• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of formation in-situ stress on mechanical heterogeneity of shale through grid nanoindentation

    2022-03-30 13:52:10MoShengShiZhongChengZhoHuiLuYeZhngShouCengTinGenShengLi
    Petroleum Science 2022年1期

    Mo Sheng ,Shi-Zhong Cheng ,Zho-Hui Lu ,Ye Zhng ,Shou-Ceng Tin ,Gen-Sheng Li

    aCollege of Petroleum Engineering,China University of Petroleum-Beijing,102249,PR China

    bNational and Local Joint Engineering Research Center of Shale Gas Exploration and Development,Chongqing,401120,PR China

    Keywords:Shale Heterogeneity Elastoplasticity Nanoindentation

    ABSTRACT Mechanical heterogeneity is a major characteristic of the organic-rich shale.The relation between mechanical heterogeneity and formation in-situ stress has been seldomly addressed but important to understand hydraulic fracture propagation,wellbore stability,and hydrocarbon flow.In this paper,the grid nanoindentation technique was used to characterize the heterogeneity of the mechanical properties of Longmaxi organic-rich shales from various burial depths and in-situ stress.The measured elastic modulus and hardness of each sample are deconvolved into three phases including soft phase,medium stiff phase and stiff phase according to mineral category.As the burial depth and corresponding in-situ stress increase,the overall elastic modulus and hardness of the sample enhance.Simultaneously,the percentage of soft minerals decreases,and the probability distribution tends to concentrate through 95%confidence interval evaluation which demonstrates weakened heterogeneity.Furthermore,SEM images provide evidence that extended cracking,initiated cracking,crushing and ductile deforming always occur around indentation imprints.This confirms that even under deep buried depth and high in-situ stress,brittle fracture and ductile deformation can exist synchronously.This paper demonstrates the influence of in-situ stress on the heterogeneity of shale micromechanics.

    1.Introduction

    Understanding mechanical heterogeneity of organic-rich shales is important for unconventional shale oil and gas reservoirs.The strong heterogeneity on mechanical properties is a major characteristic of organic-rich shale to influence hydraulic fracture propagation,wellbore stability,and hydrocarbon flow (Warpinski and Teufel,1987;Abouelresh and Slatt,2012;Hou et al.,2014;Morgan and Einstein,2017;Zhang et al.,2018).However,the macromechanical testing with low space resolution is unable to identify the heterogeneity in microscale because of the complicated mineral composition and highly random distribution.

    Nanoindentation,conducted at micrometers scale,have been successfully identified the heterogeneity of rock mechanical properties.An indenter with known hardness and geometry penetrates the testing material with a certain depth.The Young’s modulus and hardness of material can be calculated within an indentation cycle according to the force vs.displacement curve(Constantinides et al.,2006;Fischer-Cripps,2011).To conduct this measurement on heterogeneous materials,grid-indentation and deconvolution approach was proposed to make a statistic analysis (Ulm and Abousleiman,2006;Abousleiman et al.,2007).Li et al.,(2018)used nanoindentation to characterize the mechanical properties of organic matter.The type and thermal maturity of kerogen influence its Young’s modulus and hardness.An advanced nanoindentation mapping technique was developed with the capacity to map the distribution of Young’s modulus and hardness(Yang et al.,2017).Integrated with Scanning Electron Microscopy/Energy Dispersive X-Ray Spectroscopy (SEM-EDS),nanoindentation becomes more flexible to quantify the mechanical properties of individual minerals and mineral clusters(Deirieh et al.,2012;Bennett et al.,2015;Akono and Kabir,2016).Although nanoindentation has become a practical tool to understand the heterogeneity of mechanical properties of shale,yet the effects of formation in-situ stress on the mechanical heterogeneity and elastoplastic behaviors have rarely been addressed.

    In this paper,the grid nanoindentation approach was used to quantify the heterogenous distribution of Young’s modulus and hardness at different burial depths and formation in-situ stress.Further,the deconvolution method was applied to distinguish three mineral phases with distinct hardness and Young’s modulus.The indentation topography was imaged by SEM with high resolution of 10 μm.The influence of formation in-situ stress on mechanical properties was particularly discussed.Results confirmed that insitu stress controls the heterogeneity of organic-rich shale and the high in-situ stress reduces the heterogeneity of shale mechanical properties.

    2.Materials and methods

    2.1.Material and specimen preparation

    Three distinct shale samples were collected from the downhole cores at Lower Silurian Longmaxi Formation,Sichuan Basin,China.The vertical burial depth of N-213,Z-202 and N-222 are 2502.0,3858.3 and 4278.7 m,respectively.

    Their mineral composition interpreted from XRD tests was compared in Table 1.XRD tests were conducted according to the Standard SY/T 5163-2010.Results indicate that the target samples are the classical black shale containing much quartz and clay minerals.Samples N-213 and N-222 are mainly composed of clay minerals while Sample Z-202 is mainly composed of quartz minerals.

