)造成了一定障礙。陸地表面狀態(tài)影響地表熱量、水分和向大氣的輻射通量,并且可能對(duì)晝夜周期的演變產(chǎn)生很大影響,進(jìn)而影響更長(zhǎng)的時(shí)間尺度。陸地狀態(tài)與自由大氣狀態(tài)相比發(fā)展緩慢,因此陸地狀態(tài)可以提供從幾天到幾周的時(shí)間尺度的可預(yù)報(bào)性來源。這種可預(yù)報(bào)性能夠提高次季節(jié)至季節(jié)預(yù)報(bào)技巧,但前提是實(shí)現(xiàn)模式中準(zhǔn)確的陸地初始化狀態(tài)和陸-氣耦合過程(WCRP/WCRP,2018)。
青藏高原高原雪蓋面積變化大且不穩(wěn)定,大氣對(duì)青藏高原高原雪蓋變化響應(yīng)迅速,數(shù)值模式中青藏高原高原雪蓋的預(yù)報(bào)誤差將降低次季節(jié)預(yù)報(bào)技巧。而改進(jìn)數(shù)值模式對(duì)青藏高原雪蓋的模擬和預(yù)報(bào)能力,則有可能提高次季節(jié)至季節(jié)預(yù)報(bào)水平。但想要充分認(rèn)識(shí)青藏高原高原季節(jié)內(nèi)變化,進(jìn)而改進(jìn)次季節(jié)至季節(jié)預(yù)報(bào)水平,仍存在較大挑戰(zhàn):1)亟需更可靠的積雪觀測(cè)數(shù)據(jù)。由于自然環(huán)境狀況,青藏高原相對(duì)缺乏對(duì)積雪的現(xiàn)場(chǎng)觀測(cè),臺(tái)站觀測(cè)積雪的代表性也有限。逐日衛(wèi)星遙感雪蓋產(chǎn)品受云影響較大,依賴準(zhǔn)確的去云化算法。觀測(cè)資料的不確定性給預(yù)報(bào)模式中積雪的初始化造成一定影響。2)數(shù)值模式在青藏高原地區(qū)不確定性較大。當(dāng)前大氣環(huán)流模式(GCM)往往強(qiáng)烈高估青藏高原的降水(Su et al.,2013;Chen and Frauenfeld,2014;Zhang and Li,2016;Zhang et al.,2019)。當(dāng)前次季節(jié)至季節(jié)預(yù)報(bào)業(yè)務(wù)模式對(duì)青藏高原地區(qū)降水也強(qiáng)烈高估,并進(jìn)一步引起了青藏高原雪蓋偏差。而青藏高原雪蓋偏差又會(huì)反過來影響模式對(duì)大氣的預(yù)報(bào)(Li et al.,2020b)。改進(jìn)數(shù)值模式在青藏高原地區(qū)的預(yù)報(bào)或模擬能力的挑戰(zhàn)非常大,不僅要降低大氣模式的在該區(qū)域的偏差,也要改進(jìn)陸面模式在該區(qū)域的性能。
WCRP/WCRP于2019年啟動(dòng)了國(guó)際次季節(jié)至季節(jié)預(yù)測(cè)計(jì)劃第二階段,陸面初始化和配置是該階段的重要子項(xiàng)目,致力于解決三個(gè)問題:1)觀測(cè)系統(tǒng)對(duì)陸面初始化和次季節(jié)至季節(jié)預(yù)測(cè)有什么影響?2)次季節(jié)至季節(jié)預(yù)測(cè)模式中的陸-氣耦合過程表現(xiàn)如何?3)陸面狀態(tài)異常如何導(dǎo)致極端天氣氣候事件?由于青藏高原熱力狀況在陸-氣系統(tǒng)中重要地位,進(jìn)一步研究青藏高原雪蓋季節(jié)內(nèi)變化的影響因子、青藏高原雪蓋季節(jié)內(nèi)變化對(duì)大氣的影響,研究數(shù)值模式中青藏高原雪蓋季節(jié)內(nèi)變化的預(yù)報(bào)誤差來源和影響,以至改進(jìn)數(shù)值模式對(duì)青藏高原雪蓋的初始化和預(yù)報(bào)方案,是解決這三個(gè)問題的關(guān)鍵方向之一。
致謝:圖1和圖2使用NCAR Command Language 6.6.2版繪制(https://doi.org/10.5065/D6WD3XH5)。IMS雪蓋資料獲取自https://nsidc.org/data/G02156。Terra/MODIS真彩色遙感圖像獲取自https://worldview.earthdata.nasa.gov。
參考文獻(xiàn)(References)
Blanford H F,1884.On the connexion of the Himalaya snowfall with dry winds and seasons of drought in India[J].Proc Royal Soc Lond,37(232/234):3-22.2972EF2B-7BD2-46CD-9D9B-0BFF3B3E2FF5
車濤,郝曉華,戴禮云,等,2019.青藏高原積雪變化及其影響[J].中國(guó)科學(xué)院院刊,34(11):1247-1253. Che T,Hao X H,Dai L Y,et al.,2019.Snow cover variation and its impacts over the Qinghai-Tibet Plateau[J].Bull Chin Acad Sci,34(11):1247-1253.doi:10.16418/j.issn.1000-3045.2019.11.007.(in Chinese).
