• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Charge effects on quinoline hydrodenitrogenation catalyzed by Ni-Mo-S active sites-A theoretical study by DFT calculation

    2022-03-30 13:52:42SiJiDingShoZhongPengZuoJieYnJiFengWngShuJioJingZhnLinYng
    Petroleum Science 2022年1期

    Si-Ji Ding ,Sho-Zhong Peng ,Zuo-Jie Yn ,Ji-Feng Wng ,Shu-Jio Jing ,Zhn-Lin Yng ,*

    a Dalian Research Institute of Petroleum and Petrochemicals,SINOPEC,Dalian,116041,China

    b Fushun Petrochemical Company,Fushun,Liaoning,113001,China

    Keywords:Charge distribution Ni-Mo-S active Sites Quinoline Hydrodenitrogenation Quantum chemistry calculation

    ABSTRACT The charge distribution on Ni-Mo-S active sites can affect hydrodenitrogenation (HDN) activity.In this study,a series of model Ni-Mo-S were developed with various charge distributions.For comparison,the charge distribution effects on quinoline HDN were studied.The results show that a lack of electrons and extra protons can both lower the orbital eigenvalue of the Ni-Mo-S,leading to stronger adsorption of nitrogen-containing compounds and inhibition of ammonia desorption.Electron deficiency will improve the generation of active hydrogen on the active sites but inhibit hydrogen transfer to the nitrogen compounds;extra protons can provide H+ to the nitrogen compounds,which will flexibly transfer between the nitrogen compound and active sites,thus improving the cleavage of the C-N bond.

    1.Introduction

    With the adjusted energy structure and change in the supplydemand relationship,the production capacity of fossil fuels in the petrochemical industry is decreasing gradually,while the production capacity of chemical raw materials must be urgently strengthened.Hydrocracking technology is an important process for the petrochemical industry to convert distillates into chemical raw materials(Bezergianni et al.,2009;Choudhary and Saraf,1975;Kseo;lu and Phillips,1987;Scherzer Jg,1996).In general,hydrocracking catalysts contain acidic zeolites as the cracking center(Ali et al.,2002;Martens et al.,2001;Speight,2020;Zhang et al.,2007),and the nitrogen contents,particularly the basic nitrogen compounds in the cracking feedstock,are strictly limited.To remove the nitrogen compounds in the feedstock,a hydrocracking pretreatment catalyst is required in the hydrocracking process(Badoga et al.,2020;Kohli et al.,2019;Oh et al.,2019;Prada Silvy et al.,2019).

    The prevailing commercial pretreatment catalysts are highly active Mo-Ni bimetal γ-alumina-supported hydrotreating catalysts.Strong acidic supports and electronegative elements can significantly improve the removal of nitrogen compounds(Hu et al.,2019;Tung et al.,2017;Valles et al.,2019;Yao et al.,2017;Tang et al.,2017).These prompters could cause electron deficiency or bring extra protons to the Ni-Mo-S active nanoclusters via inductive effects or charge transfer(Prins et al.,1997;Tominaga and Nagai,2010).With the rapid development of computer technology and the progress of quantum chemical calculations,theoretical calculations of complex catalytic processes,such as charge distribution effects on hydrodenitrogenation,can be implemented.

    In this study,quinoline,which is a typical basic two-ring nitrogen compound for hydrodenitrogenation (HDN) research (Li et al.,2012;Lu et al.,2007),is used as the probe,and a series of model Ni-Mo-S with different charge distributions are used as the active sites.The key processes of quinoline HDN,including adsorption,hydrogenation saturation,and C-N bond cleavage on the Ni-Mo-S,are calculated by quantum chemistry calculations.

    2.Modeling and computational methods

    The neutral Ni-Mo-S model in this study was a hexagonal single-layer nanocluster.The stable state of the Ni-Mo-S active sites under the hydrogenation reaction is shown in Fig.1 (Ding et al.,2018a).Previous studies have shown that on the Ni(Co)-Mo-S or MoS2,the hydrogenolysis active centers are mainly located on the(10-10)plane,denoted as the Ni(Co)-Mo edge(Ding et al.,2017a,2017b,2018a,b;Sun et al.,2004;Sylvain et al.,2004).In this study,the issues of quinoline HDN are focused on the Ni-Mo edge of the Ni-Mo-S active sites.Considering the symmetry of the calculation model,in the electron deficiency case,three pairs of electrons were subtracted from the Ni-Mo-S,and the model is denoted as E-Ni-Mo-S.For additional protons,one proton was added to each Ni-Mo edge,and the model was denoted as P-Ni-Mo-S.