    Table 1 Mineral composition of three distinct core samples.

    The cubical specimen (5 mm length × 5 mm width × 1 mm height)were extracted from the shale samples.The sanding papers meshing 180#,400#,1000#,2000#,and 4000# were utilized to polish samples reaching surface roughness of 0.5 μm.Then,a high energy argon ion beam (Leica EM RES 102) was used at the polishing angle of 4.5°,current of 2 mA to polish the specimen surface.Polishing voltage was set at 5 kV and 2 kV alternately to keep surface roughness the minimum.The standard polishing approach was applied to expose the original microstructure of the rock,ensure required roughness for nanoindentation test and facilitate accurate observation under SEM.The reference lines were marked on the sample surface in order to locate the same test area in nanoindentation and SEM.The key is to ensure that the upper and lower sample surfaces are parallel,and the upper surface has the required smoothness.The surface roughness of shale samples evaluated by atomic force microscopy (AFM) is controlled in the range of 3.2-15.6 nm

    2.2.Experimental design

    Grid nanoindentation tests were conducted in a randomly selected area on the polished surface of the cubical sample to measure Young’s modulus and hardness of grid points.Grid nanoindentation guarantees randomness and data sufficiency.The abundant data ensure quantitative and qualitative measurement and analysis on composite.Furthermore,statistical analysis could express overall mechanical properties from a large number of individual data.Deconvolution approach was used to obtain the probability distributions of mechanical properties of different phases.Finally,SEM was conducted to visualize the indentation imprints and understand the elastoplastic deformation behaviors.

    The grid nanoindentation was run through the commercial equipment of Keysight Nano Indenter G200.Particularly,the continuous stiffness measurement (CSM) mode was selected to continuously measure the mechanical properties over the indentation depth.CSM is a mature technique mode in nanoindentation,which applies harmonic oscillator to indenter.A sinusoidal load was conducted with a constant frequency.The highest load in each load cycle is higher than that in the previous cycle,as shown in Fig.1(b).So that the load and penetrating depth increase.In each load cycle,the elastic modulus and hardness at that depth are obtained by the same calculation method as follows (Phani et al.,2020).Due to the complex composition and strong heterogeneity of shale,the mechanical properties of distinct minerals vary greatly.A Berkovich diamond indenter was selected because of its high spring constant range and suitability for complex materials with a wide range of elastic modulus.The indenter was used with a maximum loading of 30 mN and a maximum effective penetrating depth of 25 μm.Indenter load was conducted at a constant strain rate of 0.05 s-1and a frequency of 45 Hz.Ultimate indent depth was set at 3000 nm to enable multi-scale measurement of minerals and mineral phases.Room temperature was controlled as 25°C (±0.5°C).

    Fig.1 illustrates a schematic of grid nanoindentation test.The indenter tip penetrates the sample surface until the indentation depth reaches a prescribed magnitude.With increasing indentation depth,the material deformation transforms from elastic to plastic deformation.During indenter withdrawal,only elastic deformation recovers.The area enclosed by the loading,holding and unloading curves in the load-displacement curve represents the irreversible energy.It is worth noting that the energy not only consists of the plastic deformation energy of indentation point but also the fracture energy of the generated or extended cracks (Cheng et al.,2002).A grid nanoindentation scheme was proposed to obtain a statistically significant evaluation of mechanical properties.As shown in Fig.1(c),a 10 × 10 indentation grid was assigned on the specimen surface.The individual points were separated by 90 μm,which was adequate to eliminate interaction among individual points and also reach the scale to obtain the average response of the composite(Ulm and Abousleiman,2006).

    From the load-displacement curve,Young’s modulus and hardness were calculated through the following equations (Oliver and Pharr,1992;Li et al.,2019):

    Fig.1.Nanoindentation schematic:(a) Penetration diagram;(b) Nanoindentation load on sample-displacement into surface curve and continuous stiffness measurement (CSM)diagram;(c) Grid indentation points;(d) Diagram of deconvolution method to identify various phases.

    Fig.2.Typical load-displacement curve from nanoindentation tests.

    Fig.3.CSM modulus and hardness results of each indentation point in samples N-213,Z-202 and N-222.

    whereEris the reduced modulus;ν is Poisson’s ratio of the sample;Eis Young’s modulus of the sample;viis Poisson’s ratio of the probe;Eiis Young’s modulus of the probe;Pmaxis the maximum load on sample.In each CSM circle,Pmaxis also the maximum load in each circle.Sis the stiffness,which could be calculated from unloading curve.Acis the projected contact area related to contact depth and tip shape.For Berkovich indenters,Ac=24.56hc2+Chc.Cis a constant obtained in the calibration.

    Fig.4.The average value of the overall data of modulus and hardness measured by CSM at different indentation depths.