陳海山,孫照渤,閔錦忠,1999.歐亞大陸冬季積雪異常與東亞冬季風(fēng)及中國(guó)冬季氣溫的關(guān)系[J].南京氣象學(xué)院學(xué)報(bào),22(4):609-615. Chen H S,Sun Z B,Min J Z,1999.The relationships between Eurasian winter snow cover anomaly and EAWM,China winter air temperature[J].J Nanjing Inst Meteor,22(4):609-615.doi:10.13878/j.cnki.dqkxxb.1999.04.007.(in Chinese).
陳紅,2017.歐亞大陸積雪對(duì)我國(guó)春季氣候可預(yù)報(bào)性的影響[J].大氣科學(xué),41(4):727-738. Chen H,2017.Impacts of Eurasian snow condition on spring climate predictability over China by a global climate model[J].Chin J Atmos Sci,41(4):727-738.doi:10.3878/j.issn.1006-9895.1702.16231.(in Chinese).
Chen L,F(xiàn)rauenfeld O W,2014.A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections[J].J Geophys Res:Atmos,119(10):5767-5786.doi:10.1002/2013JD021190.
陳隆勛,段庭揚(yáng),李維亮,1985.1979年夏季青藏高原上空大氣熱源的變化及大氣能量收支特性[J].氣象學(xué)報(bào),43(1):1-12. Chen L X,Duan T Y,Li W L,1985.The variation of the atmospheric heat source and the budget of atmospheric energy on the Qinghai-Xizang Plateau during summer 1979[J].Acta Meteorol Sin,43(1):1-12.(in Chinese).
陳悅,李文鎧,郭維棟,2019.青藏高原季風(fēng)的季節(jié)內(nèi)振蕩特征[J].高原氣象,38(6):1158-1171. Chen Y,Li W K,Guo W D,2019.Characteristics of the intraseasonal oscillation of Qinghai-Tibetan Plateau monsoon[J].Plateau Meteor,38(6):1158-1171.doi:10.7522/j.issn.1000-0534.2019.00001.(in Chinese).
Clark M P,Serreze M C,2000.Effects of variations in east Asian snow cover on modulating atmospheric circulation over the North Pacific Ocean[J].J Climate,13(20):3700-3710.doi:10.1175/1520-0442(2000)013<3700:eoviea>2.0.co;2.
丁一匯,張莉,2008.青藏高原與中國(guó)其他地區(qū)氣候突變時(shí)間的比較[J].大氣科學(xué),32(4):794-805. Ding Y H,Zhang L,2008.Intercomparison of the time for climate abrupt change between the Tibetan Plateau and other regions in China[J].Chin J Atmos Sci,32(4):794-805.(in Chinese).
Dirmeyer P A,Gentine P,Ek M B,et al.,2019.Land surface processes relevant to sub-seasonal to seasonal(S2S) prediction[M]//Sub-Seasonal to Seasonal Prediction.Amsterdam:Elsevier:165-181.doi:10.1016/b978-0-12-811714-9.00008-5.
Diro G T,Lin H,2020.Subseasonal forecast skill of snow water equivalent and its link with temperature in selected SubX models[J].Wea Forecasting,35(1):273-284.doi:10.1175/waf-d-19-0074.1.2972EF2B-7BD2-46CD-9D9B-0BFF3B3E2FF5
Duan A M,Wu G X,2005.Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J].Climate Dyn,24(7/8):793-807.doi:10.1007/s00382-004-0488-8.
Duan A M,Wu G X,2009.Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades.part II:connection with climate warming[J].J Climate,22(15):4197-4212.doi:10.1175/2009jcli2699.1.
段安民,劉屹岷,吳國(guó)雄,2003.4—6月青藏高原熱狀況與盛夏東亞降水和大氣環(huán)流的異常[J].中國(guó)科學(xué)D輯,33(10):997-1004. Duan A M,Liu Y M,Wu G X,2003.Heating status of the Tibetan Plateau from April to June and rainfall and atmospheric circulation anomaly over East Asia in midsummer [J].Sci China Ser D,33(10):997-1004.doi:10.3969/j.issn.1674-7240.2003.10.011.(in Chinese).
段安民,肖志祥,王子謙,2018.青藏高原冬春積雪和地表熱源影響亞洲夏季風(fēng)的研究進(jìn)展[J].大氣科學(xué),42(4):755-766. Duan A M,Xiao Z X,Wang Z Q,2018.Impacts of the Tibetan Plateau winter/spring snow depth and surface heat source on Asian summer monsoon:a review[J].Chin J Atmos Sci,42(4):755-766.doi:10.3878/j.issn.1006-9895.1801.17247.(in Chinese).
范廣洲,羅四維,呂世華,1997.青藏高原冬季積雪異常對(duì)東、南亞夏季風(fēng)影響的初步數(shù)值模擬研究[J].高原氣象,16(2):29-41. Fan G Z,Luo S W,Lü S H,1997.The preliminary numerical experiments of effect of anomalous snow cover over plateau in winter on East and South Asian summer monsoon[J].Plateau Meteor,16(2):29-41.(in Chinese).
Fayad A,Gascoin S,F(xiàn)aour G,et al.,2017.Snow hydrology in Mediterranean mountain regions:a review[J].J Hydrol,551:374-396.doi:10.1016/j.jhydrol.2017.05.063.
鞏遠(yuǎn)發(fā),段廷揚(yáng),張菡,2007.夏季亞洲大氣熱源匯的變化特征及其與江淮流域旱澇的關(guān)系[J].大氣科學(xué),31(1):89-98. Gong Y F,Duan T Y,Zhang H,2007.Characteristics of the atmospheric heating source/sink over Asia and its relationship with drought/flood in the Yangtze River-Huaihe River Valley[J].Chin J Atmos Sci,31(1):89-98.(in Chinese).