    List of symbols

    EadAdsorption energy

    LbBond length

    OmMayer bond order

    ErReaction Energy

    EaActivation Energy

    Calculations were performed using the DMol3 code.The calculation function is the general gradient approximation-Perdew-Burke-Ernzerhof function,and the basis set is a double numerical plus polarization basis(Chigo Anota and Cocoletzi,2014;Delley and B.1982).To analyze the transition state,the open shell mode was used to treat the electron spin.The symmetry in the calculation was also canceled to meet the anisotropy in the HDN process.The orbital cut off is unified to 5.0 ? for every atom.To balance the calculation speed and accuracy,the effective core potential (ECP)method was used to simplify the core electron treatment,and thermal smearing was set to 5 × 10-4Hartree.The self-consistent field density convergence (SCF) was set to 2 × 10-5,and the energy tolerance for the geometry optimization and transition state was 2 × 10-5Hartree.The force tolerance was 4 × 10-3Ha/? geometry optimization and 3 × 10-3Ha/? for the transition search.The Grimme 06 correction method was used to calculate the atomic dispersion.The exchange-correlation dependent factors6was set to 1.0,and the damping coefficient was set to 20.0.The dispersion parameters for the atoms involved in this calculation can be found in Table 1 (Grimme,2010,2011).

    Table 1 Atomic dispersion parameters.

    During the process of HDN,the adsorption of reactants on the active sites relies on the interactions between the lone or conjugated electron pairs of the reactants and the unoccupied molecular orbitals of the active sites.According to acid-base theory,E-Ni-Mo-S can protonate basic nitrogen compounds.The changes in molecular orbitals before and after the protonation of quinoline (Q),tetrahydroquinoline (THQ),and decahydroquinoline (DHQ) (THQ and DHQ are important intermediates in the hydrodenitrogenation process of quinoline (Luan et al.,2009) and are shown in Table 2.The highest occupied molecular orbital (HOMO) of nonprotonated basic nitrogen compounds is mainly contributed by the lone pair electrons on the nitrogen atoms.When the nitrides are protonated by E-Ni-Mo-S,the lone pair electrons of atoms combine with H+.The newly generated HOMO has barely related to the nitrogen atoms,and the orbital eigenvalue is significantly reduced.This change will weaken the binding ability between the active center and the nitrogen compounds.

    The effects of charge distributions on the lowest unoccupied molecular orbital (LUMO) are shown in Table 3.On the neutral Ni-Mo edge,the LUMO is attributed to the d orbital of the tetracoordinated Ni atom and the pentacoordinated Mo atom with S atoms.The LUMO eigenvalue is -4.53 eV.On the E-Ni-Mo-S,the composition and morphology of the LUMO orbitals do not change much,and they still consist of unoccupied d orbitals from aligned metal atoms.However,the LUMO eigenvalue significantly decreases to-8.20 eV.On the P-Ni-Mo edge,the H+bonds are stably coordinated with the pentacoordinated Mo atom,which is near the exposed Ni atom.This combination will satisfy the stable hexacoordination of the Mo atom.The Ni atom close to H+will be more electron deficient,leading to a reduction in the LUMO eigenvalue.It could be concluded that both the lack of electrons and the extra protons will lower the LUMO eigenvalue and enhance the ability of receiving electrons from the reactants.

    Fig.1.Ni-Mo-S nanocluster model (a) front view of the nanocluster,(b) lateral view of the (10-10) plane and (c) lateral view of the (-1010) plane.

    2.1.Effects of charge distribution on the adsorption of nitrogen compounds

    During the HDN process,the reactant,some important intermediates and the ammonia have strong adsorption ability on the active centers.The calculation results of the adsorption of Q,THQ,DHQ and NH3on Ni-Mo-edge affected by different charge distributions are shown in Table 4.On the neutral Ni-Mo-S,the formation of the nitrogen compounds adsorption is point to point.Specifically,the nitrogen atom of Q,THQ and DHQ bonded with nickel atom,forming an N-Ni bond with 2.2-2.3 ? and 0.3-0.4 Mayer bond order.The nitrogen atom of NH3prefers to bond with Mo atoms.The bond direction is in accord with the orientation of the LUMO morphology listed in Table 2.Because of the similarity of LUMO morphology,the adsorption morphology of the nitrogen compounds on the E-Ni-Mo-S and Ni-Mo-S active sites are similar as well,whereas the significant difference is the adsorption energy.The adsorption energies of nitrogen compounds on E-Ni-Mo-S are approximately 20-30 larger than those on the neutral Ni-Mo-S.When the nitrogen compounds adsorb on the P-Ni-Mo-S active sites,the H+will transfer to the nitrogen,combing with the long pair electrons.The adsorption of nitrogen compounds will turn to flat model without forming the N-Ni bond.Despite the lacking of the single strong chemisorption bonds,the weak interaction between the conjugate π-electrons and the unoccupied orbitals the extra dispersion force from the increasing contact area both enlarge the adsorption energy.According to the calculation results,both the electron deficiency and the extra proton will enhance the adsorption of nitrogen compounds on the Ni-Mo-edge,whereas the ammonia desorption is inhibited which is negative to the recovery of the active center during the HDN process.

