• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Properties and criterions of spherically convex functions

    2022-03-31 08:54:24ZHANGYinGUOQi

    ZHANG Yin,GUO Qi

    (School of Mathematical Sciences,SUST,Suzhou 215009,China)

    Abstract:In this paper,we studiedthe properties and criterions of spherically convex functions.The continuity of spherically convex functions was confirmed,and two criterions were established,which are the spherical analogues of those for convex functions.The results obtained here enrich the theory on spherically convex functions and contribute to the further study.

    Key words:spherically convex set;spherically convex function;criterion of convexity

    1 Introduction

    The spherical convexity theory,including the study on spherically convex sets,spherically convex functions and their applications,emerged a century ago(see[1-3]and the references therein),however,opposite to the situation in Euclidean convexity,it developed very slowly for a quite long time due to the lack of basic compositions and transformations on spheres.Luckily,the study on spherical convexity starts getting more and more attentions in the last two decades,in particular,the study on spherically convex sets(see[4-10]and the references therein).However,the first clear definition of spherically convex function appeared just last decade([11]),and then another definition was proposed very recently([7,12]).As far as we know,these two definitions are the only ones available in the literature.

    These two definitions are with completely different appearances.Ferreiraet alpresented several criterions for the spherically convex functions defined in[11],which are convenient and useful tools in checking the convexity of functions and in applications.What we would like to point out is that similar criterions for the spherically convex functions defined in[7,12]are not easy to establish.Alike,from the definition given in[7,12],one may derive some spherical analogues of conclusions for Euclidean convex functions,such as the Jensen’s inequality etc,which are hard to obtain from the spherical convexity defined in[11].

    As well known,the criterions for convexities of functions and the generic properties,such as the Jensen inequality of functions etc,are important topics in convex analysis.As mentioned above,the two definitions have their own advantages in different topics.So,to make full use of the advantages of spherically convex functions,we need investigate the relations of these two definitions.Notice that it was mentioned but without proof in[7]that these two definitions are actually equivalent.Thus,in this short article,we will discuss in details some properties,in particular the criterions,of the spherically convex functions,which might play roles in providing a precise argument for the equivalence of these two definitions.

    2 Preliminaries

    Rn,Sn-1denote the Euclideann-space and its unit sphere,respectively.〈·,·〉and||·||denote the usual inner product and the norm induced by||·||on Rn,respectively.The slightly modified radial mapρ:Rn→Sn-1∪{o}is defined byρ(x):=x/||x||forx≠oandρ(o)=o.With the help of the radial map,a spherical addition“+s”on Rnis defined asx+sy:=ρ(x+y),x,y∈Rn,and spherically convex combinations are defined as well byWe writeλx+s(1-λ)ysimply instead of(s)(λx+(1-λ)y).

    Foru∈Sn-1andr∈R,we denote the hyperplaneHu,r:={x∈Rn|〈u,x〉=r},the open half space〈u,x〉>r}and the closed half spacerespectively;By replacing“>”,“≥”with“<”,“≤”respectively,we denotein a similar way.In particular,we write simplyinstead ofHu,0,respectively.We refer to[13-14]for other notation and terms.

    According to the definition of analytic form given in[7,15](equivalent to the popular one used in[5-6,11]),a nonempty setC?Sn-1is called spherically convex(s-convex for brevity)ifλu+s(1-λ)v∈Cwheneveru,v∈C,λ∈[0,1]withλu+s(1-λ)v≠o(equivalentlyλu+(1-λ)v≠o).If furtherCcontains no antipodes,it is called a propers-convex set.Two pointsu,v∈Sn-1are called(a pair of)antipodes ifv=-u.Clearly,u,v∈Sn-1are antipodes if and only if 1/2u+s1/2v=o,and ifu,v∈Sn-1are not antipodal,thenλu+s(1-λ)v≠ofor allλ∈[0,1].For a nonemptyS?Sn-1,the set

    is called the spherically convex hull(s-convex hull for brevity)ofS,which is ans-convex set.

    Foru,v∈Sn-1,the intrinsic distanceds(u,v)between them is defined asds(u,v):=arccos〈u,v〉,i.e.the angle between vectorsu,v([8]).Clearly 0≤ds(u,v)≤π,ds(u,v)=0 if and only ifu=vandds(u,v)=πif and only ifu=-v.It is easy to see that the intrinsic distance is equivalent to the Euclidean one on Sn-1,so the limitu→u0or limu=u0can be understood as eitherds(u,u0)→0 or||u-u0||→0.

