• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sensitive Detection of Captopril Based on“Off-On” Carbon Dots as Fluorescent Probe

    2022-04-01 10:32:24LIANGQianWANGYulinZHENGMeiqinCHENYanxiHUANGWenjieLIGuangmanHUANGBiao
    發(fā)光學(xué)報(bào) 2022年3期

    LIANG Qian WANG Yu-lin ZHENG Mei-qin CHEN Yan-xi HUANG Wen-jie LI Guang-man HUANG Biao*

    (1.Jinshan College of Fujian Agriculture and Forestry University,F(xiàn)uzhou 350002,China;2.Fujian Agriculture and Forestry University,F(xiàn)uzhou 350002,China; 3.Chongqing Customs Technical Center,Chongqing 401147,China)

    Abstract:Fluorescent nitrogen-doped carbon dots(NCDs) were synthesized by a facile one-step microwave strategy using lemon juice and urea.The obtained NCDs show stable blue fluorescence with a high quantum yield of 53.1%.Hg2+can efficiently coordinate onto the surface of NCDs by means of electrostatic interactions and remarkably quench the fluorescence of NCDs as a result of the formation of a non-fluorescent stable NCDs-Hg2+complex(turn-off).Static fluorescence quenching towards Hg2+is proved by the fluorescence lifetime measurements and the change of ultraviolet-visible absorption spectra.In addition,the fluorescence of NCDs-Hg2+system was recovered with the addition of captopril(CAP)due to the ability of captopril to coordinate with Hg2+and the formation of strong Hg2+—S bond.When captopril was added,Hg2+combined with captopril rather than with NCDs resulting in the remove of Hg2+from the surface of NCDs and a significant fluorescence restore of NCDs was observed(turn-on).Under the optimized conditions,good linearity for detecting captopril was attained over the concentration range 0.25-25 μmol·L-1 with a detection limit of 0.17 μmol·L-1.Moreover,this NCDs-based sensor was successfully applied for quantitation of captopril in tablets with satisfactory recovery.

    Key words:carbon dots;fluorescence;captopril;Hg(Ⅱ)

    1 Introduction

    Captopril((2S)-1-[(2S)-2-methyl-3-sulfanylpropanoyl] pyrrolidine-2-carboxylic acid,CAP) is an orally active inhibitor of angiotensin-converting enzyme and is widely used in the management of hypertension and congestive heart failure[1-2].It may also be useful in preventing and treating congestive heart failure[3-4].During the metabolic pathway,it is converted to a disulfide compound,which is eliminated together with unchanged captopril(40%-60%) in urine.With the increasing of clinical application,some adverse effects are reported for captopril,such as cough,hematemesis,proteinuria,renal injury[5-6].Therefore,a facile,rapid,sensitive and selective detection of captopril in biological and pharmaceutical preparation samples is desired and has attracted a great deal of attention[7].Methodsused for quantitation of captopril include highperformance liquid chromatography (HPLC) with mass spectrometric[8],atomicabsorption/emission spectrometry[9],fluorescence[5,10-14],chemiluminescence[7,15]and electrochemical techniques[15-18].However,the above methods are expensive,timeconsuming or requiring complex mathematic dealing.In the present work,we developed a new method for the determination of captopril based on the fluorescence “off-on” of NCDs.

    Carbon dots have attracted tremendous attentions owing to their captivating properties[19-20],such as excellent photo-stability,favorable biocompatibility,and good water solubility[21-22].Carbon dots using in a broad range of promising applications have been demonstrated in bioimaging[23],medical diagnosis[24],catalysis[25],photovoltaic devices[26]and sensor[27-29]especially for sensor application[30-31].Many methods have been proposed to prepare NCDs during the last decade,such as chemical ablation,electrochemical carbonization,laser ablation,hydrothermal/solvothermal treatment[32].In contrast,microwave irradiation of organic compounds is a rapid and low-cost method to synthesize NCDs[14,33].In this study,we report a microwave strategy for the preparation of nitrogen-doped carbon dots(NCDs) by using the lemon juice and urea.The obtained NCDs show blue fluoresces with a high quantum yield of 53.1%.We found the introduced Hg2+may cause fluorescence “turn-off” of the NCDs.Moreover,the NCDs-Hg2+system can also be conveniently employed as a fluorescent “turn-on” probe for highly sensitive and selective detection of captopril with a low limit of detection(LOD) of 0.17 μmol·L-1and a wider linear detection range of 0.25-25 μmol·L-1.Cumulatively,our present work demonstrates the efficacy of NCDs as an effective fluorescent probe for potential applications in biomedical applications.

    2 Experiment

    2.1 Materials and Instruments

    All the experiments were carried out using analytical grade without further purification.Captopril and quinine sulfate were purchased from Aladdin Ltd.(Shanghai,China).Fe2(SO4)3,KCl,CaCl2,BaCl2,AlCl3,HgCl2,MgCl2,MnCl2,ZnCl2,CuCl2,CoCl2,CdCl2,AgNO3,NaCl,Pb(NO3)2,NiCl2,urea were obtained from the Sinopharm Chemical Reagent Co.,Ltd.(Shanghai,China).The water used here was purified through a Kertone-mini water purification system throughout the experiments.The lemons were purchased from a local supermarket.