    2.2.Effects of charge distributions on the hydrogen activation and transfer

    On the Ni-Mo edge,hydrogen activation is carried out by H2molecule dissociation on the metal or sulfur atom.Hydrogen dissociation with adsorption of a quinoline molecule was calculated,and the results are shown in Table 5.On the Ni-Mo edge of neutral Ni-Mo-S,hydrogen dissociation is a strong endothermic step with a high energy barrier.At the corresponding position of ENi-Mo-S,this dissociation is an obvious exothermic process,and the activation energy significantly decreases to 108.51 kJ/mol.On the P-Ni-Mo-S,the thermal effects and activation energy charge were less significant than those on E-Ni-Mo-S.It could be predicted that electron deficiency will promote hydrogen dissociation.

    The newly generated active hydrogen must transfer to the nitrogen compounds quickly in the case of self-combination.Among the several hydrogen transfers of quinoline HDN,the conversion from THQ to penta-hydroquinoline (PHQ) is a key speed control step (Ding et al.,2017;Jian and Prins,1998).This elementary reaction on the Ni-Mo edge with different charge distributions is shown in Table 6.The active hydrogen breaks the conjugated aromatic rings.The reaction energy is up to 40-70 kJ/mol,and the activation energy exceeds 100 kJ/mol.In comparison,hydrogen transfer on neutral Ni-Mo-S is relatively easier and most difficult on E-Ni-Mo-S.The difficulty of hydrogen transfer is adverse to hydrogen dissociation,indicating that the stronger the interaction between the hydrogen and active sites,the easier the hydrogen dissociation and the harder the hydrogen transfer.

    2.3.Effects of charge distributions on the C-N cleavage of nitrogen compounds

    For quinoline,the main pathway of C-N bond cleavage is the E2elimination of DHQ.This process contains two elementary steps:the first step is hydrogen elimination of β-C,forming nonahydroquinoline,and the second step is cleavage of the C-N bond,forming a C=C bond and amino group (Li et al.,2012).Table 7 shows the elimination of the β-H of DHQ on Ni-Mo-edges with different acid types.According to the calculated results,the transfer of β-H to the active sites is an endothermic process with high activation energy.During this step,the S accepts the hydrogen atom,and the β-C atom bonds with the Mo atom.The influence of the charge distribution is limited,whereas the H+provided by B-Ni-Mo-S returns to the active sites,and the reaction energy and activation energy both decrease.The C-N bond cleavage of NHQ is shown in Table 8.The results show that the C-N break on the neutral Ni-Mo-S is a strong endothermic step with very high energy barrier.Meanwhile,the C-N bond cleaves the newly generated C=C bonds attached with the Mo atom.The electron deficiency on Ni-Mo-S does not change the pathway of C-N bond cleavage,and the influence is quite limited.Attributable to thestronger adsorption ability of the LUMO,the energy barrier decreased by approximately 10 kJ/mol on the E-Mo-Ni-S.Notably,on the P-Ni-Mo-S,the proton transferred to the Ni-Mo-edge in the elimination step returns back to nitrogen compounds during C-N bond cleavage.The proton not only lowers the electron density but also increases the coordination of the N atom,leading to a more stable transition state of C-N bond cleavage.The activation energy decreased by approximately 40 kJ/mol,indicating thatflexible H+transfer between the nitrogen compounds and the active center significantly lowered the C-N bond cleavage in the HDN of quinoline.

    Table 4 Adsorption of Q,THQ and DHQ on the Ni-Mo-edge with different charge distributions.

    Table 5 Hydrogen dissociation with adsorbing quinoline.

    Table 6 Hydrogen transfer from THQ to PHQ on Ni-Mo-edge with charge distributions.