    A set of the formV∩Sn-1,whereV?Rnis a 2-dimensional subspace,is called a great-circle.A set of the formis called an open(resp.closed)hemispheredefined in a similar way).The following conclusion was proved in[7,12].

    Proposition 1[7,12]is ans-convex set,thenCis contained in a closed hemisphere;is a proper closeds-convex set,thenCis contained in an open hemisphere.

    A continuously differentiable functionγ:[a,b]→Sn-1,where[a,b]?R is a closed interval,is called a geodesic segment(function)ifγ([a,b])is contained in some great-circle.The numberis defined as the length ofγ.A geodesic segment is called minimal iffor anya≤a1≤b1≤b.If further||γ′(t)||≡1,thenγis called a normalized minimal geodesic segment(see[11]for more details).It is known that for any distinctu,v∈Sn-1,there is a unique normalized minimal geodesic segment

    whereα:=ds(u,v).

    In the following,we recall the definitions of spherically convex functions and their known properties.

    LetC?Sn-1be ans-convex set andf:C→R be a function.fis calleds*-convex if for any minimal geodesic segmentγ:[a,b]→C,the functionf?γ:[a,b]→R is convex(cf.[11]);fis calleds-convex iff(λu+s(1-λ)v)≤λf(u)+(1-λ)f(v)wheneveru,v∈Candλ∈[0,1]withλu+(1-λ)v≠o(cf.[7,12]).

    The properties ofs*-convex functions are discussed in details,and several useful criterions ofs*-convex functions are established in[11],which,however,are hard to establish fors-convex functions.Similarly,[7,12]proved several conclusions fors-convex functions,which,however,are hard to establish fors*-convex functions.Here we collect some conclusions fors-convex functions from[7,12]for the later use.

    Theorem 1(Jensen’s Inequality) LetC?Sn-1be ans-convex set andf:C→R be ans-convex function.Then,

    whenevervi∈C,λi∈[0,1],1≤i≤mwith

    Theorem 2LetC?Sn-1be ans-convex set andf:C→R be ans-convex function.Then,there areu0∈int(coC),(v*,b)∈Rn×R,such that

    From the discussion above,we see that proving the equivalence of these two definitions becomes a valuable topic.So,in Section 3 and 4 we will discuss the properties,in particular,the criterions,ofs-convex functions in the hope to find some clues for dealing with such a topic.

    3 Some properties of s-convex functions

    In this section,we study further the properties ofs-convex functions,starting with the discussion on the continuity ofs-convex functions.Given a function defined in a setS?Sn-1and a pointu0∈E,we say thatfis rela-tively continuous atu0ifholds.Iffis relatively continuous at each point ofS,we say that it is relatively continuous inS.

    Theorem 3LetC?Sn-1be ans-convex set andf:C→R be ans-convex function.Thenfis relatively continuous in riC.

    To prove Theorem 3,we need some more preparations.First,foru,v∈Sn-1withv≠±u,we denote

    Then,we have the following elementary but useful equality revealing the relation betweenγ*uvandγuv.

    Proposition 2Letu,v∈Sn-1withv≠±u.Thenγ*uv(θ)=γuv(t)if and only if

    Proof.Clearlyγ*uv(θ)=γuv(t)if and only ifds(u,γuv(t))=ds(u,γ*uv(θ))(=θ).For brevity,denote

    By an elementary geometric calculation,we see thatds(u,γuv(t))=θif and only if(noticing||u-v||=2sin),

    and in turn

    Lemma 1LetC?Sn-1be ans-convex set with intC≠?andf:C→R be ans-convex function.Then,for eachu∈intC,there areδu>0,Mu,mu∈R such that

    Proof.IfC=Sn-1,thenfis a constant(cf.[7]),and so the conclusion is trivial.Thus,we assumeC≠Sn-1.Letu∈intC.It is easy to see that there are affinely independentv1,v2,…,vn∈Csuch thatu∈int(cos{vi|1≤i≤n}),Denotingwe have by Theorem 1,forw=(s)cos{vi|1≤i≤n},

    On the other hand,by Theorem 2,there areu0∈int(coC),(v*,b)∈Rn×R,such thatf(w)≥〈v*,w-u0〉+bfor allw∈C.Since cos{vi|1≤i≤n}is compact and〈v*,·-u0〉+bis continuous,mu:=min{〈v*,w-u0〉+b|w∈cos{vi|1≤i≤n}}exists.Thus,for

    Now,choosingδu>0 such that,we complete the proof.