    UV-Vis absorption spectra were recorded on a UV-2600 UV-Vis spectrophotometer(shinadzu,Japan).Fluorescence emission spectra were recorded by a FS5 fluorescence spectrophotometer(Edinburgh,UK).X-ray photo-electron spectroscopy(XPS) was performed on a Thermo ESCALAB 250XI electron spectrometer equipped with Al Kα X-ray radiation(hν=1 486.6 eV) as the source for excitation.Transmission electron microscopy(TEM) was performed on a Zeiss Libra 200 FE transmission electron microscope at an acceleration voltage of 200 kV.Fourier transform infrared spectroscopy(FTIR) experiments were recorded on a AVATAR360 FTIR spectrometer in the form of KBr pellets.

    2.2 Synthesis of Nitrogen Doped Carbon Dots

    The NCDs were synthesized by microwave method.In brief,we squeeze the lemon and filter out the pulp to get the lemon juice.2 g urea was dissolved in 10 mL lemon juice to achieve solution and then the solution was heated in microwave oven for 15 min operating at 700 W.After the beaker had cooled down to room temperature,the obtained blank solid powder was dissolved with 20 mL water.The supernatant was filtered with 0.22 μm filter membrane to remove the large carbon dots and then dialyzed against ultra-pure water through a dialysis membrane(Molecule weight cut off is 1 000 u) for 24 h.Finally,the yellow NCDs solution was obtained.

    2.3 Fluorescence Sensing of Captopril

    For detection of CAP,different amounts of CAP(1 mmol·L-1) were added into the mixture solution of NCDs (100 μL) and Hg2+(100 μL,1 mmol·L-1).The final concentration of CAP ranged from 0 to 200 μmol·L-1.All samples were incubated for 45 min at room temperature and recorded under excitation at 413 nm to obtain the fluorescence spectra.

    2.4 Quantum Yield of NCDs

    Quinine sulfate dispersed in 0.1 mol·L-1H2SO4(Quantum yield is 0.58) was used as the standard.The quantum yield was calculated with the following equation:

    whereYis quantum yield,F(xiàn)is integrated area of emission,andAis the absorbance at the excited wavelength of the sample,respectively.The subscripted “s” refers to the referenced fluorophore with known quantum yield and “u” refers as the samples for the determination of quantum yield.

    2.5 Determination of Captopril in Tablets

    The tablets were finely powdered.An amount of this powder,equivalent to about 10.9 mg of CAP was accurately weighed and shaken with 20 mL of distilled water in a water-bath at 50 ℃for 10 min.The mass of CAP was calculated with the equation (2):

    wherecis the concentration,andMis molecular weight of CAP.After cooling,the solution was transfered into a 50 mL calibrated flask,the residue was washed several times and the solution diluted with water to the mark to obtain a solution of 1 mmol·L-1.

    3 Results and Discussion

    3.1 Characterization of NCDs

    The TEM image(Fig.1(a)) shows that the asprepared NCDs were well dispersed.The diameter distribution of the NCDs rangs from 1.0 nm to 7.0 nm and the average diameter of NCDs is 3.7 nm(inset of Fig.1(a)),which is well consistent with the NCDs reported[34].FTIR spectrum was used to identify the functional groups present on NCDs.As shown in Fig.1(b),there existed N—H,O—H,C==O,C—O and C—H groups on the surface of the NCDs.Specifically,the stretching vibration of—OH/—NH was located at 3 440 cm-1.The stretching vibrations of —CH were located at 2 923 cm-1and 2 850 cm-1.The band at 1 713 cm-1was attributed to the C==O stretching vibration.The band at 1 400 cm-1could be ascribed to —CH bending vibration.While the band at 1 200 was ascribed to C—O stretching vibration[35].

    Fig.1 (a)TEM image of the NCDs(inset:the diameter distribution of the NCDs).(b)FTIR spectrum.

    Moreover,XPS was used to analyze the elemental composition and the chemical bonds of the prepared NCDs.As shown in Fig.2(a),the survey XPS spectra revealed three typical peaks of C 1s at 285 eV,N 1s at 400 eV,O 1s at 531 eV and the corresponding content of each element.The highresolution spectra of C 1s in Fig.2(b) exhibit three main peaks(C—C 284.7 eV,C—O 286 eV,C==O 288 eV).The spectra of N 1s in the NCDs reveal the presence of N—H(399.6 eV) and C—N(400.3 eV) bonds(Fig.2(c)),while that of O 1s(Fig.2(d)) displays two peaks(531.4 eV and 532.1 eV),which could be attributed to C—O and C==O groups,respectively[36].

    Fig.2 (a)Full-scan XPS spectrum of the NCDs.(b)C 1s XPS spectra.(c)N 1s XPS spectra.(d)O 1s XPS spectra.

    The UV-Vis absorption spectrum of the NCDs showed that there was a shoulder peak at 272 nm and an absorption band at 328 nm and 414 nm(Fig.3).The shoulder peak at 272 nm was attributed to the π-π*transitions of the aromatic C==C bonds.While the absorption at 328 nm and 413 nm were from n-π*transitions[37].