    Table 7 Hydrogen elimination of DHQ β-C.

    Table 8 C-N bond cleavage of NHQ.

    3.Conclusions

    In this study,the HDN catalytic activities of Ni-Mo-S with different charge distributions are calculated.The conclusions are as follows:

    1.Electron deficiency and extra protons could both lower the LUMO eigenvalue of Ni-Mo-S.The effects of electron deficiency on the morphology are limited,whereas extra protons could change the local morphology of LUMO.

    2.Electron deficiency and extra protons could both enhance the adsorption ability of Ni-Mo-S active sties to nitrogen compounds.On neutral Ni-Mo-S and E-Ni-Mo-S,the nitrogen compounds adsorb via the chemisorption N-Ni bond,whereas on P-Ni-Mo-S,the nitrogen compounds take flat adsorption.However,ammonia desorption is inhibited by electron deficiency and extra protons during the HDN process.

    3.Electron deficiency on N-Mo-S promotes the generation of active hydrogen but restricts hydrogen transfer to nitrogen compounds.

    4.During C-N bond cleavage,the proton of P-Ni-Mo-S can flexibly transfer between the nitrogen compounds and the active sites.In this way,the cleavage of C-N is significantly promoted.

    Acknowledgments

    The authors acknowledge the financial support from the Sinopec Science and Technology Department (Grant No.121014-1).