    Lemma 2LetC?Sn-1be ans-convex set with intC≠?andf:C→R be ans-convex function.Suppose there areu0,δ,mandMsuch that

    Then

    whereLM,m,δ:=(M-m)/sinδ,i.e.fis Lipschitz-continuous onIn particular,fis continuous atu0.

    Proof.Similarly,we need only to argue for the caseC≠Sn-1(which impliesδ≤π/4 sinceCis now contained in a closed hemisphere by Proposition 1),and we assumeu≠vfor otherwise there is nothing to prove.

    By Proposition 2,u=λw+s(1-λ)vwhere.Thus,by thes-convexity off,

    which leads to

    whereLM,m,δ:=(M-m)/sinδ.Exchanging the roles ofu,v,we havef(v)-f(u)≤LM,m,δds(u,v)as well.Hence

    The proof is completed.

    Proof of Theorem 3Clearly,only the sphere generated byC(i.e.the smallest sphere containingC)is relevant,so we may consider only the case intC≠?.Thus,the conclusion follows from Lemma 1 and Lemma 2. □

    Now,we discuss some other properties ofs-convex functions.LetC?Sn-1be ans-convex set andf:C→R be a function.Then,the sub-level setSr(f)offwith levelris defined as

    The following is a spherical analogue of the conclusion for sub-level sets of an Euclidean convex function.

    Proposition 3LetC?Sn-1be ans-convex set andf:C→R be ans-convex function.Then,each nonempty sub-level setSr(f)is ans-convex set.Moreover,if nonemptySr(f)?riC,thenSr(f)is a closeds-convex set.

    Proof.IfSr(f)≠?,then for anyu,v∈Sr(f)andλ∈[0,1]withλu+(1-λ)v≠o,we have clearly by the definition ofs-convex functions,

    So,λu+s(1-λ)v∈Sr(f)wheneverλu+(1-λ)v≠o.

    The closedness ofSr(f)contained in riCfollows from the continuity offon riCconfirmed by Theorem 3. □

    Remark 1It is easy to find an example to show that the converse of Proposition 3 is not true in general.

    Next theorem shows that,similar to the conclusion for convex functions,a local minimum of ans-convex function is its global minimum.

    Theorem 4LetC?Sn-1be ans-convex set andf:C→R be ans-convex function.If there areu0∈riCand δ>0 such that

    then,f(u0)≤f(u),?u∈C.

    Proof.Suppose there isu1∈Cwithf(u1)<f(u0).Then,for allλ∈[0,1],we have

    Now,choosingλ′∈(0,1)such thatλ′u0+s(1-λ′)u1∈Bs(u0,δ)∩C,we obtain

    a contradiction.The proof is completed.

    4 Criterions of spherically convex functions

    In this section,we present some criterions ofs-convex functions,which are analogues of those of Euclidean convex functions.

    The first one may be viewed as the spherical analogue of the criterion of increasing slopes for convex functions.

    Theorem 5LetC?Sn-1be a propers-convex set andf:C→R ba a function.Thenfiss-convex if and only if,for any distinctu1,u2,u3∈Cwithu2∈(u1,u3)s,

    Proof.Suppose thatfiss-convex and distinctu1,u2,u3∈Cwithu2∈(u1,u3)s.Thenu2=λu1+s(1-λ)u3for someλ∈(0,1).By Proposition 2

    Thus,by thes-convexity off,

    which leads to

    Hence,after simplifying,we have

    Conversely,suppose that(3)holds for any distinctu1,u2,u3∈Cwithu2∈(u1,u3)s.Then we see(2)directly from(3)and in turn(1)from(2).Applying(1)to anyu,uλ,v∈C,whereuλ:=λu+s(1-λ)v,we have by Proposition 2 again,

    So,fiss-convex onC.

    The following criterion can be proved by a similar argument.