    The deconvolution approach was used to identify mineral phases with distinct hardness and Young’s modulus (Kumar et al.,2012;Veytskin et al.,2017).Those data were divided into three phases,which is adequate to show characteristics of different mineral phases.In detail,it includes stiff,medium stiff,and soft phases.Generally,the stiff phase mainly include silicates and sulfides,the medium stiff phase covers carbonates and the soft phase can be clay minerals and Kerogen materials.By assuming each phase is available to be characterized by a Gaussian distribution,the distribution of mechanical properties is shown in Fig.1(d).Each phase has a corresponding probability density function and similar mechanical properties.

    The Gaussian distribution can be written as (Ulm and Abousleiman,2006):

    where θi=(ui,);uiis the arithmetic mean of all values for phaseiandis the variance.Consequently,the theoretical probability density function (PDF)can be given as:

    wherefiis the surface friction occupied by phasei,and satisfied with=1.For the deconvolution analysis,the expectation-maximization(EM) algorithm was used to optimize the best-fitted mixture Gaussian distributions (Dempster et al.,1977;Moon,1996).A programming code combined EM algorithm and Gaussian mixture model was developed in this study.The EM algorithm contains two main steps.E-step is the first main step to calculate the posterior probability that pointxibelongs to phasej.

    Here the phase number is three,soJ=3.M-step is the second one,which is to conduct maximum likelihood estimation by updating values for parameters given by current distribution.

    3.Results

    3.1.Nanoindentation

    Fig.2 shows the typical load-displacement curves observed from nanoindentation testing.The “pop-in” phenomena demonstrate the creation of micro-cracking or encounters with pores or micro-fractures.The“elbow”events in unloading curve are caused by material expansion due to phase transformation(Domnich et al.,2000).By examining all the load-displacement curves,ratios of final indentation depth to maximum indentation depth are less than 0.7,thus the pile-up phenomenon does not exist.This indicates that the original data are not required to be corrected(Oliver and Pharr,1992).

    Fig.3 illustrates the correlations of the hardness and Young’s modulus against indentation depth,respectively.Results show that the magnitudes of both hardness and Young’s modulus are highly dependent on the indentation depth.For the indentation depth between 0 and 2000 nm,the modulus demonstrated relatively significant but gradually less obvious fluctuation for each indentation point.This indicates that as the indentation depth increases,the indenter encounters more different minerals.The mixture of various minerals decreases the fluctuation of Young's modulus and hardness for the sample.Solely depending on one kind of mineral demonstrates significant variations and fluctuations at the very beginning of the indentation process.The encounter with much different minerals can be associated with the gradually increased indented area,which means that the larger indented area might result in the contact with more minerals.As the indentation depth increases from 2000 nm to 3000 nm,the modulus curve eventually converges to a small range,which elucidates that the indentation area has reached the scale of the mineral phase (Luo et al.,2020).Moreover,it should be noticed that the ultimate convergence range of each curve is different due to the heterogeneity of mineral phases in shale.

    Fig.5.Deconvolution results of modulus and hardness for each phase under different confining stress conditions.The interval enclosed by the red straight line represents the data interval accounting for more than 95%.

    Fig.6.SEM images of the specific indentations in all samples.(a) The black rectangular area is the extension cracks at the tip of the indentation.(b) The red ellipse area is the indentation-generated irregular cracks.(c) The blue triangle area is the failure areas.(d) The yellow arrow points to the ductile deformation.

    Fig.7.Schematic diagram of the mechanism of in-situ stress on the mechanical heterogeneity of shale.The red area represents soft phase like organic matter and clay while the blue area represents stiff phase.The yellow area shows the transition of mechanical properties from soft to stiff because of the material hardening.

    The indentation depth was set at 3000 nm for each point,500 nm was set as the step to calculate the average of mechanical properties in every sample.The average of the overall modulus and hardness data measured at 500,1000,1500,2000,2500 nm depths is shown in Fig.4.Under different in-situ stresses,as the indentation depth increases,the overall averages of modulus and hardness gradually converge,which is consistent with the results in Fig.3.

    The frequency distribution histograms and deconvolution results of Young’s modulus and hardness for samples are constructed in Fig.5.Total curve is the sum of Gaussian distribution curves of three mineral phases.Young’s modulus are in the range of 33.1-80.2 GPa,30.8-64.2 GPa,and 33.6-84.4 GPa respectively.Hardness is in the range of 0.4-10.35 GPa,0.95-4.21 GPa,and 0.6-4.89 GPa.A large amount of nanoindentation data were divided into three mineral phases.Each phase,as illustrated in Fig.1(d),has one dominant property value.These values vary with increasing confining stress.The probability density distribution histogram can intuitively show the distribution of mechanical properties in different intervals.Also,it is the basic reference data for sub-phase curves.As the burial depths of the three shale samples increase in the order of N-213,Z-202 and N-222,high in-situ stress weakens the heterogeneity of the mechanical properties of the downhole shale.As shown in Fig.5,the interval enclosed by the red straight line represents the data interval accounting for more than 95%.In sample N-222,under high in-situ stress,this interval is narrower,indicating that the mechanical properties are more concentrated.The mean value and standard deviation of Gaussian distributions of Young’s modulus and hardness for each phase after processing through the Python program are shown in Table A1(Appendix A).