    The maximum emission was available at 536 nm with maximum excitation at 413 nm(Fig.3).Thus,the 413 nm was chosen as the optimal excitation wavelength for the following detection experiments.The above result indicated that highly fluorescent NCDs were successfully synthesized.In order to further explore the fluorescence properties of the asprepared NCDs,the quantum yield and the effects of different extraneous factors on the fluorescence intensity of the NCDs were investigated.Under the excitation of 360 nm,the quantum yield of the NCDs was measured to be 53.1% using quinine sulfate in 0.1 mol·L-1H2SO4as a reference.

    Fig.3 UV-Vis absorption(Abs) and fluorescence emission spectra(Ex:excitation) of the NCDs

    3.2 Fluorescence Stability of NCDs

    The ionic strength and pH value were investigated to conform the stability of the NCDs.The effect of ionic strength on fluorescence intensity of synthesized NCDs is investigated by incorporating 0-3 mol·L-1NaCl in the solution of NCDs(Fig.S1(a)).The result reveals that fluorescence intensity of NCDs is constant in high ionic strength.The pH value of NCDs was studied over the range from 2.0 to 11.0(Fig.S1(b)).The fluorescence intensity changing in the pH range 2-7 was nearly closed to each other,while higher pH value reduced the fluorescence intensity.This phenomenon may be attributed to the deprotonation of carboxyl group and amino group on the NCDs surface.These results showed that the fluorescence intensity of the NCDs was stable under broad acidic condition and neutral condition.At low pH,the active sites will be reduced for the protonation of the functional groups on the surface of the NCDs.While under alkaline conditions,the Hg2+may combine with the —OH to form Hg(OH)2.Moreover,the dispersal environment for CAP is nearly neutral.Consequently,pH 6.0 was chosen in the next experiments.

    3.3 Effect on Fluorescence by Hg2+

    To demonstrate the feasibility and specificity of the NCDs for Hg2+detection,the sensing experiment was performed with different metal ions under the same condition.The plot depicts that the NCDs solution show strong quenching in fluorescence emission spectra in presence of 50 μmol·L-1Hg2+,while other metal ions have virtually no influence on the fluorescence detection of Hg2+(Fig.4(a)).These results clearly demonstrate that the proposed NCDs possess outstanding selectivity for Hg2+and can serve as novel fluorescence sensor for highly selective and reliable Hg2+monitoring.

    Fig.4 (a)Selectivity of the NCDs for Hg2+(the concentration of Hg2+and other metal cations were 50 μmol·L-1).(b)Emission spectra of the NCDs in the present of various concentrations of Hg2+(from top to bottom,0,0.02,0.2,1,2,5,10,20,30,50,60,80,100,120,140,150 μmol·L-1).(c)The plot of F0/F-1 and the concentration of Hg2+.(d)The linear plot of F0/F-1 and the concentration of Hg2+.

    The titration experiment was conducted by adding Hg2+aqueous solution at different concentrations to NCDs solution.As shown in Fig.4(b),upon the addition of Hg2+,the fluorescence intensity of NCDs was gradually quenched upon the addition of Hg2+.It may be due to the electrostatic interactions between Hg2+and the carboxylate or hydroxyl groups on the surface of NCDs.It is clear that the value ofF0/F-1 declined gradually with the enhancement of Hg2+concentration,and reached a platform when a higher Hg2+concentration(>80 μmol·L-1)was used(Fig.4(c)).Meanwhile,the fluorescence quenching at 536 nm was in a distinct linear relationship with the Hg2+concentration in the range of 0.50-50 μmol·L-1(Fig.4 (d)).The linear correlation could be described by the linear regression equationF0/F-1 =-0.1241 +0.07719CHg2+,with a correlation coefficient of 0.993(R2) and a limit of detection was calculated to be 0.21 μmol·L-1.

    The quenching mechanism process was studied in order to investigate the reasons for its high selectivity of Hg2+.In order to obtain further insight into the mechanism of quenching,we investigated the fluorescence lifetime of the NCDs with and without the Hg2+.Fluorescence lifetime measurement is the most definitive method to distinguish static and dynamic quenching[38].For static quenching,the fluorescence lifetime does not change (τ0/τ=1),whereτ0andτare the fluorescence lifetime in the absence and presence of quencher,respectively.In contrast,for dynamic quenching,F(xiàn)0/F=τ0/τ,and the lifetime decreases on addition of the quencher.The fluorescence lifetime spectra(Fig.S2) and the fluorescence intensity decay were fitted to a three exponential decay function(Tab.S1).The average fluorescence lifetime(τ0) of pure NCDs is calculated to be 7.13 ns.With gradual addition of Hg2+25 μmol·L-1and 50 μmol·L-1respectively,the average lifetime of NCDs decays to 6.88 ns(τ1)(τ0/τ1=1.04) and 6.63 ns(τ2)(τ0/τ2=1.07).The ratio of the fluorescence intensity of the pure NCDs(F0)and the presence of Hg2+isF0/F1=2.18,F(xiàn)0/F2=3.40 respectively.F0,F(xiàn)1andF2are fluorescence intensity in the absence and presence different concentration of Hg2+respectively.The ratio of the average fluorescence lifetime of NCDs was more close to 1.0,ruling out the dynamic quenching mechanism[10].Moreover,upon addition of 50 μmol·L-1Hg2+,the absorption centered at 337 nm becomes weak,suggesting the formation of non-fluorescent stable NCDs-Hg2+complexviathe the electrostatic interactions between Hg2+and NCDs(Fig.5).These results indicate that the static quenching between NCDs and Hg2+cations is possible[39].