    Theorem 6LetC?Sn-1be a propers-convex set andf:C→R ba an function.Thenfiss-convex if and only if,for any distinctu1,u2,u3∈Cwithu2∈(u1,u3)s,

    Final RemarkThis article concerns with the properties of the so-calleds-convex functions defined in[7,12].It is already seen that some conclusions,e.g.,Theorem 3,Proposition 3 and Theorem 4,obtained here are hard to establish for thes*-convex functions defined in[11].Hence,it is indeed valuable to confirm the equivalence ofs-convexity ands*-convexity of a function.Here,as main contributions,Theorem 5 and Theorem 6 give rise to a hope to prove such an equivalence:if one can show that Theorem 5 or Theorem 6 still holds fors*-convex functions,then thes-convexity ands*-convexity are equivalent.We will continue to work on this topic in the future.

    国产av一区在线观看免费| 亚洲久久久国产精品| 国产熟女午夜一区二区三区| 久久久国产成人免费| 手机成人av网站| 精品日产1卡2卡| 别揉我奶头~嗯~啊~动态视频| 午夜精品在线福利| 一级作爱视频免费观看| 欧美黄色淫秽网站| 久久久久久亚洲精品国产蜜桃av| 中文字幕色久视频| 成人亚洲精品av一区二区| 人妻久久中文字幕网| 亚洲国产欧美一区二区综合| 美女免费视频网站| 午夜影院日韩av| 久久香蕉精品热| 老司机午夜福利在线观看视频| 久久中文看片网| 国产av在哪里看| 午夜福利18| 国产一级毛片七仙女欲春2 | 一级,二级,三级黄色视频| 国产精品一区二区精品视频观看| 亚洲精品国产一区二区精华液| 免费看十八禁软件| 色在线成人网| 黄网站色视频无遮挡免费观看| 丁香六月欧美| 午夜亚洲福利在线播放| 亚洲精品一卡2卡三卡4卡5卡| 黄频高清免费视频| 变态另类成人亚洲欧美熟女 | 变态另类成人亚洲欧美熟女 | 人人澡人人妻人| 国产不卡一卡二| 国产精品亚洲av一区麻豆| 丁香欧美五月| 亚洲成a人片在线一区二区| 在线观看免费视频网站a站| 午夜福利高清视频| 老司机深夜福利视频在线观看| 亚洲av电影不卡..在线观看| 男女之事视频高清在线观看| 18禁国产床啪视频网站| 亚洲中文字幕一区二区三区有码在线看 | 身体一侧抽搐| 国产视频一区二区在线看| 久久 成人 亚洲| 91大片在线观看| 精品一区二区三区av网在线观看| 免费在线观看日本一区| 在线观看舔阴道视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美激情综合另类| 亚洲五月天丁香| 如日韩欧美国产精品一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成国产人片在线观看| 色综合欧美亚洲国产小说| 色综合欧美亚洲国产小说| 九色国产91popny在线| 国产亚洲精品综合一区在线观看 | 后天国语完整版免费观看| 成年人黄色毛片网站| 精品无人区乱码1区二区| av天堂久久9| 