    3.2.SEM evidence of elastoplastic behavior at indentation points

    Mineral phases respond differently to indenter stress under insitu stress conditions.In order to obtain the elastoplastic response of mineral phases,a high-resolution scanning electron microscope was used to image the indentation point morphology,as shown in Fig.6.The black rectangular area is the extension cracks at the tip of the indentation.The red ellipse area is the indentation-generated irregular cracks.The blue triangle area is the failure areas.The yellow arrow points to the ductile deformation.The deformation and failure morphology of the indentation points have strong nonuniformity.It is related to the mineral compositions around the indentation point.The reason is that in the SEM images with a scale of 10 μm,the deformation appears along the edge line of the indentation,but no cracks are generated.

    4.Discussion

    A strong heterogeneity of mechanical properties in organic-rich shale has been evaluated and confirmed in this study.Moreover,high in-situ stress weakens this heterogeneity of the mechanical properties of the downhole shale.As illustrated in Fig.5,a nonuniform shift of Young’s modulus and the corresponding frequency of the individual phases are observed in samples N-213 and N-222.The compositions of the two samples are similar,but the burial depths are different.The deconvolution result shows that the frequency of the first phase of N-222 is less than that of N-213,which indicates high in-situ stresses lead soft minerals to be hardened.95% confidence interval evaluation in Fig.5 elucidates weakening effect of in-situ stress on the heterogeneity of the mechanical properties of organic-rich shale.Fig.7 shows the mechanism of confining stresses on shale heterogeneity.The red area represents soft minerals,organic matter and clay,and the blue area represents other minerals.The yellow area shows the hardening effect of in-situ stresses on soft minerals,which demonstrates that the high in-situ stress weakens the heterogeneity of the mechanical properties of the downhole shale.

    Although the heterogeneity of shale weakened with the increase of in-situ stress,brittle failure and ductile deformation(Fan et al.,2019) still coexist around indentation imprints (Fig.6).Furthermore,“pop-in” and “elbows” phenomenon commonly happened in nanoindentation (Fig.2),which exhibits that the indenter encountered heterogeneous mineral compositions during the indenting process.This indicates that the heterogeneity of shale still exists under high in-situ stress environment.Heterogeneity of shale has been confirmed through mesoscale indentation and macroscale indentation tests(Dong and Chen,2017).The finer the test scale,the higher the heterogeneity of the shale.Macroscopic failure in shale is the accumulation results of mesoscopic and microscope damage,fracture and fragmentation.Mechanical properties and in-situ stress environment would influence hydraulic fracturing framework cause complexity of fracture network in deep shale reservoirs.

    5.Conclusions

    Multi-scale assessment of mechanical heterogeneity of Longmaxi organic-rich shale was conducted by nanoindentation and SEM.Nanoindentation results demonstrate the magnitudes of both hardness and Young’s modulus are highly dependent on the indentation depth.Three mineral phases are categorized through modulus and hardness by nanoindentation.Combined statistical analysis,it is concluded that high in-situ stress will weaken the heterogeneity of organic-rich shale.SEM images provide evidence that extended cracking,initiated cracking,crushing and ductile deforming always occur around indentation imprints.This confirms that even under deep buried depth and high in-situ stress,brittle fracture and ductile deformation can exist synchronously.Particularly,the variable and uneven distribution of minerals with wildly-ranged mechanical properties likely regulates hydraulic fracture complexity even in deep reservoirs with high in-situ stress.In the next step,we will perform numerical simulations based on micromechanical data to explain the mechanism of microcracks initiation and extension under stresses.

    Acknowledgments

    This work was financially supported by National Natural Science Foundation of China (No.U19B6003;No.52074315)