    3.4 Feasibility and Sensitivity of NCDs Detection of CAP in Deionized Water Sample

    To research the feasibility of NCDs-Hg2+fluorescence probe for CAP detection,60 μmol·L-1CAP is added into NCDs-Hg2+system.The quenched fluorescence of the NCDs-Hg2+complex was recovered within 45 min(Fig.S3 and Fig.S4),and then the fluorescence intensity remained stable.Furthermore,the restoration of the UV-Vis absorption centered at 337 nm indicates the release of NCDs(Fig.5).This phenomenon may be due to the strong binding preference between Hg2+and thiol groups.Hg2+is dissociated from the surface of NCDs through the formation of Hg2+—S bond,which leads to the complete recovery of the emission of NCDs(Fig.6)[40-41].

    Fig.5 UV-Vis absorption spectra of NCDs(black),the mixture of NCDs and Hg2+(red),and the mixture of NCDs,Hg2+and captopril(green).

    Fig.6 The detecting pathway for Hg2+and CAP based on the fluorescence switching of NCDs

    To further investigate the sensitivity of NCDs-Hg2+system to CAP,different concentrations of CAP in the range of 0-200 μmol·L-1were added into NCDs-Hg2+system containing 30 μmol·L-1Hg2+.For the original NCDs-Hg2+solution,there is only a very weak emission at 536 nm owing to the quenching effect from Hg2+cations(Fig.7(a)).The fluorescence intensity at 536 nm of NCDs-Hg2+system is gradually strengthened with the increasing concentration of CAP from 0 to 120 μmol·L-1and then flattened,revealing that the NCDs-Hg2+system is sensitive to CAP.Moreover,no spectral shift of the emission band is observed.The relationship between the fluorescence intensity at 536 nm of NCDs-Hg2+system and the concentration of CAP is shown in Fig.7(b).The fluorescence is completely restored in the presence of 120 μmol·L-1CAP.The fluorescence intensity enhancement can also be analyzed by the Stern-Volmer equation:F2/F1=1 +Ksv1[Q1],whereF1andF2are the fluorescence intensity at 536 nm of NCDs-Hg2+system in the absence and presence of CAP,respectively,Ksv1is the Stern-Volmer constant and[Q1] is the concentration of CAP.As shown in Fig.7(c),a linear plot for the quantitative analysis of CAP can be fitted between theF2/F1and the concentration of CAP over a range of 0.25-25 μmol·L-1.The linear correlation could be described by the linear regression equationF2/F1=1.0976 +0.0165CCAP,with a correlation coefficient of 0.991(R2) and a limit of detection was calculated to be 0.17 μmol·L-1.These results suggested that such NCDs-Hg2+system as a fluorescent turn-on probe exhibits superior sensitivity for CAP,wide linear response range and high possibility for the quantitative detection of CAP.Some representative probes for sensing CAP are summarized in Tab.1 for comparison.The NCDs-Hg2+fluorescent sensor for CAP detection not only exhibits better or comparable performance,but also is cheaper and easier to prepare.

    Fig.7 (a)Emission spectra of the NCDs -Hg2+system in the present of various concentrations of CAP(from bottom to top,0,0.25,0.5,2.5,5,7.5,10,20,40,60,80,100,120,140,160,180,200 μmol·L-1).(b)The plot of F2/F1-1 and the concentration of CAP.(c)The linear plot of F2/F1-1 and the concentration of CAP.

    Tab.1 Comparison of different probes for the sensing of captopril

    3.5 Interference Studies

    In order to apply the proposed method to the analysis of pharmaceutical dosage forms,the influence of commonly used excipients and additives was studied by preparing NCDs-Hg2+solutions containing captopril and the foreign compound.As shown in Fig.8,no interference was found for mannose,fructose,dextrin,polyethylene glycol(PEG),starch,maltose,glucose,sucrose,microcrystalline cellulose(MCC),sorbitol and lactose.Hence,the proposed method may be considered as sufficiently selective.

    Fig.8 Selectivity of the NCDs-Hg2+system toward CAP(the concentration of CAP and other excipients and additives were both 50 μmol·L-1)

    The proposed method was applied to the determination of captopril in tablets.The results labeled and found amount are summarized in Tab.2.There were no significant differences between labeled amount and those obtained by the proposed method.The recoveries ranged from 96.84% to 101.2%.These results indicated the method is feasible in the detection of CAP.

    Tab.2 Determination of captopril in tablets and recovery experiments

    4 Conclusion

    In summary,a simple,low-cost and one-pot microwave method was adopted to prepare NCDs from lemon juice and urea.The obtained NCDs with a fluorescence quantum yield of 53.1% had strong fluorescence emission at 536 nm,good water solubility and high stability.In addition,the Hg2+could coordinate onto NCDs and lead to significant fluorescence quenching due to the static quenching.Because of that captopril has stronger binding preference toward Hg2+than NCDs due to the formation of Hg2+—S bond,a significant fluorescence enhancement was observed when captopril was added into NCDs-Hg2+system.Thus,the NCDs were employed for the “off-on” probe to the detection of Hg2+and captopril in aqueous solution at pH =6.0.The assay system showed sensitive and selective detection of Hg2+and captopril with detection limits 0.21 μmol·L-1and 0.17 μmol·L-1,respectively.Our fluorescent sensor also successfully detects captopril in tablets with satisfactory recovery.