顧震潮,1951.西藏高原對(duì)東亞環(huán)流的動(dòng)力影響和它的重要性[J].中國(guó)科學(xué),(3):283-303. Gu Z C,1951.The dynamic influence of the Tibetan Plateau on the circulation of East Asia and its importance [J].Sci China Ser A,(3):283-303.(in Chinese).
韓世茹,鄭志海,周須文,等,2019.青藏高原積雪深度對(duì)延伸期預(yù)報(bào)技巧的影響[J].大氣科學(xué),43(1):142-154. Han S R,Zheng Z H,Zhou X W,et al.,2019.Influence of the Tibetan Plateau snow depth on the extended-range prediction skill[J].Chin J Atmos Sci,43(1):142-154.doi:10.3878/j.issn.1006-9895.1803.17252.(in Chinese).
Han S Z,Sun J Q,2018.Impacts of autumnal Eurasian snow cover on predominant modes of boreal winter surface air temperature over Eurasia[J].J Geophys Res:Atmos,123(18):10076-10091.doi:10.1029/2018JD028443.
Helfrich S R,McNamara D,Ramsay B H,et al.,2007.Enhancements to,and forthcoming developments in the interactive multisensor snow and ice mapping system(IMS)[J].Hydrol Process,21(12):1576-1586.doi:10.1002/hyp.6720.2972EF2B-7BD2-46CD-9D9B-0BFF3B3E2FF5
Hu J,Duan A M,2015.Relative contributions of the Tibetan Plateau thermal forcing and the Indian Ocean Sea surface temperature basin mode to the interannual variability of the East Asian summer monsoon[J].Climate Dyn,45(9/10):2697-2711.doi:10.1007/s00382-015-2503-7.
Hu W T,Duan A M,Li Y,et al.,2016.The intraseasonal oscillation of eastern Tibetan Plateau precipitation in response to the summer Eurasian wave train[J].J Climate,29(20):7215-7230.doi:10.1175/jcli-d-15-0620.1.
Immerzeel W W,Droogers P,Jong S M D,et al.,2009.Large-scale monitoring of snow cover and runoff simulation in Himalayan River Basins using remote sensing[J].Remote Sens Environ,113(1):40-49.doi:10.1016/j.rse.2008.08.010.
Jeelani G,F(xiàn)eddema J J,van der Veen C J,et al.,2012.Role of snow and glacier melt in controlling river hydrology in Liddar watershed(western Himalaya) under current and future climate[J].Water Resour Res,48(12):W12508.doi:10.1029/2011WR011590.
Jeong J H,Linderholm H W,Woo S H,et al.,2013.Impacts of snow initialization on subseasonal forecasts of surface air temperature for the cold season[J].J Climate,26(6):1956-1972.doi:10.1175/jcli-d-12-00159.1.
Jia X J,Cao D R,Ge J W,et al.,2018.Interdecadal change of the impact of Eurasian snow on spring precipitation over southern China[J].J Geophys Res:Atmos,123(18):10092-10108.doi:10.1029/2018JD028612.
Jia X J,Zhang C,Wu R G,et al.,2021.Influence of Tibetan Plateau autumn snow cover on interannual variations in spring precipitation over southern China[J].Clim Dyn,56(3/4):767-782.doi:10.1007/s00382-020-05497-8.
金蕊,余暉,吳志偉,等,2020.次季節(jié)-季節(jié)尺度熱帶氣旋活動(dòng)研究和預(yù)測(cè)技術(shù)進(jìn)展[J].大氣科學(xué)學(xué)報(bào),43(1):238-254. Jin R,Yu H,Wu Z W,et al.,2020.Sub-seasonal to seasonal prediction of tropical cyclone activity in the western North Pacific:a review[J].Trans Atmos Sci,43(1):238-254.doi:10.13878/j.cnki.dqkxxb.20191025006.(in Chinese).
李崇銀,2004.大氣季節(jié)內(nèi)振蕩研究的新進(jìn)展[J].自然科學(xué)進(jìn)展,14(7):734-741. Li C Y,2004.New progress in the study of atmospheric intraseasonal oscillation[J].Prog Nat Sci,14(7):734-741.(in Chinese).
Li F,Wang H J,2014.Autumn Eurasian snow depth,autumn Arctic sea ice cover and East Asian winter monsoon[J].Int J Climatol,34(13):3616-3625.doi:10.1002/joc.3936.
Li F,Orsolini Y J,Keenlyside N,et al.,2019.Impact of snow initialization in subseasonal-to-seasonal winter forecasts with the Norwegian climate prediction model[J].J Geophys Res:Atmos,124(17/18):10033-10048.doi:10.1029/2019JD030903.
李菲,郜永祺,萬欣,等,2021.全球變暖與地球“三極”氣候變化[J].大氣科學(xué)學(xué)報(bào),44(1):1-11. Li F,Gao Y Q,Wan X,et al.,2021.Earths “three-poles” climate change under global warming[J].Trans Atmos Sci,44(1):1-11.doi:10.13878/j.cnki.dqkxxb.20201031003.(in Chinese).2972EF2B-7BD2-46CD-9D9B-0BFF3B3E2FF5
Li G P,Lu J H,Jin B L,et al.,2001.The effects of anomalous snow cover of the Tibetan Plateau on the surface heating[J].Adv Atmos Sci,18(6):1207-1214.doi:10.1007/s00376-001-0034-0.