    国产视频首页在线观看| 男男h啪啪无遮挡| 偷拍熟女少妇极品色| 一区二区三区四区激情视频| 一二三四中文在线观看免费高清| 午夜福利视频精品| 欧美zozozo另类| 免费观看的影片在线观看| 亚洲成人久久爱视频| 亚洲成人一二三区av| 在线亚洲精品国产二区图片欧美 | 99re6热这里在线精品视频| 久久久久久久久久久免费av| 亚洲第一区二区三区不卡| 国产免费福利视频在线观看| 亚洲精品aⅴ在线观看| 欧美日韩精品成人综合77777| 一级片'在线观看视频| 丰满乱子伦码专区| 一区二区三区四区激情视频| 插阴视频在线观看视频| 热99国产精品久久久久久7| 五月天丁香电影| 中文乱码字字幕精品一区二区三区| 色婷婷久久久亚洲欧美| 男人狂女人下面高潮的视频| 丝袜喷水一区| 人妻一区二区av| 伊人久久精品亚洲午夜| 欧美xxⅹ黑人| 国产午夜福利久久久久久| 亚洲在线观看片| 免费观看在线日韩| 尾随美女入室| 成人午夜精彩视频在线观看| 国产欧美日韩一区二区三区在线 | 日韩制服骚丝袜av| 亚洲欧美日韩无卡精品| 神马国产精品三级电影在线观看| 亚洲一级一片aⅴ在线观看| 亚洲色图综合在线观看| 一级黄片播放器| 亚洲精品乱码久久久v下载方式| 久热这里只有精品99| 国产一区二区三区综合在线观看 | 一级爰片在线观看| 欧美日本视频| 日本免费在线观看一区| 久久国产乱子免费精品| 国产成人精品婷婷| 美女xxoo啪啪120秒动态图| 好男人视频免费观看在线| 婷婷色av中文字幕| 精品视频人人做人人爽| 国产成人精品福利久久| 永久免费av网站大全| 国内少妇人妻偷人精品xxx网站| 欧美亚洲 丝袜 人妻 在线| 亚洲欧洲国产日韩| 欧美另类一区| 亚洲国产精品成人综合色| 最近手机中文字幕大全| 美女高潮的动态| videos熟女内射| 日韩成人伦理影院| 国产男女超爽视频在线观看| 久久精品人妻少妇| 免费av毛片视频| 亚洲精品久久午夜乱码| 久久精品国产亚洲av天美| 99久久九九国产精品国产免费| 亚洲熟女精品中文字幕| 美女内射精品一级片tv| 欧美一级a爱片免费观看看| 免费观看在线日韩| av一本久久久久| 久久人人爽人人片av| 亚洲精品一二三| 亚洲一区二区三区欧美精品 | 国产成人一区二区在线| 联通29元200g的流量卡| 国产极品天堂在线| 一区二区三区四区激情视频| 久久久a久久爽久久v久久| 日本免费在线观看一区| 91久久精品国产一区二区三区| 久久久久国产精品人妻一区二区| 国产成人一区二区在线| 亚洲av成人精品一二三区| 国产精品久久久久久av不卡| 一级爰片在线观看| 神马国产精品三级电影在线观看| 国精品久久久久久国模美| 欧美日韩亚洲高清精品| 国产av码专区亚洲av| 国产成人免费观看mmmm| 色婷婷久久久亚洲欧美| 日日摸夜夜添夜夜添av毛片| 亚洲精品乱码久久久久久按摩| 久久99热这里只有精品18| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 黄片无遮挡物在线观看| 久久人人爽人人爽人人片va| 午夜老司机福利剧场| 久久精品国产鲁丝片午夜精品| 18+在线观看网站| 亚洲av二区三区四区| 国产亚洲5aaaaa淫片| 亚洲自偷自拍三级| 六月丁香七月| 成人亚洲精品av一区二区| 99re6热这里在线精品视频| 国产极品天堂在线| 国产精品人妻久久久影院| 亚洲,一卡二卡三卡| 美女高潮的动态| 亚洲无线观看免费| 2021天堂中文幕一二区在线观| 中国国产av一级| 下体分泌物呈黄色| 国产精品伦人一区二区| 中国美白少妇内射xxxbb| 在线看a的网站| 国产一区亚洲一区在线观看| 少妇猛男粗大的猛烈进出视频 | 97人妻精品一区二区三区麻豆| 舔av片在线| 亚洲精品成人av观看孕妇| 欧美变态另类bdsm刘玥| 麻豆久久精品国产亚洲av| av免费在线看不卡| 啦啦啦中文免费视频观看日本| 成人鲁丝片一二三区免费| 熟女av电影| av在线蜜桃| www.