    Appendix A

    Table A1Mean and standard deviation of each Gaussian distribution

    观看免费一级毛片| 久久99热这里只有精品18| 国产精品女同一区二区软件| 99热全是精品| 免费看不卡的av| 人妻夜夜爽99麻豆av| 亚洲美女视频黄频| 国产精品精品国产色婷婷| 久99久视频精品免费| 日韩欧美国产在线观看| 国产av码专区亚洲av| 男人舔女人下体高潮全视频| 欧美日韩精品成人综合77777| 国产 亚洲一区二区三区 | 久久久久久久午夜电影| 五月天丁香电影| 真实男女啪啪啪动态图| 日本-黄色视频高清免费观看| 婷婷色综合大香蕉| 久久97久久精品| 啦啦啦啦在线视频资源| 欧美高清成人免费视频www| 国产免费福利视频在线观看| 亚洲av福利一区| 午夜老司机福利剧场| 免费黄网站久久成人精品| 搞女人的毛片| 美女主播在线视频| 国产成人a∨麻豆精品| 国产一级毛片在线| 少妇高潮的动态图| 又大又黄又爽视频免费| 最后的刺客免费高清国语| 亚洲不卡免费看| 日韩,欧美,国产一区二区三区| 午夜福利高清视频| 91久久精品国产一区二区三区| 国产亚洲av嫩草精品影院| 国产v大片淫在线免费观看| 亚洲,欧美,日韩| 汤姆久久久久久久影院中文字幕 | 成人二区视频| 欧美激情久久久久久爽电影| 九九久久精品国产亚洲av麻豆| 国产高清国产精品国产三级 | 久久99热这里只有精品18| 超碰av人人做人人爽久久| a级毛色黄片| 国产亚洲精品av在线| 亚洲精品乱码久久久久久按摩| 国产精品人妻久久久影院| 插阴视频在线观看视频| 男女那种视频在线观看| 免费观看在线日韩| 久久人人爽人人爽人人片va| 午夜激情福利司机影院| 少妇的逼水好多| 精品人妻偷拍中文字幕| 欧美一区二区亚洲| 成人亚洲精品av一区二区| 日本熟妇午夜| 精品久久久久久电影网| 国产片特级美女逼逼视频| 国产综合懂色| 亚洲av日韩在线播放| 国产亚洲91精品色在线| 好男人在线观看高清免费视频| 精品人妻一区二区三区麻豆| 全区人妻精品视频| 久久人人爽人人爽人人片va| 日韩一区二区三区影片| 成人亚洲精品一区在线观看 | 精品酒店卫生间| 少妇丰满av| 久久韩国三级中文字幕| 国产高清三级在线| 亚洲精品乱码久久久久久按摩| 日韩av免费高清视频| av女优亚洲男人天堂| 免费观看精品视频网站| 汤姆久久久久久久影院中文字幕 | 成人美女网站在线观看视频| 精品人妻偷拍中文字幕| 69人妻影院| 女的被弄到高潮叫床怎么办| 欧美日韩综合久久久久久| 国产成人免费观看mmmm| 熟女人妻精品中文字幕| 亚洲精品一二三| 国产极品天堂在线| 毛片一级片免费看久久久久| 青春草视频在线免费观看| 午夜福利高清视频| 国产综合精华液| 久久草成人影院| 九草在线视频观看| 亚州av有码| 久久久久网色| 99re6热这里在线精品视频| 亚洲国产精品sss在线观看| 免费观看性生交大片5| 午夜精品国产一区二区电影 | 国内精品美女久久久久久| 一级片'在线观看视频| 能在线免费观看的黄片| 伊人久久精品亚洲午夜| 日日撸夜夜添| 午夜爱爱视频在线播放| 国产高清三级在线| 网址你懂的国产日韩在线| 黄片wwwwww| av卡一久久| 久热久热在线精品观看| 国产激情偷乱视频一区二区| 2021天堂中文幕一二区在线观| 精华霜和精华液先用哪个| 久久久精品欧美日韩精品| 超碰97精品在线观看| 日本熟妇午夜| 丰满人妻一区二区三区视频av| 最后的刺客免费高清国语| 免费少妇av软件| 国产爱豆传媒在线观看| 校园人妻丝袜中文字幕| 老女人水多毛片| 国产精品一区二区性色av| 久久久久久国产a免费观看| 午夜激情福利司机影院| 黄色一级大片看看| 国产一区亚洲一区在线观看| 国产精品国产三级国产专区5o| 亚洲国产日韩欧美精品在线观看| 精品久久久久久久久亚洲| 午夜福利视频精品| 青春草视频在线免费观看| 男人舔奶头视频| 青春草亚洲视频在线观看| 亚洲精品456在线播放app| 国产精品一区二区在线观看99 | 女的被弄到高潮叫床怎么办| 国产精品一区二区性色av| 日韩强制内射视频| 丝瓜视频免费看黄片| 插逼视频在线观看| 91久久精品国产一区二区三区| 麻豆乱淫一区二区| 久久久久久久久久人人人人人人| 亚洲av男天堂| 国产中年淑女户外野战色| 