Li J Y,Mao J Y,2018.The impact of interactions between tropical and midlatitude intraseasonal oscillations around the Tibetan Plateau on the 1998 Yangtze floods[J].Quart J Roy Meteor Soc,144(713):1123-1139.doi:10.1002/qj.3279.
李文鎧,2017.青藏高原地表熱力狀況的氣候效應(yīng)及其對(duì)熱帶大氣強(qiáng)迫的響應(yīng)[D].南京:南京大學(xué). Li W K,2017.Climate effects and response to tropical atmospheric forcing of the surface thermal condition over the Tibetan Plateau.Nanjing:Nanjing University.(in Chinese).
Li W K,Guo W D,Hsu P C,et al.,2016.Influence of the Madden-Julian oscillation on Tibetan Plateau snow cover at the intraseasonal time-scale[J].Sci Rep,6(1):1-9.doi:10.1038/srep30456.
Li W K,Guo W D,Qiu B,et al.,2018.Influence of Tibetan Plateau snow cover on East Asian atmospheric circulation at medium-range time scales[J].Nat Commun,9(1):1-9.doi:10.1038/s41467-018-06762-5.
Li W K,Qiu B,Guo W D,et al.,2020a.Intraseasonal variability of Tibetan Plateau snow cover[J].Int J Climatol,40(7):3451-3466.doi:10.1002/joc.6407.
Li W K,Hu S Z,Hsu P C,et al.,2020b.Systematic bias of Tibetan Plateau snow cover in subseasonal-to-seasonal models[J].Cryosphere,14(10):3565-3579.doi:10.5194/tc-14-3565-2020.
Li W K,Qiu B,Guo W D,et al.,2021.Rapid response of the East Asian trough to Tibetan Plateau snow cover[J].Int J Climatol,41(1):251-261.doi:10.1002/joc.6618.
Lin P R,2018.Towards actionable climate and flood prediction:understanding and advancing land surface modeling with enriched geospatial information[D].Austin:The University of Texas.
Lin P R,Wei J F,Yang Z L,et al.,2016.Snow data assimilation-constrained land initialization improves seasonal temperature prediction[J].Geophys Res Lett,43(21):11423-11432.doi:10.1002/2016GL070966.
Lin P R,Yang Z L,Wei J F,et al.,2020.Assimilating multi-satellite snow data in ungauged Eurasia improves the simulation accuracy of Asian monsoon seasonal anomalies[J].Environ Res Lett,15(6):064033.doi:10.1088/1748-9326/ab80ef.
Liu S Z,Wu Q G,Ren X J,et al.,2017.Modeled Northern Hemisphere autumn and winter climate responses to realistic Tibetan Plateau and Mongolia snow anomalies[J].J Climate,30(23):9435-9454.doi:10.1175/jcli-d-17-0117.1.
Liu X D,Chen B D,2000.Climatic warming in the Tibetan Plateau during recent decades[J].Int J Climatol,20(14):1729-1742.doi:10.1002/1097-0088(20001130)20:14<1729:aid-joc556>3.0.co;2-y.2972EF2B-7BD2-46CD-9D9B-0BFF3B3E2FF5
Liu X D,Yanai M,2002.Influence of Eurasian spring snow cover on Asian summer rainfall[J].Int J Climatol,22(9):1075-1089.doi:10.1002/joc.784.
Liu Y M,Wu G X,Hong J L,et al.,2012.Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing:Ⅱ.change[J].Climate Dyn,39(5):1183-1195.doi:10.1007/s00382-012-1335-y.
劉屹岷,王子謙,卓海峰,等,2017.夏季亞洲大地形雙加熱及近對(duì)流層頂位渦強(qiáng)迫的激發(fā)Ⅱ:伊朗高原-青藏高原感熱加熱[J].中國(guó)科學(xué)(地球科學(xué)),47(3):354-366. Liu Y M,Wang Z Q,Zhuo H F,et al.,2017.Two types of summertime heating over Asian large-scale orography and excitation of potential-vorticity forcing Ⅱ.sensible heating over Tibetan-Iranian Plateau[J].Sci Sin Terrae,47(3):354-366.doi:10.1360/N072016-00080.(in Chinese).
劉屹岷,李偉平,劉新,等,2020.青藏高原調(diào)控區(qū)域能量過程和全球氣候的機(jī)理[J].大氣科學(xué)學(xué)報(bào),43(1):181-192. Liu Y M,Li W P,Liu X,et al.,2020.Physics of the control of the Tibetan Plateau on regional energetic processes and global climate[J].Trans Atmos Sci,43(1):181-192.doi:10.13878/j.cnki.dqkxxb.20191229006.(in Chinese).
魯萌萌,吳仁廣,楊崧,等,2020.歐亞大陸冷季積雪與亞洲夏季風(fēng)的關(guān)系:區(qū)域特征與季節(jié)性[J].大氣科學(xué)學(xué)報(bào),43(1):93-103. Lu M M,Wu R G,Yang S,et al.,2020.Relationship between Eurasian cold-season snows and Asian summer monsoons:regional characteristics and seasonality[J].Trans Atmos Sci,43(1):93-103.doi:10.13878/j.cnki.dqkxxb.20191025001.(in Chinese).
Mariotti A,Ruti P M,Rixen M,2018.Progress in subseasonal to seasonal prediction through a joint weather and climate community effort[J].Npj Clim Atmos Sci,1:4.doi:10.1038/s41612-018-0014-z.