    Supplementary Information and Response Letter are available for this paper at:http://cjl.lightpublishing.cn/thesisDetails#10.37188/CJL.20210372.

    特级一级黄色大片| 亚洲天堂国产精品一区在线| 亚洲精品456在线播放app| 国产人妻一区二区三区在| 午夜福利在线观看吧| 99九九线精品视频在线观看视频| 国产高清视频在线观看网站| 亚州av有码| 草草在线视频免费看| 成人毛片a级毛片在线播放| 亚洲成人av在线免费| 女人久久www免费人成看片 | 日本黄大片高清| 黄色一级大片看看| 国产伦一二天堂av在线观看| 色5月婷婷丁香| 亚洲人成网站在线观看播放| 久久这里有精品视频免费| 久久久久久久久中文| 大又大粗又爽又黄少妇毛片口| 日本一本二区三区精品| 国产综合懂色| 乱码一卡2卡4卡精品| 99久久成人亚洲精品观看| 亚洲图色成人| 国产一区有黄有色的免费视频 | 菩萨蛮人人尽说江南好唐韦庄 | 色哟哟·www| 成年女人永久免费观看视频| 国产高清视频在线观看网站| 99热网站在线观看| 亚洲国产精品sss在线观看| 日产精品乱码卡一卡2卡三| 2022亚洲国产成人精品| 中文天堂在线官网| 中文天堂在线官网| 午夜福利在线在线| 蜜臀久久99精品久久宅男| 两个人的视频大全免费| 大香蕉97超碰在线| 91久久精品国产一区二区三区| 亚洲欧洲日产国产| 久久人人爽人人爽人人片va| 精品午夜福利在线看| 少妇被粗大猛烈的视频| 五月伊人婷婷丁香| 最新中文字幕久久久久| 最新中文字幕久久久久| 国产伦精品一区二区三区视频9| 在线观看一区二区三区| eeuss影院久久| 少妇丰满av| 久久99热这里只有精品18| 久久久久久久久久黄片| 亚洲av成人av| or卡值多少钱| 青青草视频在线视频观看| 九色成人免费人妻av| 国产精品精品国产色婷婷| 久久综合国产亚洲精品| 亚洲欧美日韩卡通动漫| 欧美成人一区二区免费高清观看| 日韩欧美精品免费久久| 2021少妇久久久久久久久久久| 日韩 亚洲 欧美在线| 极品教师在线视频| 午夜久久久久精精品| 99热这里只有是精品50| 夜夜爽夜夜爽视频| 久久久欧美国产精品| 欧美日韩国产亚洲二区| 欧美激情久久久久久爽电影| 伦理电影大哥的女人| 三级男女做爰猛烈吃奶摸视频| 美女脱内裤让男人舔精品视频| 大话2 男鬼变身卡| 中文字幕av成人在线电影| 26uuu在线亚洲综合色| eeuss影院久久| 免费黄色在线免费观看| 建设人人有责人人尽责人人享有的 | 亚洲成人av在线免费| 蜜臀久久99精品久久宅男| 国产亚洲午夜精品一区二区久久 | 国产免费一级a男人的天堂| 国产高潮美女av| 亚洲真实伦在线观看| 亚洲国产精品专区欧美| av免费观看日本| 色综合亚洲欧美另类图片| 看黄色毛片网站| 中文在线观看免费www的网站| 十八禁国产超污无遮挡网站| 中文字幕久久专区| 欧美变态另类bdsm刘玥| 黄色一级大片看看| 国产一级毛片七仙女欲春2| 2022亚洲国产成人精品| 亚洲美女视频黄频| av免费在线看不卡| 国产精品三级大全| 少妇裸体淫交视频免费看高清| 性插视频无遮挡在线免费观看| 国产亚洲精品久久久com| 久久久久久久久久黄片| 久久久久久久久大av| 免费在线观看成人毛片| 国产精品一二三区在线看| 又爽又黄无遮挡网站| 精品久久久久久成人av| 99久久精品一区二区三区| 天天一区二区日本电影三级| 国产极品精品免费视频能看的| 成人三级黄色视频| 欧美日韩在线观看h| 亚洲成人中文字幕在线播放| 婷婷六月久久综合丁香| 国产成人精品婷婷| 少妇裸体淫交视频免费看高清| 国产精品熟女久久久久浪| 成人二区视频| 青春草视频在线免费观看| 久久鲁丝午夜福利片| 身体一侧抽搐| 亚洲精品成人久久久久久| 国产精品一及| 亚洲自偷自拍三级| 男女边吃奶边做爰视频| 成人漫画全彩无遮挡| 69人妻影院| 日本欧美国产在线视频| 久久精品国产亚洲网站| 亚洲美女搞黄在线观看| 久久久久免费精品人妻一区二区| 国产熟女欧美一区二区| 国产 一区精品| 亚洲av免费在线观看| 最近视频中文字幕2019在线8| 丝袜美腿在线中文| 国产精华一区二区三区| 成人二区视频| 国产大屁股一区二区在线视频| 国产午夜精品一二区理论片| 国产成人一区二区在线| 你懂的网址亚洲精品在线观看 | 久久99热这里只频精品6学生 | 成年av动漫网址| 