久久精品国产亚洲av涩爱| 亚洲av成人精品一二三区| 久久久久九九精品影院| 日韩成人伦理影院| 男人舔女人下体高潮全视频| 两个人视频免费观看高清| 一级黄片播放器| 成人午夜精彩视频在线观看| 欧美三级亚洲精品| 精品一区二区免费观看| 最近中文字幕高清免费大全6| 国产乱来视频区| 国产一区二区三区综合在线观看 | 天天躁夜夜躁狠狠久久av| 日韩成人av中文字幕在线观看| 久久久久久久国产电影| 国产精品一区二区性色av| 乱人视频在线观看| 十八禁国产超污无遮挡网站| 亚洲av国产av综合av卡| 亚洲国产最新在线播放| 麻豆成人av视频| 美女国产视频在线观看| 免费看av在线观看网站| 精品一区二区三区人妻视频| 欧美激情在线99| 在线观看人妻少妇| 日本午夜av视频| 丰满少妇做爰视频| 亚洲性久久影院| 精品一区二区免费观看| 美女高潮的动态| 久久久久久久久久人人人人人人| 淫秽高清视频在线观看| 蜜桃久久精品国产亚洲av| 亚洲欧美一区二区三区黑人 | 亚洲最大成人中文| 亚州av有码| 久久99热6这里只有精品| 免费无遮挡裸体视频| 国产男人的电影天堂91| 亚洲精品国产av蜜桃| 我的老师免费观看完整版| 深爱激情五月婷婷| 免费黄频网站在线观看国产| 深夜a级毛片| 午夜福利视频1000在线观看| 伊人久久精品亚洲午夜| 久久久久久久午夜电影| 亚洲图色成人| 免费看a级黄色片| 嫩草影院入口| 99re6热这里在线精品视频| 国产精品国产三级国产av玫瑰| 亚洲欧美一区二区三区国产| 欧美精品一区二区大全| 免费观看性生交大片5| 十八禁国产超污无遮挡网站| 精品久久久久久久久亚洲| 大香蕉97超碰在线| 99久久九九国产精品国产免费| 婷婷色av中文字幕| 欧美精品一区二区大全| 能在线免费看毛片的网站| 国产精品人妻久久久久久| 国产成人91sexporn| 秋霞在线观看毛片| 亚洲第一区二区三区不卡| 狂野欧美激情性xxxx在线观看| 男人狂女人下面高潮的视频| av.在线天堂| 色综合亚洲欧美另类图片| 精品人妻熟女av久视频| 一个人看的www免费观看视频| 中文精品一卡2卡3卡4更新| 欧美成人精品欧美一级黄| 亚洲欧美一区二区三区黑人 | 亚洲色图av天堂| 九色成人免费人妻av| 欧美 日韩 精品 国产| 身体一侧抽搐| 日韩欧美精品免费久久| 中国美白少妇内射xxxbb| 亚洲精品乱久久久久久| 亚洲精品乱码久久久v下载方式| 寂寞人妻少妇视频99o| 啦啦啦中文免费视频观看日本| av在线老鸭窝| 精品久久久久久电影网| 中文字幕亚洲精品专区| 亚洲精品,欧美精品| 大香蕉97超碰在线| 亚洲成人av在线免费| 嫩草影院精品99| 伊人久久国产一区二区| 日韩中字成人| a级毛色黄片| 永久网站在线| 一区二区三区免费毛片| 国产探花极品一区二区| a级毛片免费高清观看在线播放| 欧美极品一区二区三区四区| 黄片无遮挡物在线观看| 欧美xxxx性猛交bbbb| 夫妻性生交免费视频一级片| 免费看美女性在线毛片视频| 18+在线观看网站| 最近最新中文字幕免费大全7| 免费黄色在线免费观看| 国产免费一级a男人的天堂| 天天躁日日操中文字幕| 免费看光身美女| 国产一区二区亚洲精品在线观看| 老师上课跳d突然被开到最大视频| 在线观看av片永久免费下载| 亚洲四区av| 成人高潮视频无遮挡免费网站| 中文精品一卡2卡3卡4更新| 欧美成人午夜免费资源| 黄片wwwwww| 少妇熟女欧美另类| 亚洲激情五月婷婷啪啪| 成年人午夜在线观看视频 | 夫妻午夜视频| 精品久久久噜噜| 久久久久精品久久久久真实原创| 在线免费观看不下载黄p国产| 亚洲最大成人中文| 青青草视频在线视频观看| 精品国内亚洲2022精品成人| 日韩三级伦理在线观看| 中文在线观看免费www的网站| 久久99蜜桃精品久久| 亚洲av免费高清在线观看| 亚洲成色77777| 综合色丁香网| 中国美白少妇内射xxxbb| 高清av免费在线| 午夜久久久久精精品| 欧美日韩精品成人综合77777| 能在线免费观看的黄片| 边亲边吃奶的免费视频| 亚洲av免费高清在线观看| 亚洲成色77777| 日本免费a在线| 一级毛片aaaaaa免费看小| 免费电影在线观看免费观看| 特大巨黑吊av在线直播| 国产 一区精品| 亚洲人与动物交配视频| 欧美精品一区二区大全| 久久久久精品性色| 日韩欧美 国产精品| 精品久久久久久久末码| 