彭玉萍,何金海,陳隆勛,等,2012.1981—2000年夏季青藏高原大氣熱源低頻振蕩特征及其影響[J].熱帶氣象學(xué)報(bào),28(3):330-338. Peng Y P,He J H,Chen L X,et al.,2012.A study on the characteristics and effect of the low-frequency oscillation of the atmospheric heat source over the eastern Tibetan Plateau from 1981 to 2000[J].J Trop Meteor,28(3):330-338.doi:10.3969/j.issn.1004-4965.2012.03.005.(in Chinese).
Pu Z X,Xu L,Salomonson V V,2007.MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau[J].Geophys Res Lett,34(6):L06706.doi:10.1029/2007gl029262.
Qian Q F,Jia X J,Wu R G,2020.On the interdecadal change in the interannual variation in autumn snow cover over the central eastern Tibetan Plateau in the mid-1990s[J].J Geophys Res:Atmos,125(16):e2020JD032685.doi:10.1029/2020JD032685.
Qin D H,Liu S Y,Li P J,2006.Snow cover distribution,variability,and response to climate change in western China[J].J Climate,19(9):1820-1833.doi:10.1175/jcli3694.1.
Robertson A W,Kumar A,Pea M,et al.,2015.Improving and promoting subseasonal to seasonal prediction[J].Bull Amer Meteor Soc,96(3):ES49-ES53.doi:10.1175/bams-d-14-00139.1.2972EF2B-7BD2-46CD-9D9B-0BFF3B3E2FF5
Senan R,Orsolini Y J,Weisheimer A,et al.,2016.Impact of springtime Himalayan-Tibetan Plateau snowpack on the onset of the Indian summer monsoon in coupled seasonal forecasts[J].Climate Dyn,47(9/10):2709-2725.doi:10.1007/s00382-016-2993-y.
Shen S S P,Yao R Z,Ngo J,et al.,2015.Characteristics of the Tibetan Plateau snow cover variations based on daily data during 1997—2011[J].Theor Appl Climatol,120(3/4):445-453.doi:10.1007/s00704-014-1185-0.
Si D,Ding Y H,2013.Decadal change in the correlation pattern between the Tibetan Plateau winter snow and the East Asian summer precipitation during 1979—2011[J].J Climate,26(19):7622-7634.doi:10.1175/jcli-d-12-00587.1.
Song L,Wu R G,2019.Intraseasonal snow cover variations over western Siberia and associated atmospheric processes[J].J Geophys Res:Atmos,124(16):8994-9010.doi:10.1029/2019JD030479.
Song L,Wu R G,An L,2019a.Different sources of 10-to 30-day intraseasonal variations of autumn snow over western and eastern Tibetan Plateau[J].Geophys Res Lett,46(15):9118-9125.doi:10.1029/2019GL083852.
Song L,Wu R G,Zhu J L,2019b.Processes of intraseasonal snow cover variations over the eastern China during boreal winter[J].Atmos Sci Lett,20(5):e901.doi:10.1002/asl.901.
Su F G,Duan X L,Chen D L,et al.,2013.Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau[J].J Climate,26(10):3187-3208.doi:10.1175/jcli-d-12-00321.1.
Suriano Z J,Leathers D J,2018.Great lakes basin snow-cover ablation and synoptic-scale circulation[J].J Appl Meteorol Climatol,57(7):1497-1510.doi:10.1175/jamc-d-17-0297.1.
Vitart F,Ardilouze C,Bonet A,et al.,2017.The subseasonal to seasonal(S2S) prediction project database[J].Bull Amer Meteor Soc,98(1):163-173.doi:10.1175/bams-d-16-0017.1.
Wan B C,Gao Z Q,Chen F,et al.,2017.Impact of Tibetan Plateau surface heating on persistent extreme precipitation events in southeastern China[J].Mon Wea Rev,145(9):3485-3505.doi:10.1175/mwr-d-17-0061.1.
Wang B,Bao Q,Hoskins B,et al.,2008.Tibetan Plateau warming and precipitation changes in East Asia[J].Geophys Res Lett,35(14):L14702.doi:10.1029/2008gl034330.
Wang C H,Yang K,Li Y L,et al.,2017.Impacts of spatiotemporal anomalies of Tibetan Plateau snow cover on summer precipitation in eastern China[J].J Climate,30(3):885-903.doi:10.1175/jcli-d-16-0041.1.
Wang M R,Duan A M,2015.Quasi-biweekly oscillation over the Tibetan Plateau and its link with the Asian summer monsoon[J].J Climate,28(12):4921-4940.doi:10.1175/jcli-d-14-00658.1.2972EF2B-7BD2-46CD-9D9B-0BFF3B3E2FF5
王美蓉,周順武,段安民,2012.近30年青藏高原中東部大氣熱源變化趨勢(shì):觀測(cè)與再分析資料對(duì)比[J].科學(xué)通報(bào),57(2):178-188. Wang M R,Zhou S W,Duan A M,2012.Trend in the atmospheric heat source over the central and eastern Tibetan Plateau during recent decades:comparison of observations and reanalysis data[J].Chin Sci Bull,57(2):178-188.doi:10.1007/s11434-011-4838-8.(in Chinese).
Wang T,Peng S S,Ottlé C,et al.,2015.Spring snow cover deficit controlled by intraseasonal variability of the surface energy fluxes[J].Environ Res Lett,10(2):024018.doi:10.1088/1748-9326/10/2/024018.