色视频.com| 亚洲av电影在线观看一区二区三区 | 18禁动态无遮挡网站| 91狼人影院| 国内少妇人妻偷人精品xxx网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 少妇熟女欧美另类| 日日啪夜夜爽| 日韩国内少妇激情av| 午夜福利在线观看免费完整高清在| 九九久久精品国产亚洲av麻豆| 欧美少妇被猛烈插入视频| 国产老妇伦熟女老妇高清| 18禁动态无遮挡网站| 亚洲欧美成人精品一区二区| 国内精品美女久久久久久| 五月伊人婷婷丁香| 亚洲精品国产成人久久av| 亚洲av免费高清在线观看| 国产乱人偷精品视频| 久久精品国产亚洲av涩爱| 午夜福利高清视频| 成人国产麻豆网| 久久6这里有精品| 国产亚洲av片在线观看秒播厂| 久久久久久九九精品二区国产| 免费大片18禁| 国产日韩欧美在线精品| 欧美亚洲 丝袜 人妻 在线| 亚洲aⅴ乱码一区二区在线播放| av黄色大香蕉| 国产午夜精品久久久久久一区二区三区| 久久97久久精品| 国产 一区 欧美 日韩| 欧美精品一区二区大全| 女人十人毛片免费观看3o分钟| 免费黄频网站在线观看国产| 黄片无遮挡物在线观看| 最后的刺客免费高清国语| av专区在线播放| 亚洲成人中文字幕在线播放| 春色校园在线视频观看| 欧美老熟妇乱子伦牲交| 色吧在线观看| 久热久热在线精品观看| 99久久九九国产精品国产免费| 亚洲精品色激情综合| 秋霞在线观看毛片| 在线天堂最新版资源| 久久久久久国产a免费观看| 色视频www国产| 国产黄片美女视频| 狂野欧美激情性xxxx在线观看| 亚洲精品456在线播放app| 夫妻性生交免费视频一级片| 色哟哟·www| 女的被弄到高潮叫床怎么办| 全区人妻精品视频| 色视频在线一区二区三区| 99久久人妻综合| 麻豆久久精品国产亚洲av| 免费大片18禁| 男女那种视频在线观看| 街头女战士在线观看网站| 男男h啪啪无遮挡| 可以在线观看毛片的网站| 少妇人妻一区二区三区视频| 久久综合国产亚洲精品| 天堂俺去俺来也www色官网| 免费大片黄手机在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99视频精品全部免费 在线| 国产亚洲午夜精品一区二区久久 | 久久久久久久久大av| 97精品久久久久久久久久精品| 久久久久久久久久久免费av| 国产视频首页在线观看| 欧美一级a爱片免费观看看| 亚洲天堂av无毛| 一本一本综合久久| 成人免费观看视频高清| av又黄又爽大尺度在线免费看| 水蜜桃什么品种好| 成人欧美大片| 身体一侧抽搐| 久久久精品94久久精品| 人妻系列 视频| 高清视频免费观看一区二区| 亚洲欧洲国产日韩| 午夜老司机福利剧场| 成人一区二区视频在线观看| 国产精品国产三级专区第一集| 久久97久久精品| 亚洲天堂国产精品一区在线| 国产高潮美女av| av一本久久久久| 韩国高清视频一区二区三区| 日韩,欧美,国产一区二区三区| 亚洲欧美精品专区久久| 久久韩国三级中文字幕| tube8黄色片| 纵有疾风起免费观看全集完整版| 少妇的逼好多水| 久久久久国产精品人妻一区二区| 久久久精品免费免费高清| 全区人妻精品视频| 日韩三级伦理在线观看| 久久久色成人| 联通29元200g的流量卡| 天天躁夜夜躁狠狠久久av| 亚洲精品国产成人久久av| 99热这里只有是精品在线观看| 亚洲,欧美,日韩| 国产一区二区在线观看日韩| 18禁在线无遮挡免费观看视频| 最近最新中文字幕大全电影3| 两个人的视频大全免费| 自拍欧美九色日韩亚洲蝌蚪91 | 久久热精品热| a级毛片免费高清观看在线播放| 国产精品一二三区在线看| 久久久久久久久久成人| 少妇丰满av| 婷婷色综合www| 可以在线观看毛片的网站| freevideosex欧美| 超碰av人人做人人爽久久| 免费看日本二区| 精品酒店卫生间| 亚洲伊人久久精品综合| 日本一二三区视频观看| 免费av观看视频| 99热国产这里只有精品6| 日韩免费高清中文字幕av| 亚洲av中文字字幕乱码综合| av又黄又爽大尺度在线免费看| 中文字幕免费在线视频6| 22中文网久久字幕| 亚洲国产色片| 身体一侧抽搐| 2021少妇久久久久久久久久久| a级一级毛片免费在线观看| 男女啪啪激烈高潮av片| 国内精品宾馆在线| 日本免费在线观看一区| 最后的刺客免费高清国语| 欧美高清成人免费视频www| 国内精品美女久久久久久| av一本久久久久| 麻豆久久精品国产亚洲av| 午夜福利高清视频| 一级片'在线观看视频| 国产片特级美女逼逼视频| 一级爰片在线观看| 99热这里只有是精品在线观看| 中文字幕久久专区| 亚洲精品aⅴ在线观看| 在线观看三级黄色| 狂野欧美白嫩少妇大欣赏| 亚洲国产精品999| 婷婷色综合大香蕉| av国产久精品久网站免费入址| 日本一本二区三区精品| 久久久亚洲精品成人影院| 久久久久久久精品精品| 直男gayav资源| 身体一侧抽搐| 国产精品精品国产色婷婷| 