免费av不卡在线播放| 一个人免费在线观看电影| 久久久久久久久中文| 亚洲精品色激情综合| 亚洲国产精品国产精品| 色综合亚洲欧美另类图片| 中文字幕制服av| 国产精品无大码| 欧美xxxx性猛交bbbb| 身体一侧抽搐| 男人爽女人下面视频在线观看| 一个人看的www免费观看视频| 听说在线观看完整版免费高清| 国产精品麻豆人妻色哟哟久久 | 国产日韩欧美在线精品| 七月丁香在线播放| 九九爱精品视频在线观看| 日本色播在线视频| 蜜桃亚洲精品一区二区三区| 日本午夜av视频| 久久精品久久久久久久性| 久久热精品热| 最近的中文字幕免费完整| 寂寞人妻少妇视频99o| 久久久久九九精品影院| 你懂的网址亚洲精品在线观看| 久久99热这里只频精品6学生| 欧美变态另类bdsm刘玥| 欧美另类一区| 国产精品人妻久久久久久| 有码 亚洲区| 日韩视频在线欧美| 日韩av免费高清视频| 国产成人精品一,二区| 99热网站在线观看| 亚洲国产精品国产精品| 一级毛片 在线播放| 亚洲国产精品国产精品| 亚洲美女视频黄频| 午夜精品国产一区二区电影 | 亚洲av男天堂| 久久久a久久爽久久v久久| 美女国产视频在线观看| 中文在线观看免费www的网站| 欧美日韩精品成人综合77777| 少妇熟女欧美另类| 亚洲乱码一区二区免费版| 麻豆乱淫一区二区| 91aial.com中文字幕在线观看| 亚洲人与动物交配视频| 国产黄色免费在线视频| 久久精品久久久久久久性| 国产亚洲5aaaaa淫片| 秋霞在线观看毛片| 黄片无遮挡物在线观看| 国产v大片淫在线免费观看| 97人妻精品一区二区三区麻豆| 久久精品国产亚洲网站| 亚洲自拍偷在线| 韩国高清视频一区二区三区| 欧美日韩在线观看h| 又爽又黄无遮挡网站| 日韩欧美精品v在线| a级毛色黄片| 亚洲精品,欧美精品| 国产视频内射| 美女大奶头视频| 99久国产av精品| 深夜a级毛片| 国产一级毛片在线| 久久精品夜夜夜夜夜久久蜜豆| 啦啦啦啦在线视频资源| 3wmmmm亚洲av在线观看| 99久久人妻综合| 久久久成人免费电影| 日本三级黄在线观看| 亚洲国产av新网站| 男女那种视频在线观看| 国产精品人妻久久久影院| 亚洲在线观看片| 欧美高清成人免费视频www| 亚洲国产欧美人成| 中文资源天堂在线| 两个人视频免费观看高清| www.av在线官网国产| 日韩av在线大香蕉| 插逼视频在线观看| 中文乱码字字幕精品一区二区三区 | 日日撸夜夜添| 国产日韩欧美在线精品| 久久久久久久午夜电影| 亚洲无线观看免费| 成人午夜高清在线视频| 色网站视频免费| 日本一二三区视频观看| 人妻夜夜爽99麻豆av| 国产精品一区www在线观看| 在线观看av片永久免费下载| 日本黄色片子视频| 在线观看一区二区三区| 极品少妇高潮喷水抽搐| 天堂√8在线中文| 久久这里有精品视频免费| 亚洲国产欧美人成| 欧美+日韩+精品| 久久97久久精品| 三级经典国产精品| 午夜福利视频1000在线观看| 22中文网久久字幕| 国产精品一二三区在线看| 亚洲欧美精品专区久久| 中文字幕亚洲精品专区| 99久久中文字幕三级久久日本| 亚洲天堂国产精品一区在线| 国产成年人精品一区二区| 大又大粗又爽又黄少妇毛片口| 又粗又硬又长又爽又黄的视频| 国产高清三级在线| 色综合站精品国产| 国产亚洲精品av在线| 一夜夜www| 大香蕉久久网| 高清欧美精品videossex| 免费观看av网站的网址| 国产精品美女特级片免费视频播放器| 国产乱人视频| 免费看日本二区| 少妇丰满av| 别揉我奶头 嗯啊视频| 日韩欧美三级三区| 亚洲人成网站在线观看播放| 视频中文字幕在线观看| 网址你懂的国产日韩在线| 国语对白做爰xxxⅹ性视频网站| 在线天堂最新版资源| 精品欧美国产一区二区三| 天天躁夜夜躁狠狠久久av| 韩国高清视频一区二区三区| 久久这里只有精品中国| 中文字幕久久专区| 久久久精品欧美日韩精品| 一个人看视频在线观看www免费| 一夜夜www| 欧美最新免费一区二区三区| 99久国产av精品国产电影| 日韩一本色道免费dvd| 国产亚洲一区二区精品| 日韩制服骚丝袜av| 欧美97在线视频| 男女国产视频网站| 黄色一级大片看看| 99久国产av精品国产电影| 亚洲精品亚洲一区二区| 99久国产av精品| 久久久久久久久大av| 联通29元200g的流量卡| 国产综合精华液| 国产精品1区2区在线观看.