王躍男,陳隆勛,何金海,等,2009.夏季青藏高原熱源低頻振蕩對(duì)我國(guó)東部降水的影響[J].應(yīng)用氣象學(xué)報(bào),20(4):419-427. Wang Y N,Chen L X,He J H,et al.,2009.Effect of summer heat source low-frequency oscillation over the Tibetan Plateau on precipitation in eastern China[J].J Appl Meteorol Sci,20(4):419-427.doi:10.3969/j.issn.1001-7313.2009.04.005.(in Chinese).
Wang Z B,Wu R G,Chen S F,et al.,2018a.Influence of western Tibetan Plateau summer snow cover on East Asian summer rainfall[J].J Geophys Res:Atmos,123(5):2371-2386.doi:10.1002/2017JD028016.
Wang Z B,Wu R G,Huang G,2018b.Low-frequency snow changes over the Tibetan Plateau[J].Int J Climatol,38(2):949-963.doi:10.1002/joc.5221.
Wang Z Q,Duan A M,Wu G X,2014.Time-lagged impact of spring sensible heat over the Tibetan Plateau on the summer rainfall anomaly in East China:case studies using the WRF model[J].Climate Dyn,42(11/12):2885-2898.doi:10.1007/s00382-013-1800-2.
Wu B Y,Yang K,Zhang R H,2009.Eurasian snow cover variability and its association with summer rainfall in China[J].Adv Atmos Sci,26(1):31-44.doi:10.1007/s00376-009-0031-2.
Wu G X,Zhang Y S,1998.Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea[J].Mon Wea Rev,126(4):913-927.doi:10.1175/1520-0493(1998)126<0913:tpfatt>2.0.co;2.
Wu G X,Liu Y M,Zhang Q,et al.,2007.The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate[J].J Hydrometeorol,8(4):770-789.doi:10.1175/jhm609.1.
Wu Q G,Hu H B,Zhang L J,2011.Observed influences of autumn-early winter Eurasian snow cover anomalies on the hemispheric PNA-like variability in winter[J].J Climate,24(7):2017-2023.doi:10.1175/2011jcli4236.1.
Wu R G,Kirtman B P,2007.Observed relationship of spring and summer East Asian rainfall with winter and spring Eurasian snow[J].J Climate,20(7):1285-1304.doi:10.1175/jcli4068.1.
吳紹洪,尹云鶴,鄭度,等,2005.青藏高原近30年氣候變化趨勢(shì)[J].地理學(xué)報(bào),60(1):3-11. Wu S H,Yin Y H,Zheng D,et al.,2005.Climate changes in the Tibetan Plateau during the last three decades[J].Acta Geogr Sin,60(1):3-11.doi:10.3321/j.issn:0375-5444.2005.01.001.(in Chinese).2972EF2B-7BD2-46CD-9D9B-0BFF3B3E2FF5
Wu T W,Qian Z A,2003.The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall:an observational investigation[J].J Climate,16(12):2038-2051.doi:10.1175/1520-0442(2003)016<2038:trbttw>2.0.co;2.
Wu Z W,Jiang Z H,Li J P,et al.,2012.Possible association of the western Tibetan Plateau snow cover with the decadal to interdecadal variations of Northern China heatwave frequency[J].Climate Dyn,39(9/10):2393-2402.doi:10.1007/s00382-012-1439-4.
Wu Z W,Zhang P,Chen H,et al.,2016.Can the Tibetan Plateau snow cover influence the interannual variations of Eurasian heat wave frequency?[J].Clim Dyn,46(11/12):3405-3417.doi:10.1007/s00382-015-2775-y.
WWRP/WCRP,2018.Sub-seasonal to seasonal prediction project(S2S) phase II proposal[R].WWRP 2018-4 WCRP Report No.11/2018.
Xiao Z X,Duan A M,2016.Impacts of Tibetan Plateau snow cover on the interannual variability of the East Asian summer monsoon[J].J Climate,29(23):8495-8514.doi:10.1175/jcli-d-16-0029.1.
徐邦琪,臧鈺歆,朱志偉,等,2020.時(shí)空投影模型(STPM)的次季節(jié)至季節(jié)(S2S)預(yù)測(cè)應(yīng)用進(jìn)展[J].大氣科學(xué)學(xué)報(bào),43(1):212-224. Hsu P C,Zang Y X,Zhu Z W,et al.,2020.Subseasonal-to-seasonal(S2S) prediction using the spatial-temporal projection model(STPM)[J].Trans Atmos Sci,43(1):212-224.(in Chinese).
徐國(guó)強(qiáng),朱乾根,2000.1998年青藏高原大氣低頻振蕩的結(jié)構(gòu)特征分析[J].南京氣象學(xué)院學(xué)報(bào),23(4):505-513. Xu G Q,Zhu Q G,2000.Analysis of features of atmospheric LFO structures over the Tibetan Plateau in 1998[J].J Nanjing Inst Meteor,23(4):505-513.doi:10.13878/j.cnki.dqkxxb.2000.04.006.(in Chinese).
Xu L,Dirmeyer P,2013.Snow-atmosphere coupling strength.part II:albedo effect versus hydrological effect[J].J Hydrometeorol,14(2):404-418.doi:10.1175/jhm-d-11-0103.1.