99久久精品一区二区三区| 亚洲色图av天堂| 日本熟妇午夜| 色5月婷婷丁香| 欧美日韩一区二区视频在线观看视频在线 | 国产一级毛片七仙女欲春2| 免费无遮挡裸体视频| 少妇高潮的动态图| 欧美人与善性xxx| 中文亚洲av片在线观看爽| 国产一区二区三区av在线| 国产私拍福利视频在线观看| 最近视频中文字幕2019在线8| 能在线免费看毛片的网站| 一级av片app| 国产伦精品一区二区三区四那| 女人久久www免费人成看片 | 午夜福利在线观看吧| 国产中年淑女户外野战色| 国产亚洲av片在线观看秒播厂 | 干丝袜人妻中文字幕| 国产 一区 欧美 日韩| 欧美激情国产日韩精品一区| 22中文网久久字幕| 久久婷婷人人爽人人干人人爱| 成人特级av手机在线观看| 2021少妇久久久久久久久久久| 99热这里只有精品一区| 国产欧美日韩精品一区二区| 夫妻性生交免费视频一级片| 亚洲成人精品中文字幕电影| 五月玫瑰六月丁香| 欧美激情在线99| 久久人人爽人人片av| 国产淫语在线视频| av在线蜜桃| 国产精品人妻久久久影院| 国产黄色小视频在线观看| 18禁裸乳无遮挡免费网站照片| 精品99又大又爽又粗少妇毛片| 国产精品人妻久久久久久| 国语自产精品视频在线第100页| 久久久亚洲精品成人影院| 久久久久久久久大av| 91在线精品国自产拍蜜月| 少妇人妻精品综合一区二区| 尤物成人国产欧美一区二区三区| 在线播放无遮挡| 日本免费在线观看一区| 欧美日韩精品成人综合77777| 成人特级av手机在线观看| 男人的好看免费观看在线视频| 亚洲欧美精品综合久久99| 18+在线观看网站| 日本黄大片高清| 色综合亚洲欧美另类图片| 偷拍熟女少妇极品色| 亚洲国产精品成人久久小说| 久久久久久久久久久丰满| 亚洲无线观看免费| 欧美一区二区精品小视频在线| 色吧在线观看| 丝袜美腿在线中文| 建设人人有责人人尽责人人享有的 | 成人特级av手机在线观看| 丰满少妇做爰视频| 久久99热6这里只有精品| 免费人成在线观看视频色| 亚洲成人av在线免费| 日本wwww免费看| 观看美女的网站| 水蜜桃什么品种好| 国产成人精品一,二区| 在线观看66精品国产| 久久亚洲精品不卡| 中文字幕熟女人妻在线| 午夜福利视频1000在线观看| 99热这里只有精品一区| 亚洲性久久影院| 波多野结衣高清无吗| 天堂√8在线中文| 国产在视频线精品| 蜜桃久久精品国产亚洲av| 日日摸夜夜添夜夜添av毛片| 亚洲精品aⅴ在线观看| 五月玫瑰六月丁香| 97热精品久久久久久| 久热久热在线精品观看| 欧美变态另类bdsm刘玥| 大话2 男鬼变身卡| 亚洲av免费在线观看| 一边摸一边抽搐一进一小说| 老司机福利观看| 日本熟妇午夜| 亚洲精品日韩av片在线观看| 91久久精品国产一区二区三区| 99久久无色码亚洲精品果冻| 国产v大片淫在线免费观看| 国产午夜精品论理片| 欧美精品一区二区大全| 国产精品,欧美在线| 99九九线精品视频在线观看视频| 桃色一区二区三区在线观看| 国产精品野战在线观看| 久久久久久九九精品二区国产| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 美女高潮的动态| 中文资源天堂在线| 国产av在哪里看| 成人特级av手机在线观看| 久久久久网色| 久久久精品大字幕| 日本色播在线视频| 国产精品一区二区三区四区久久| 能在线免费看毛片的网站| 高清毛片免费看| 黄色日韩在线| 亚洲欧洲国产日韩| 成人午夜高清在线视频| 成年免费大片在线观看| 欧美高清成人免费视频www| 成人毛片a级毛片在线播放| 又粗又硬又长又爽又黄的视频| 亚洲综合精品二区| 精品久久久久久成人av| 欧美不卡视频在线免费观看| 亚洲国产精品sss在线观看| av在线天堂中文字幕| 国产中年淑女户外野战色| 亚洲av中文字字幕乱码综合| 久久热精品热| 九九热线精品视视频播放| 少妇人妻精品综合一区二区| 可以在线观看毛片的网站| 99视频精品全部免费 在线| 国产成人91sexporn| 91精品伊人久久大香线蕉| 99久久人妻综合| 色网站视频免费| 丰满人妻一区二区三区视频av| 丰满少妇做爰视频| 成人美女网站在线观看视频| 亚洲第一区二区三区不卡| 热99在线观看视频| 18禁在线播放成人免费| 久久99热6这里只有精品| 国产成人午夜福利电影在线观看| 神马国产精品三级电影在线观看| 丰满乱子伦码专区| 在线免费观看不下载黄p国产| 国产色婷婷99| 成人毛片60女人毛片免费| 色哟哟·www| 精品人妻熟女av久视频| 