| 18禁裸乳无遮挡免费网站照片| 天堂中文最新版在线下载 | 女人被狂操c到高潮| 免费播放大片免费观看视频在线观看| 午夜久久久久精精品| 亚洲内射少妇av| 色5月婷婷丁香| 毛片一级片免费看久久久久| 永久免费av网站大全| 免费在线观看成人毛片| 少妇被粗大猛烈的视频| 成人美女网站在线观看视频| 一级二级三级毛片免费看| 久久精品人妻少妇| 水蜜桃什么品种好| 婷婷色综合大香蕉| 亚洲在线自拍视频| 听说在线观看完整版免费高清| 91狼人影院| 亚洲婷婷狠狠爱综合网| 精品人妻偷拍中文字幕| 成人亚洲精品av一区二区| 丰满人妻一区二区三区视频av| 大又大粗又爽又黄少妇毛片口| 男女边吃奶边做爰视频| 日本熟妇午夜| 毛片女人毛片| 国产精品福利在线免费观看| 直男gayav资源| 一级a做视频免费观看| 十八禁网站网址无遮挡 | 三级国产精品欧美在线观看| 国产亚洲一区二区精品| av免费在线看不卡| 国产精品不卡视频一区二区| 天天躁日日操中文字幕| 在线观看av片永久免费下载| 午夜精品国产一区二区电影 | a级毛片免费高清观看在线播放| 久久久久免费精品人妻一区二区| 日日摸夜夜添夜夜爱| 精品一区二区三区人妻视频| 免费看日本二区| 国产 亚洲一区二区三区 | 天堂网av新在线| 偷拍熟女少妇极品色| 大陆偷拍与自拍| 少妇人妻精品综合一区二区| 久久这里只有精品中国| 亚洲av中文字字幕乱码综合| 久久6这里有精品| 大话2 男鬼变身卡| 蜜桃亚洲精品一区二区三区| 五月玫瑰六月丁香| 国产伦在线观看视频一区| 精品久久久精品久久久| 午夜福利在线在线| 精品人妻一区二区三区麻豆| 嫩草影院精品99| 国产高清不卡午夜福利| 韩国av在线不卡| 久久这里只有精品中国| 亚洲人成网站在线观看播放| 18禁在线无遮挡免费观看视频| 国产免费一级a男人的天堂| 久久草成人影院| 亚洲国产欧美在线一区| 搞女人的毛片| 国产精品熟女久久久久浪| 亚洲欧美日韩无卡精品| 午夜精品一区二区三区免费看| 亚洲av电影在线观看一区二区三区 | 一个人看的www免费观看视频| 亚洲av免费高清在线观看| 深夜a级毛片| 国产成人a区在线观看| 一个人免费在线观看电影| 天堂中文最新版在线下载 | 亚洲图色成人| 国产视频首页在线观看| 免费av不卡在线播放| 亚洲精品成人av观看孕妇| 色综合亚洲欧美另类图片| 18+在线观看网站| 日韩欧美精品免费久久| 日本与韩国留学比较| 男女那种视频在线观看| 国产黄片视频在线免费观看| 亚洲精品aⅴ在线观看| 狠狠精品人妻久久久久久综合| 久久久久久久久久黄片| 精品少妇黑人巨大在线播放| 中文乱码字字幕精品一区二区三区 | 在线 av 中文字幕| 26uuu在线亚洲综合色| 国产激情偷乱视频一区二区| 午夜福利视频精品| freevideosex欧美| 最近最新中文字幕大全电影3| 噜噜噜噜噜久久久久久91| av福利片在线观看| 日韩一区二区三区影片| 亚洲精品乱久久久久久| 久久鲁丝午夜福利片| 男人爽女人下面视频在线观看| 日本色播在线视频| 午夜免费观看性视频| 亚洲婷婷狠狠爱综合网| 人人妻人人澡欧美一区二区| videos熟女内射| 美女xxoo啪啪120秒动态图| 欧美xxⅹ黑人| 久久久久久久国产电影| 激情五月婷婷亚洲| 在线天堂最新版资源| 久热久热在线精品观看| 夫妻午夜视频| 美女脱内裤让男人舔精品视频| 麻豆乱淫一区二区| 亚洲av免费在线观看| 成人高潮视频无遮挡免费网站| 国产精品熟女久久久久浪| 男女下面进入的视频免费午夜| 免费观看精品视频网站| 美女内射精品一级片tv| 街头女战士在线观看网站| 联通29元200g的流量卡| 六月丁香七月| 国产黄频视频在线观看| 免费观看精品视频网站| 大片免费播放器 马上看| 国产三级在线视频| 欧美一级a爱片免费观看看| 久久6这里有精品| 亚洲av国产av综合av卡| 国产精品麻豆人妻色哟哟久久 | 全区人妻精品视频| 久热久热在线精品观看| 久久久久网色| 久久这里只有精品中国| 麻豆成人av视频| 午夜爱爱视频在线播放| 高清日韩中文字幕在线| 精品少妇黑人巨大在线播放| 日韩 亚洲 欧美在线| av免费在线看不卡| 国内精品一区二区在线观看| 99热6这里只有精品| 精品午夜福利在线看| 色综合色国产| 国产精品国产三级国产专区5o| 日韩欧美三级三区| 国产精品.久久久| 国产亚洲一区二区精品|