Xu W F,Ma L J,Ma M N,et al.,2017.Spatial-temporal variability of snow cover and depth in the Qinghai-Tibetan Plateau[J].J Climate,30(4):1521-1533.doi:10.1175/jcli-d-15-0732.1.
徐祥德,陶詩言,王繼志,等,2002.青藏高原-季風(fēng)水汽輸送 “大三角扇型” 影響域特征與中國(guó)區(qū)域旱澇異常的關(guān)系[J].氣象學(xué)報(bào),60(3):257-266. Xu X D,Tao S Y,Wang J Z,et al.,2002.The relationship between water vapor transport features of Tibetan Plateau-monsoon “l(fā)arge triangle” affecting region and drought-flood abnormality of China[J].Acta Meteorol Sin,60(3):257-266.(in Chinese).
Xu X D,Guo J B,Koike T,et al.,2012.“downstream effect” of winter snow cover over the eastern Tibetan Plateau on climate anomalies in East Asia[J].J Meteor Soc Japan,90C:113-130.doi:10.2151/jmsj.2012-c08.
Yang J,Bao Q,Wang B,et al.,2017.Characterizing two types of transient intraseasonal oscillations in the eastern Tibetan Plateau summer rainfall[J].Climate Dyn,48(5/6):1749-1768.doi:10.1007/s00382-016-3170-z.2972EF2B-7BD2-46CD-9D9B-0BFF3B3E2FF5
陽坤,郭曉峰,武炳義,2010.青藏高原地表感熱通量的近期變化趨勢(shì)[J].中國(guó)科學(xué),40(7):923-932. Yang K,Guo X F,Wu B Y,2010.Recent trends in surface sensible heat flux on the Tibetan Plateau[J].Sci China,40(7):923-932.(in Chinese).
楊秋明,1998.冬半年歐亞雪蓋變化對(duì)東亞環(huán)流的影響[J].氣象學(xué)報(bào),56(5):116-123. Yang Q M,1998.The influence of the variations of snow cover in Eurasia for half years winter on the circulations over the East Asia[J].Acta Meteorol Sin,56(5):116-123.(in Chinese).
Yang S,Xu L Z,1994.Linkage between Eurasian winter snow cover and regional Chinese summer rainfall[J].Int J Climatol,14(7):739-750.doi:10.1002/joc.3370140704.
Yang S Y,Li T,2017.Causes of intraseasonal diabatic heating variability over and near the Tibetan Plateau in boreal summer[J].Clim Dyn,49(7/8):2385-2406.doi:10.1007/s00382-016-3463-2.
楊修群,黃士松,1992.歐亞雪蓋的氣候效應(yīng)及其在冬季風(fēng)形成中的作用[J].南京大學(xué)學(xué)報(bào)(自然科學(xué)版),28(2):326-335. Yang X Q,Huang S S,1992.Climatic effects of Eurasian snow cover and their impact on the formation of winter monsoon circulation[J].J Nanjing Univ Nat Sci,28(2):326-335.(in Chinese).
姚秀萍,張碩,閆麗朱,2019.青藏高原大氣熱源及其影響的研究進(jìn)展[J].大氣科學(xué)學(xué)報(bào),42(5):641-651. Yao X P,Zhang S,Yan L Z,2019.Research progress on the atmospheric heat source over the Tibetan Plateau and its influence[J].Trans Atmos Sci,42(5):641-651.doi:10.13878/j.cnki.dqkxxb.20181227001.(in Chinese).
葉篤正,高由禧,1979.青藏高原氣象學(xué)[M].北京:科學(xué)出版社. Ye D Z,Gao Y X,1979.Meteorology of the Tibetan Plateau Plateau[M].Beijing:Science Press.(in Chinese).
葉篤正,羅四維,朱抱真,1957.西藏高原及其附近的流場(chǎng)結(jié)構(gòu)和對(duì)流層大氣的熱量平衡[J].氣象學(xué)報(bào),28(2):108-121. Ye D Z,Luo S W,Zhu B Z,1957.The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding[J].Acta Meteorol Sinica,28(2):108-121.(in Chinese).
Yeh T C,1950.The circulation of the high troposphere over China in the winter of 1945—1946[J].Tellus,2(3):173-183.doi:10.3402/tellusa.v2i3.8548.
You Q L,Kang S C,Ren G Y,et al.,2011.Observed changes in snow depth and number of snow days in the eastern and central Tibetan Plateau[J].Clim Res,46(2):171-183.doi:10.3354/cr00985.
You Q L,Min J Z,Kang S C,2016.Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades[J].Int J Climatol,36(6):2660-2670.doi:10.1002/joc.4520.
You Q L,Wu T,Shen L C,et al.,2020.Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system[J].Earth Sci Rev,201:103043.doi:10.1016/j.earscirev.2019.103043.
Zhang F,Ren H,Miao L J,et al.,2019.Simulation of daily precipitation from CMIP5 in the Qinghai-Tibet plateau[J].SOLA,15:68-74.doi:10.2151/sola.2019-014.2972EF2B-7BD2-46CD-9D9B-0BFF3B3E2FF5
Zhang G Q,Xie H J,Yao T D,et al.,2012.Snow cover dynamics of four lake basins over Tibetan Plateau using time series MODIS data(2001—2010)[J].Water Resour Res,48(10):2012WR011971.doi:10.1029/2012wr011971.
Zhang L L,Su F G,Yang D Q,et al.,2013.Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau[J].J Geophys Res Atmos,118(15):8500-8518.doi:10.1002/jgrd.50665.