国产在线男女| 深夜a级毛片| 天美传媒精品一区二区| 久久草成人影院| 天天一区二区日本电影三级| 91av网一区二区| av在线播放精品| 欧美另类亚洲清纯唯美| 亚洲经典国产精华液单| 九九久久精品国产亚洲av麻豆| 亚洲va在线va天堂va国产| 十八禁国产超污无遮挡网站| 有码 亚洲区| 亚洲欧美日韩高清专用| 中文字幕久久专区| av在线蜜桃| 激情 狠狠 欧美| 成人鲁丝片一二三区免费| 三级经典国产精品| 亚洲av成人精品一二三区| 一区二区三区免费毛片| 老师上课跳d突然被开到最大视频| 成年女人看的毛片在线观看| 国产精品三级大全| 麻豆av噜噜一区二区三区| 99热这里只有是精品50| 亚洲人成网站高清观看| 久久99热6这里只有精品| 国产免费视频播放在线视频 | 老司机影院毛片| 国产亚洲精品av在线| 人妻夜夜爽99麻豆av| 长腿黑丝高跟| 日韩高清综合在线| 秋霞伦理黄片| 日产精品乱码卡一卡2卡三| 五月玫瑰六月丁香| 午夜福利视频1000在线观看| 一级爰片在线观看| 亚洲精品亚洲一区二区| 日本免费a在线| 蜜桃久久精品国产亚洲av| 你懂的网址亚洲精品在线观看 | 国产日韩欧美在线精品| 91久久精品电影网| 听说在线观看完整版免费高清| 国产一级毛片在线| av福利片在线观看| 草草在线视频免费看| 99在线视频只有这里精品首页| 91狼人影院| 久久精品夜夜夜夜夜久久蜜豆| 免费观看的影片在线观看| 麻豆一二三区av精品| 国产三级中文精品| 女人十人毛片免费观看3o分钟| 国产亚洲av片在线观看秒播厂 | 亚洲人成网站高清观看| 国产免费福利视频在线观看| a级毛片免费高清观看在线播放| 干丝袜人妻中文字幕| 国产伦在线观看视频一区| 婷婷六月久久综合丁香| 99在线视频只有这里精品首页| av在线亚洲专区| 26uuu在线亚洲综合色| 日本一二三区视频观看| 精品久久久久久久人妻蜜臀av| 日日啪夜夜撸| 色播亚洲综合网| 亚洲丝袜综合中文字幕| 欧美日本亚洲视频在线播放| 欧美xxxx黑人xx丫x性爽| 黄色欧美视频在线观看| 国产亚洲5aaaaa淫片| 卡戴珊不雅视频在线播放| 亚洲av成人精品一区久久| 国产精品福利在线免费观看| 一个人观看的视频www高清免费观看| 午夜精品一区二区三区免费看| 亚洲真实伦在线观看| 一边摸一边抽搐一进一小说| 波多野结衣巨乳人妻| 免费观看a级毛片全部| 一区二区三区免费毛片| 99久久九九国产精品国产免费| 哪个播放器可以免费观看大片| 亚洲精品影视一区二区三区av| 日韩一区二区视频免费看| 午夜a级毛片| 国产精品一区www在线观看| 天堂av国产一区二区熟女人妻| 国产一区二区在线观看日韩| 日韩高清综合在线| 中文字幕av在线有码专区| 在线观看一区二区三区| 亚洲欧美日韩高清专用| 精品酒店卫生间| 国产精品日韩av在线免费观看| 99热这里只有精品一区| 国产爱豆传媒在线观看| 丝袜美腿在线中文| 精品国内亚洲2022精品成人| 亚洲欧美日韩无卡精品| 一边摸一边抽搐一进一小说| 18+在线观看网站| 日本wwww免费看| 三级国产精品片| 国产极品精品免费视频能看的| 久久久精品94久久精品| 国产乱人偷精品视频| 亚洲真实伦在线观看| 日本欧美国产在线视频| 国产成人freesex在线| 日本猛色少妇xxxxx猛交久久| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区二区性色av| 日韩av在线大香蕉| 99热精品在线国产| 男人舔女人下体高潮全视频| 国产片特级美女逼逼视频| 亚洲国产精品合色在线| a级毛片免费高清观看在线播放| 欧美高清性xxxxhd video| 亚洲av中文av极速乱| 亚洲va在线va天堂va国产| 欧美人与善性xxx| 天堂√8在线中文| 国产日韩欧美在线精品| 久久亚洲精品不卡| 少妇熟女欧美另类| 国产极品精品免费视频能看的| 18禁在线无遮挡免费观看视频| 日日摸夜夜添夜夜添av毛片| 在线免费观看的www视频| 直男gayav资源| 国产一区二区三区av在线| 国产片特级美女逼逼视频| 看十八女毛片水多多多| 听说在线观看完整版免费高清| 欧美97在线视频| 精品一区二区免费观看| 久久久国产成人精品二区| 久久久午夜欧美精品| 久久久久九九精品影院| 九草在线视频观看| 淫秽高清视频在线观看| 国产成人a区在线观看| 黄片wwwwww| 三级国产精品片| 麻豆久久精品国产亚洲av| 午夜福利在线观看吧| 精品少妇黑人巨大在线播放 | 中文在线观看免费www的网站| 97人妻精品一区二区三区麻豆| 国产黄色视频一区二区在线观看 | 淫秽高清视频在线观看| 久久午夜福利片| 精品少妇黑人巨大在线播放 | 免费一级毛片在线播放高清视频| 色综合亚洲欧美另类图片| 婷婷色av中文字幕| 午夜福利高清视频| 亚洲精品国产av成人精品| 国产精品.