脱女人内裤的视频| 精品国内亚洲2022精品成人| 国产精品 国内视频| 男人舔女人的私密视频| 高潮久久久久久久久久久不卡| 一级,二级,三级黄色视频| 黑丝袜美女国产一区| 黄色视频不卡| 精品福利观看| 少妇的丰满在线观看| 国产一区二区激情短视频| 午夜福利免费观看在线| 国产精品 国内视频| 久久久精品国产亚洲av高清涩受| 国产av一区在线观看免费| av电影中文网址| 少妇粗大呻吟视频| 久久精品aⅴ一区二区三区四区| videosex国产| 久久久久九九精品影院| 亚洲成a人片在线一区二区| 夜夜夜夜夜久久久久| 亚洲成av人片免费观看| 精品熟女少妇八av免费久了| 久久久久国产一级毛片高清牌| 亚洲天堂国产精品一区在线| 在线观看舔阴道视频| 变态另类成人亚洲欧美熟女 | 欧美人与性动交α欧美精品济南到| 两人在一起打扑克的视频| 国产激情久久老熟女| 99国产精品99久久久久| 国产免费男女视频| 动漫黄色视频在线观看| 欧美日本亚洲视频在线播放| 99热只有精品国产| 亚洲一卡2卡3卡4卡5卡精品中文| 丝袜美足系列| avwww免费| 1024视频免费在线观看| xxx96com| 亚洲美女黄片视频| 午夜福利在线观看吧| 国产aⅴ精品一区二区三区波| 亚洲 欧美 日韩 在线 免费| 国产一区二区在线av高清观看| 国产麻豆成人av免费视频| 国产精品亚洲美女久久久| 国产精品久久久av美女十八| 一边摸一边抽搐一进一小说| 欧美最黄视频在线播放免费| 97碰自拍视频| 母亲3免费完整高清在线观看| 国产片内射在线| 国产99白浆流出| 亚洲精品美女久久av网站| 18禁黄网站禁片午夜丰满| 国产亚洲精品av在线| 一级a爱片免费观看的视频| 日韩av在线大香蕉| 国产99久久九九免费精品| 午夜福利高清视频| 夜夜爽天天搞| 国产1区2区3区精品| 久久久久亚洲av毛片大全| 少妇裸体淫交视频免费看高清 | 久久精品国产亚洲av高清一级| 精品午夜福利视频在线观看一区| 欧美激情久久久久久爽电影 | 可以在线观看毛片的网站| 999久久久国产精品视频| 香蕉丝袜av| 日本在线视频免费播放| 亚洲专区中文字幕在线| 国产伦人伦偷精品视频| 国产激情久久老熟女| 激情视频va一区二区三区| 久久久久久国产a免费观看| 欧美在线黄色| 日韩av在线大香蕉| 国产aⅴ精品一区二区三区波| 国产精品综合久久久久久久免费 | 啦啦啦观看免费观看视频高清 | 多毛熟女@视频| 激情视频va一区二区三区| 久久久久久大精品| 天堂影院成人在线观看| 精品人妻1区二区| av网站免费在线观看视频| 精品久久久久久久久久免费视频| 亚洲精品一区av在线观看| 搡老妇女老女人老熟妇| 国产99久久九九免费精品| 亚洲自拍偷在线| 在线观看午夜福利视频| av电影中文网址| 国产精品久久久人人做人人爽| 国产成人影院久久av| 久久伊人香网站| 少妇粗大呻吟视频| 亚洲国产欧美一区二区综合| 亚洲色图综合在线观看| 美女大奶头视频| 久久久久久久久久久久大奶| 夜夜躁狠狠躁天天躁| 神马国产精品三级电影在线观看 | 欧美日韩中文字幕国产精品一区二区三区 | 国内精品久久久久久久电影| 757午夜福利合集在线观看| 两个人免费观看高清视频| 麻豆av在线久日| 国产成人av激情在线播放| 国产三级在线视频| 精品欧美国产一区二区三| 国产成+人综合+亚洲专区| av视频免费观看在线观看| 69精品国产乱码久久久| 少妇 在线观看| 亚洲精品粉嫩美女一区| 国内久久婷婷六月综合欲色啪| 黄色 视频免费看| 日韩欧美免费精品| 人妻丰满熟妇av一区二区三区| 亚洲少妇的诱惑av| 两性夫妻黄色片| 9191精品国产免费久久| 国产蜜桃级精品一区二区三区| 女警被强在线播放| 亚洲欧美激情在线| 黄频高清免费视频| 成人欧美大片| 欧美在线黄色| 国产精品秋霞免费鲁丝片| 一二三四在线观看免费中文在| 在线天堂中文资源库| 欧美黄色淫秽网站| 