Zhang P F,Li G P,F(xiàn)u X,et al.,2014.Clustering of Tibetan Plateau vortices by 10—30 day intraseasonal oscillation[J].Mon Wea Rev,142(1):290-300.doi:10.1175/mwr-d-13-00137.1.
Zhang R N,Zhang R H,Zuo Z Y,2017.Impact of Eurasian spring snow decrement on East Asian summer precipitation[J].J Climate,30(9):3421-3437.doi:10.1175/jcli-d-16-0214.1.
張順利,陶詩言,2001.青藏高原積雪對(duì)亞洲夏季風(fēng)影響的診斷及數(shù)值研究[J].大氣科學(xué),25(3):372-390. Zhang S L,Tao S Y,2001.The influences of snow cover over the Tibetan Plateau on Asian summer monsoon[J].Chin J Atmos Sci,25(3):372-390.(in Chinese).
Zhang T J,2005.Influence of the seasonal snow cover on the ground thermal regime:an overview[J].Rev Geophys,43(4):RG4002.doi:10.1029/2004RG000157.
張廷軍,鐘歆玥,2014.歐亞大陸積雪分布及其類型劃分[J].冰川凍土,36(3):481-490. Zhang T J,Zhong X Y,2014.Classification and regionalization of the seasonal snow cover across the Eurasian Continent[J].J Glaciol Geocryol,36(3):481-490.doi:10.7522/j.issn.1000-0240.2014.0058.(in Chinese).
Zhang Y,Li J,2016.Impact of moisture divergence on systematic errors in precipitation around the Tibetan Plateau in a general circulation model[J].Clim Dyn,47(9/10):2923-2934.doi:10.1007/s00382-016-3005-y.
Zhang Y S,Li T,Wang B,2004.Decadal change of the spring snow depth over the Tibetan Plateau:the associated circulation and influence on the East Asian summer monsoon[J].J Climate,17(14):2780-2793.doi:10.1175/1520-0442(2004)017<2780:dcotss>2.0.co;2.
Zhang Y,Zou T,Xue Y K,2019.An arctic-Tibetan connection on subseasonal to seasonal time scale[J].Geophys Res Lett,46(5):2790-2799.doi:10.1029/2018gl081476.
趙平,陳隆勛,2001.35年來青藏高原大氣熱源氣候特征及其與中國(guó)降水的關(guān)系[J].中國(guó)科學(xué)D輯,31(4):327-332. Zhao P,Chen L X,2001.Climatic features of atmospheric heat source/sink over the Qinghai-Xizang Plateau in 35 years and its relation to rainfall in China [J].Sci China,31(4):327-332.doi:10.3969/j.issn.1674-7240.2001.04.009.(in Chinese).
Zhao P,Zhou Z J,Liu J P,2007.Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall:an observational investigation[J].J Climate,20(15):3942-3955.doi:10.1175/jcli4205.1.2972EF2B-7BD2-46CD-9D9B-0BFF3B3E2FF5
鄭益群,錢永甫,苗曼倩,等,2000.青藏高原積雪對(duì)中國(guó)夏季風(fēng)氣候的影響[J].大氣科學(xué),24(6):761-774. Zheng Y Q,Qian Y F,Miao M Q,et al.,2000.Effect of the Tibetan Plateau snow cover on China summer monsoon climate[J].Chin J Atmos Sci,24(6):761-774.(in Chinese).
周兵,何金海,徐海明,2000.青藏高原氣象要素場(chǎng)低頻特征及其與夏季區(qū)域降水的關(guān)系[J].南京氣象學(xué)院學(xué)報(bào),23(1):93-100. Zhou B,He J H,Xu H M,2000.LFO characteristics of meteorological elements over Tibetan Plateau and the relations with regional summer rainfall[J].J Nanjing Inst Meteor,23(1):93-100.doi:10.13878/j.cnki.dqkxxb.2000.01.015.(in Chinese).
周秀驥,趙平,陳軍明,等,2009.青藏高原熱力作用對(duì)北半球氣候影響的研究[J].中國(guó)科學(xué)(地球科學(xué)),39(11):1473-1486. Zhou X J,Zhao P,Chen J M,et al.,2009.Impacts of thermodynamic processes over the Plateau on the Northern Hemispheric climate[J].Sci Sin Terrae,39(11):1473-1486.doi:10.1007/s11430-009-0194-9.(in Chinese).
朱躍建,2020.基于最新全球集合預(yù)報(bào)系統(tǒng)的可預(yù)報(bào)性評(píng)估[J].大氣科學(xué)學(xué)報(bào),43(1):193-200. Zhu Y J,2020.An assessment of predictability through state-of-the-art global ensemble forecast system[J].Trans Atmos Sci,43(1):193-200.doi:10.13878/j.cnki.dqkxxb.20191101013.(in Chinese).
左志燕,張人禾,武炳義,2011.1979—2004年中國(guó)大陸南方地區(qū)春季降水的年代際變化特征及其與歐亞大陸積雪的聯(lián)系[J].中國(guó)科學(xué)(地球科學(xué)),41(11):1688-1696. Zuo Z Y,Zhang R H,Wu B Y,2011.Inter-decadal variations of springtime rainfall over Southern China mainland for 1979—2004 and its relationshio with Eurasian snow[J].Sci Sin Terrae,41(11):1688-1696.doi:10.1007/s11430-011-4337-4.(in Chinese).
(責(zé)任編輯:張福穎)2972EF2B-7BD2-46CD-9D9B-0BFF3B3E2FF5