亚洲美女搞黄在线观看| 日本-黄色视频高清免费观看| 精品一区在线观看国产| 嘟嘟电影网在线观看| 制服丝袜香蕉在线| 深爱激情五月婷婷| 直男gayav资源| 97人妻精品一区二区三区麻豆| 少妇熟女欧美另类| 日韩av不卡免费在线播放| 2021少妇久久久久久久久久久| 99久久九九国产精品国产免费| 视频中文字幕在线观看| 国产成人一区二区在线| 一级毛片久久久久久久久女| 国产在线男女| av一本久久久久| 久久精品熟女亚洲av麻豆精品| av免费在线看不卡| 最近最新中文字幕大全电影3| 日韩不卡一区二区三区视频在线| 欧美成人午夜免费资源| 国产精品av视频在线免费观看| 国产v大片淫在线免费观看| 欧美亚洲 丝袜 人妻 在线| 水蜜桃什么品种好| 男女啪啪激烈高潮av片| 午夜激情福利司机影院| 国产极品天堂在线| 国产视频内射| 日韩欧美精品v在线| 亚洲精品成人av观看孕妇| 亚洲av欧美aⅴ国产| 一本一本综合久久| 两个人的视频大全免费| 乱系列少妇在线播放| 寂寞人妻少妇视频99o| 日韩欧美精品免费久久| 欧美日韩一区二区视频在线观看视频在线 | 欧美成人a在线观看| 国产精品99久久久久久久久| 深爱激情五月婷婷| 搞女人的毛片| 日本爱情动作片www.在线观看| 麻豆成人av视频| 91久久精品国产一区二区三区| 日韩一区二区视频免费看| 五月玫瑰六月丁香| 久久精品熟女亚洲av麻豆精品| 在线观看三级黄色| 久久精品熟女亚洲av麻豆精品| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美高清性xxxxhd video| 五月伊人婷婷丁香| 极品教师在线视频| av国产免费在线观看| 热re99久久精品国产66热6| 少妇高潮的动态图| 超碰av人人做人人爽久久| 日韩成人伦理影院| 精品少妇久久久久久888优播| 欧美激情国产日韩精品一区| 一区二区三区四区激情视频| 成人亚洲精品一区在线观看 | 国产老妇伦熟女老妇高清| 肉色欧美久久久久久久蜜桃 | 汤姆久久久久久久影院中文字幕| a级毛色黄片| 免费看a级黄色片| 97精品久久久久久久久久精品| 久久精品人妻少妇| 韩国高清视频一区二区三区| av国产免费在线观看| 欧美 日韩 精品 国产| 精品久久久久久久久亚洲| 一级av片app| 久久国产乱子免费精品| 免费看av在线观看网站| 97人妻精品一区二区三区麻豆| 国产视频内射| 在线看a的网站| 一二三四中文在线观看免费高清| 亚洲精品第二区| 建设人人有责人人尽责人人享有的 | 日日摸夜夜添夜夜爱| 99久久精品一区二区三区| 99热网站在线观看| 欧美成人午夜免费资源| 97人妻精品一区二区三区麻豆| 精品一区二区三区视频在线| 三级男女做爰猛烈吃奶摸视频| 午夜免费鲁丝| 成人午夜精彩视频在线观看| 亚洲欧洲国产日韩| 熟女人妻精品中文字幕| 国产黄片美女视频| 久久影院123| 国产亚洲av片在线观看秒播厂| 国产亚洲5aaaaa淫片| 国内精品宾馆在线| 亚洲欧美日韩东京热| 精品午夜福利在线看| 蜜桃久久精品国产亚洲av| 亚洲av欧美aⅴ国产| 丰满乱子伦码专区| 亚洲美女搞黄在线观看| 久久99精品国语久久久| 一级毛片我不卡| 99re6热这里在线精品视频| 夫妻午夜视频| 国产日韩欧美亚洲二区| 97人妻精品一区二区三区麻豆| 亚洲成人久久爱视频| 亚洲成人av在线免费| 男插女下体视频免费在线播放| 在线看a的网站| 最近2019中文字幕mv第一页| 亚洲熟女精品中文字幕| 亚洲国产精品国产精品| 久久久国产一区二区| 国产午夜精品一二区理论片| 亚洲av一区综合| 国产成人精品福利久久| 高清欧美精品videossex| 在线看a的网站| 免费黄色在线免费观看| 国产真实伦视频高清在线观看| 国产91av在线免费观看| 成人国产av品久久久| 亚洲国产欧美在线一区| 久久久精品免费免费高清| 成人漫画全彩无遮挡| 看免费成人av毛片| 美女cb高潮喷水在线观看| 欧美精品一区二区大全| 成人鲁丝片一二三区免费| 最新中文字幕久久久久| 国产一级毛片在线| 成人国产麻豆网| tube8黄色片| 夫妻午夜视频| 亚洲在久久综合| 色播亚洲综合网| 亚洲国产高清在线一区二区三| 国产精品一区www在线观看| 2022亚洲国产成人精品| 亚洲av不卡在线观看| 九九久久精品国产亚洲av麻豆| 亚洲av成人精品一区久久| 欧美国产精品一级二级三级 | 久久久精品免费免费高清| 国产精品女同一区二区软件| 尾随美女入室| 