午夜福利高清视频| 在线观看免费日韩欧美大片| www日本在线高清视频| 免费高清视频大片| 正在播放国产对白刺激| 天天躁狠狠躁夜夜躁狠狠躁| 99在线视频只有这里精品首页| 女性被躁到高潮视频| АⅤ资源中文在线天堂| av天堂久久9| 涩涩av久久男人的天堂| 可以在线观看的亚洲视频| 曰老女人黄片| 淫秽高清视频在线观看| 精品久久久久久久久久免费视频| 国产精品香港三级国产av潘金莲| 免费搜索国产男女视频| 欧美大码av| 夜夜看夜夜爽夜夜摸| 中文字幕另类日韩欧美亚洲嫩草| 成人欧美大片| 深夜精品福利| 国产成人啪精品午夜网站| ponron亚洲| 亚洲欧美一区二区三区黑人| 色综合婷婷激情| 国产高清激情床上av| 欧美乱妇无乱码| 国产伦一二天堂av在线观看| 在线天堂中文资源库| 狂野欧美激情性xxxx| 一边摸一边做爽爽视频免费| 久久久久久国产a免费观看| 国产精品永久免费网站| 无遮挡黄片免费观看| 制服诱惑二区| 亚洲欧美日韩另类电影网站| 丝袜美腿诱惑在线| 免费一级毛片在线播放高清视频 | 日韩欧美国产在线观看| 欧美在线黄色| 日韩一卡2卡3卡4卡2021年| 在线观看免费视频日本深夜| 亚洲七黄色美女视频| 免费观看精品视频网站| 亚洲精品久久成人aⅴ小说| 夜夜爽天天搞| 91九色精品人成在线观看| 久热这里只有精品99| 操出白浆在线播放| 一级a爱视频在线免费观看| 亚洲av电影在线进入| 欧美大码av| 欧美+亚洲+日韩+国产| 欧美成人一区二区免费高清观看 | 中国美女看黄片| 50天的宝宝边吃奶边哭怎么回事| 搡老岳熟女国产| 午夜精品在线福利| 激情在线观看视频在线高清| 叶爱在线成人免费视频播放| 淫妇啪啪啪对白视频| 国产精品久久久av美女十八| aaaaa片日本免费| 久久精品91蜜桃| 日日干狠狠操夜夜爽| 看片在线看免费视频| 午夜福利欧美成人| 波多野结衣一区麻豆| 亚洲国产精品合色在线| 黄色视频,在线免费观看| 亚洲欧美精品综合久久99| 悠悠久久av| 母亲3免费完整高清在线观看| 看片在线看免费视频| 18禁国产床啪视频网站| 婷婷丁香在线五月| 亚洲 国产 在线| 亚洲精华国产精华精| 精品高清国产在线一区| 天堂√8在线中文| 国产成人啪精品午夜网站| 黑人巨大精品欧美一区二区蜜桃| 亚洲人成电影免费在线| 少妇粗大呻吟视频| 一级作爱视频免费观看| 成人特级黄色片久久久久久久| 大陆偷拍与自拍| 久久人妻av系列| 99国产极品粉嫩在线观看| 嫁个100分男人电影在线观看| 国产精品乱码一区二三区的特点 | 少妇熟女aⅴ在线视频| 亚洲精品美女久久久久99蜜臀| 欧洲精品卡2卡3卡4卡5卡区| 欧美日本亚洲视频在线播放| 电影成人av| netflix在线观看网站| 国产精品,欧美在线| 大码成人一级视频| 日本五十路高清| 一级作爱视频免费观看| 妹子高潮喷水视频| 日日干狠狠操夜夜爽| 精品国产国语对白av| АⅤ资源中文在线天堂| 啦啦啦韩国在线观看视频| 亚洲视频免费观看视频| 日韩欧美在线二视频| 日本欧美视频一区| 老司机福利观看| 亚洲少妇的诱惑av| 夜夜夜夜夜久久久久| 欧美一区二区精品小视频在线| 青草久久国产| 不卡一级毛片| 午夜精品在线福利| 亚洲 欧美 日韩 在线 免费| 国产精华一区二区三区| 亚洲熟女毛片儿| 母亲3免费完整高清在线观看| 亚洲最大成人中文| 大型av网站在线播放| 国产精品亚洲美女久久久| 99精品欧美一区二区三区四区| 91麻豆av在线| 波多野结衣高清无吗| 久9热在线精品视频| 成人国产综合亚洲| 天天添夜夜摸| 精品国产国语对白av| 国产一区二区在线av高清观看| 亚洲情色 制服丝袜| 纯流量卡能插随身wifi吗| 国产av精品麻豆| 777久久人妻少妇嫩草av网站| 欧美日韩瑟瑟在线播放| 婷婷精品国产亚洲av在线| 亚洲成av片中文字幕在线观看| 大香蕉久久成人网| 久久伊人香网站| 国产精品1区2区在线观看.