久久久| 99九九线精品视频在线观看视频| 欧美97在线视频| 最近最新中文字幕免费大全7| 色视频www国产| 身体一侧抽搐| 插阴视频在线观看视频| 国产白丝娇喘喷水9色精品| 久久99热这里只频精品6学生 | 亚洲精品自拍成人| 一本久久精品| 国产黄片美女视频| 日韩成人av中文字幕在线观看| 91精品一卡2卡3卡4卡| 色综合站精品国产| 国产成人a区在线观看| 亚洲欧洲国产日韩| 国产单亲对白刺激| 久久99精品国语久久久| 久久精品夜色国产| 麻豆久久精品国产亚洲av| 国模一区二区三区四区视频| 看免费成人av毛片| 18禁在线播放成人免费| 麻豆一二三区av精品| 变态另类丝袜制服| 国产成人精品一,二区| 美女国产视频在线观看| 亚洲美女搞黄在线观看| 精品久久久久久久久亚洲| 国产精品国产三级国产专区5o | 亚洲欧美日韩高清专用| 你懂的网址亚洲精品在线观看 | 国产白丝娇喘喷水9色精品| 日本av手机在线免费观看| 亚洲无线观看免费| 嫩草影院精品99| 国产精品不卡视频一区二区| 国产精品爽爽va在线观看网站| 精品国内亚洲2022精品成人| 在线免费观看的www视频| 乱码一卡2卡4卡精品| 草草在线视频免费看| 99久久人妻综合| 日本午夜av视频| 国产v大片淫在线免费观看| 村上凉子中文字幕在线| 青春草国产在线视频| 蜜臀久久99精品久久宅男| 最近2019中文字幕mv第一页| 日韩一本色道免费dvd| 久久精品夜色国产| 国产精品综合久久久久久久免费| 在现免费观看毛片| 熟女电影av网| 亚洲国产最新在线播放| 国产精品.久久久| 国产免费视频播放在线视频 | 欧美日韩综合久久久久久| 亚洲精品影视一区二区三区av| h日本视频在线播放| 丝袜美腿在线中文| 亚洲欧美日韩东京热| 观看美女的网站| 国产伦在线观看视频一区| 国产黄色小视频在线观看| 国产免费男女视频| 午夜亚洲福利在线播放| 欧美日本视频| 我要搜黄色片| 伊人久久精品亚洲午夜| 午夜激情欧美在线| 神马国产精品三级电影在线观看| 国产成人aa在线观看| 午夜福利高清视频| 亚洲人与动物交配视频| 亚洲精品亚洲一区二区| 非洲黑人性xxxx精品又粗又长| 国产亚洲5aaaaa淫片| 最近手机中文字幕大全| 亚洲国产高清在线一区二区三| 一本久久精品| 日本-黄色视频高清免费观看| 欧美性感艳星| 国产精品麻豆人妻色哟哟久久 | 91午夜精品亚洲一区二区三区| 亚洲国产精品成人久久小说| 日韩av在线免费看完整版不卡| 久久精品久久久久久久性| 深夜a级毛片| 精品久久久久久成人av| 日本wwww免费看| 男女那种视频在线观看| 国产一区亚洲一区在线观看| 一级爰片在线观看| 少妇的逼好多水| 国产成人午夜福利电影在线观看| 18禁在线播放成人免费| 日韩国内少妇激情av| 男女视频在线观看网站免费| .国产精品久久| 国语对白做爰xxxⅹ性视频网站| 中文亚洲av片在线观看爽| 午夜福利视频1000在线观看| 成人毛片60女人毛片免费| 水蜜桃什么品种好| 男人舔奶头视频| 国产乱来视频区| 日韩欧美精品v在线| 亚洲国产成人一精品久久久| 最新中文字幕久久久久| 高清毛片免费看| 亚洲一级一片aⅴ在线观看| 日本一本二区三区精品| 亚洲内射少妇av| 麻豆一二三区av精品| av在线天堂中文字幕| 白带黄色成豆腐渣| 国语对白做爰xxxⅹ性视频网站| 日本免费在线观看一区| 久久久久网色| 波多野结衣高清无吗| 久久久国产成人精品二区| 欧美日韩精品成人综合77777| 国产乱人偷精品视频| 亚洲18禁久久av| 看片在线看免费视频| 听说在线观看完整版免费高清| 一个人看视频在线观看www免费| 美女内射精品一级片tv| 国产熟女欧美一区二区| 成人av在线播放网站| 日本与韩国留学比较| 欧美成人免费av一区二区三区| 婷婷六月久久综合丁香| 成人美女网站在线观看视频| 最近视频中文字幕2019在线8| 少妇熟女aⅴ在线视频| 嫩草影院新地址| 91aial.com中文字幕在线观看| 亚洲久久久久久中文字幕| 欧美精品国产亚洲| 亚洲成av人片在线播放无| 成人国产麻豆网| 久久精品国产鲁丝片午夜精品| 日日撸夜夜添| 日韩视频在线欧美| 欧美一区二区亚洲| 精品熟女少妇av免费看| 一级av片app|