中国国产av一级| 人妻 亚洲 视频| 久久精品久久久久久噜噜老黄| 亚洲内射少妇av| 国产免费又黄又爽又色| 久久人人爽人人爽人人片va| 精品人妻一区二区三区麻豆| 免费av毛片视频| tube8黄色片| 亚洲精品色激情综合| 伊人久久国产一区二区| 亚洲美女视频黄频| 极品教师在线视频| 精品人妻视频免费看| 啦啦啦啦在线视频资源| 国产真实伦视频高清在线观看| a级毛色黄片| 国产一区二区三区av在线| 成人鲁丝片一二三区免费| 国产 一区精品| 日韩一区二区三区影片| 亚洲一区二区三区欧美精品 | www.av在线官网国产| 国产综合精华液| 国产精品不卡视频一区二区| 亚洲精品久久午夜乱码| 肉色欧美久久久久久久蜜桃 | 3wmmmm亚洲av在线观看| 国产日韩欧美在线精品| 国产视频首页在线观看| h日本视频在线播放| 亚洲国产精品成人久久小说| 国产 一区精品| 国产 一区 欧美 日韩| 亚洲精品国产色婷婷电影| 黄色配什么色好看| 男人和女人高潮做爰伦理| 一区二区三区精品91| 欧美高清性xxxxhd video| 高清av免费在线| 精品少妇黑人巨大在线播放| 毛片女人毛片| 黄片无遮挡物在线观看| 真实男女啪啪啪动态图| 亚洲av电影在线观看一区二区三区 | 国产亚洲午夜精品一区二区久久 | 男人和女人高潮做爰伦理| 久久99蜜桃精品久久| 别揉我奶头 嗯啊视频| 国产成人精品婷婷| 亚洲欧美日韩东京热| 日本欧美国产在线视频| 深夜a级毛片| tube8黄色片| 偷拍熟女少妇极品色| 国产av码专区亚洲av| 麻豆乱淫一区二区| 亚洲av男天堂| 中文资源天堂在线| 亚洲欧美清纯卡通| 91aial.com中文字幕在线观看| 日日啪夜夜爽| 青春草亚洲视频在线观看| 国产白丝娇喘喷水9色精品| 国产人妻一区二区三区在| 国产一区二区在线观看日韩| 久久精品熟女亚洲av麻豆精品| 亚洲色图综合在线观看| 纵有疾风起免费观看全集完整版| 久久久久久久大尺度免费视频| 国产亚洲91精品色在线| 黄色配什么色好看| 国产 精品1| 国内揄拍国产精品人妻在线| 成人午夜精彩视频在线观看| 亚洲精品影视一区二区三区av| 精品人妻偷拍中文字幕| 丝瓜视频免费看黄片| 久久久久久久午夜电影| 夫妻性生交免费视频一级片| 韩国av在线不卡| 国产精品久久久久久精品电影| 午夜视频国产福利| 国产免费一区二区三区四区乱码| 亚洲一区二区三区欧美精品 | 亚洲精品国产成人久久av| 可以在线观看毛片的网站| 91在线精品国自产拍蜜月| 成人毛片60女人毛片免费| 亚洲av不卡在线观看| 精品久久久久久久久av| 国产黄片美女视频| 少妇人妻精品综合一区二区| 3wmmmm亚洲av在线观看| a级一级毛片免费在线观看| 欧美成人a在线观看| 男女边摸边吃奶| 久久精品国产a三级三级三级| 国产亚洲最大av| av天堂中文字幕网| 国产精品一二三区在线看| 18禁裸乳无遮挡动漫免费视频 | 插阴视频在线观看视频| 街头女战士在线观看网站| 成人美女网站在线观看视频| 日韩强制内射视频| 高清午夜精品一区二区三区| 欧美3d第一页| 国产国拍精品亚洲av在线观看| 少妇高潮的动态图| 亚洲欧美日韩另类电影网站 | 欧美少妇被猛烈插入视频| av福利片在线观看| 性色av一级| 又粗又硬又长又爽又黄的视频| 色综合色国产| 少妇熟女欧美另类| 各种免费的搞黄视频| 国产一区二区三区综合在线观看 | 日韩成人伦理影院| 国产亚洲精品久久久com| 国产一区二区在线观看日韩| 赤兔流量卡办理| 一本久久精品| 亚洲精品成人久久久久久| 久久久精品免费免费高清| 最后的刺客免费高清国语| 少妇人妻一区二区三区视频| 成人欧美大片| 最后的刺客免费高清国语| 日本色播在线视频| 久久久精品免费免费高清| 一区二区三区乱码不卡18| 深夜a级毛片| 99久久精品一区二区三区| 最后的刺客免费高清国语| 久久国产乱子免费精品| 久热这里只有精品99| 插阴视频在线观看视频| 亚洲成人中文字幕在线播放| 波多野结衣巨乳人妻| 男插女下体视频免费在线播放| 美女主播在线视频| 人妻 亚洲 视频| 亚洲精品国产av成人精品| 3wmmmm亚洲av在线观看| kizo精华| 老司机影院成人| 精品久久久久久电影网| 高清视频免费观看一区二区| 简卡轻食公司| 久久久久久伊人网av| 日韩,欧美,国产一区二区三区| 最近的中文字幕免费完整| 亚洲精品色激情综合| 网址你懂的国产日韩在线| 啦啦啦啦在线视频资源| 亚洲欧洲日产国产| 肉色欧美久久久久久久蜜桃 |