| 91精品三级在线观看| 女人精品久久久久毛片| 精品福利观看| 亚洲av成人av| 精品日产1卡2卡| 亚洲一区二区三区色噜噜| 午夜福利免费观看在线| 人妻久久中文字幕网| 国产高清视频在线播放一区| 中文字幕另类日韩欧美亚洲嫩草| 国产av一区在线观看免费| 12—13女人毛片做爰片一| 欧美激情高清一区二区三区| 国产在线精品亚洲第一网站| 91成人精品电影| 亚洲人成电影观看| 无限看片的www在线观看| 十八禁网站免费在线| 亚洲成国产人片在线观看| 成人av一区二区三区在线看| 一边摸一边抽搐一进一小说| 美女国产高潮福利片在线看| 91成年电影在线观看| 成熟少妇高潮喷水视频| 中文字幕人成人乱码亚洲影| 色综合欧美亚洲国产小说| 99re在线观看精品视频| www.精华液| avwww免费| 法律面前人人平等表现在哪些方面| 国产精品久久久av美女十八| 成人三级做爰电影| 在线永久观看黄色视频| 精品久久久久久久久久免费视频| 啦啦啦 在线观看视频| 日日摸夜夜添夜夜添小说| 国产黄a三级三级三级人| 日日摸夜夜添夜夜添小说| 女性生殖器流出的白浆| netflix在线观看网站| 叶爱在线成人免费视频播放| 欧美激情久久久久久爽电影 | 韩国av一区二区三区四区| 一个人免费在线观看的高清视频| 国产亚洲精品综合一区在线观看 | 久久久水蜜桃国产精品网| 亚洲欧美日韩高清在线视频| 视频区欧美日本亚洲| 91在线观看av| 国产成人精品久久二区二区91| 欧美日韩瑟瑟在线播放| 免费看十八禁软件| 999精品在线视频| 精品熟女少妇八av免费久了| 女人高潮潮喷娇喘18禁视频| 色综合欧美亚洲国产小说| 一区福利在线观看| 日韩欧美国产在线观看| 午夜免费观看网址| 中文字幕色久视频| 夜夜看夜夜爽夜夜摸| 成人永久免费在线观看视频| 国产真人三级小视频在线观看| 桃红色精品国产亚洲av| 又黄又粗又硬又大视频| 亚洲久久久国产精品| 夜夜夜夜夜久久久久| 色哟哟哟哟哟哟| 夜夜爽天天搞| 欧美性长视频在线观看| 亚洲第一青青草原| 国产欧美日韩一区二区精品| 女人爽到高潮嗷嗷叫在线视频| 精品国产美女av久久久久小说| 亚洲成a人片在线一区二区| 精品一区二区三区视频在线观看免费| 狠狠狠狠99中文字幕| 看黄色毛片网站| 99热只有精品国产| 欧美国产日韩亚洲一区| 99国产极品粉嫩在线观看| 精品欧美国产一区二区三| 在线观看66精品国产| 91麻豆精品激情在线观看国产| 一级作爱视频免费观看| 欧美不卡视频在线免费观看 | 久久草成人影院| 女人被躁到高潮嗷嗷叫费观| 中国美女看黄片| 岛国在线观看网站| 亚洲性夜色夜夜综合| 亚洲 欧美一区二区三区| 国产一卡二卡三卡精品| 精品欧美一区二区三区在线| 国产亚洲精品久久久久久毛片| 色综合站精品国产| 精品午夜福利视频在线观看一区| 国产男靠女视频免费网站| 国产麻豆成人av免费视频| 老熟妇仑乱视频hdxx| 如日韩欧美国产精品一区二区三区| 女同久久另类99精品国产91| 亚洲av电影在线进入| 免费观看精品视频网站| 国产成年人精品一区二区| 9色porny在线观看| 婷婷精品国产亚洲av在线| www.www免费av| 又黄又爽又免费观看的视频| АⅤ资源中文在线天堂| 亚洲国产精品久久男人天堂| 成人三级黄色视频| 极品人妻少妇av视频| 国产高清视频在线播放一区| 日韩欧美在线二视频| 欧美av亚洲av综合av国产av| 午夜成年电影在线免费观看| www.999成人在线观看| 看片在线看免费视频| 搡老妇女老女人老熟妇| 午夜两性在线视频| 精品国产一区二区久久| av欧美777| 精品一区二区三区av网在线观看| 久久久精品欧美日韩精品| 超碰成人久久| 大香蕉久久成人网| av中文乱码字幕在线| 国产亚洲欧美精品永久| 天堂动漫精品| 丝袜美足系列| 国产精品 国内视频| 久久久久久免费高清国产稀缺| 精品一区二区三区四区五区乱码| 一区福利在线观看| 欧美最黄视频在线播放免费| 亚洲av第一区精品v没综合| 国产亚洲精品久久久久久毛片| 可以在线观看的亚洲视频| 国产在线观看jvid| 久久人人爽av亚洲精品天堂| 天天添夜夜摸| 一级黄色大片毛片| 午夜老司机福利片| 一区二区日韩欧美中文字幕| 中文字幕久久专区| 欧美激情高清一区二区三区| 国产亚洲精品久久久久久毛片| 无人区码免费观看不卡| 国产主播在线观看一区二区| 一级毛片精品| 日韩av在线大香蕉| 一进一出抽搐gif免费好疼| 精品无人区乱码1区二区| 日韩精品免费视频一区二区三区| 欧美最黄视频在线播放免费| 欧美成人性av电影在线观看| 欧美亚洲日本最大视频资源| 午夜精品久久久久久毛片777| 悠悠久久av| 99香蕉大伊视频| 老熟妇仑乱视频hdxx| 国产精品美女特级片免费视频播放器 | 成人18禁在线播放| 国产精品久久久人人做人人爽| 午夜福利成人在线免费观看| 男人舔女人下体高潮全视频| 久久伊人香网站| 少妇被粗大的猛进出69影院| 成人国语在线视频| 午夜两性在线视频| 美女免费视频网站| 午夜福利高清视频| 精品免费久久久久久久清纯| 级片在线观看| 日本五十路高清| 免费人成视频x8x8入口观看| 精品久久久久久久久久免费视频| 国产欧美日韩一区二区三区在线| 国产伦人伦偷精品视频| 制服人妻中文乱码| 乱人伦中国视频| 免费人成视频x8x8入口观看| 免费在线观看日本一区| 久久国产精品男人的天堂亚洲| 亚洲色图 男人天堂 中文字幕| 欧美乱色亚洲激情| 国产主播在线观看一区二区| 国产成人一区二区三区免费视频网站| 国产精品98久久久久久宅男小说| 19禁男女啪啪无遮挡网站| 性少妇av在线| 国产精品免费视频内射| 久久精品国产清高在天天线| 亚洲人成伊人成综合网2020| 久久欧美精品欧美久久欧美| 非洲黑人性xxxx精品又粗又长| 日本五十路高清| 国内久久婷婷六月综合欲色啪| 91成年电影在线观看| 一级黄色大片毛片| 两人在一起打扑克的视频| 欧美黑人精品巨大| 在线国产一区二区在线| 一个人观看的视频www高清免费观看 | 亚洲中文日韩欧美视频| 色精品久久人妻99蜜桃| 乱人伦中国视频| 亚洲第一电影网av| 大陆偷拍与自拍| 日韩中文字幕欧美一区二区| 欧美丝袜亚洲另类 | 精品久久久久久成人av| 国产一区二区在线av高清观看| 亚洲国产精品合色在线| 可以在线观看的亚洲视频| 久热这里只有精品99| 精品卡一卡二卡四卡免费| a在线观看视频网站| 人人妻人人澡欧美一区二区 | 亚洲性夜色夜夜综合| 亚洲熟女毛片儿| 狂野欧美激情性xxxx| АⅤ资源中文在线天堂| 欧美日韩精品网址| 三级毛片av免费| 1024香蕉在线观看| 美国免费a级毛片| 欧美成狂野欧美在线观看| 搡老岳熟女国产| 中文字幕av电影在线播放| cao死你这个sao货| 日韩欧美国产一区二区入口| 成人18禁高潮啪啪吃奶动态图| 国产伦人伦偷精品视频| 久久久久久人人人人人| 在线播放国产精品三级| 91av网站免费观看| 老汉色∧v一级毛片| 色av中文字幕| 成人免费观看视频高清| 亚洲人成网站在线播放欧美日韩| 久久久久久亚洲精品国产蜜桃av| www.999成人在线观看| 亚洲色图av天堂| 欧美人与性动交α欧美精品济南到| 日本 av在线| 国产成人精品久久二区二区免费| 日韩大码丰满熟妇| 99国产极品粉嫩在线观看| 久久午夜综合久久蜜桃| 少妇裸体淫交视频免费看高清 | www国产在线视频色| 免费在线观看完整版高清| 欧美精品啪啪一区二区三区| 人人妻人人澡人人看| 在线免费观看的www视频| 久久久久国产精品人妻aⅴ院| 欧美人与性动交α欧美精品济南到| 久久精品国产亚洲av香蕉五月| 国产亚洲精品综合一区在线观看 | 亚洲黑人精品在线| 日本五十路高清| 人妻丰满熟妇av一区二区三区| av超薄肉色丝袜交足视频| 午夜福利18| 久久 成人 亚洲| 大香蕉久久成人网| 午夜a级毛片|