• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of confinement on the three-phase equilibrium of water-oil-CO2 mixtures in nanopores

    2022-03-30 13:52:08YiLeiSongShoHuGuZhoJieSongZhuoZhngXuChngJiGuo
    Petroleum Science 2022年1期

    Yi-Lei Song ,Sho-Hu Gu ,Zho-Jie Song ,* ,Zhuo-Y Zhng ,Xu-Y Chng ,Ji Guo

    a State Key Laboratory of Petroleum Resources and Prospecting and Unconventional Petroleum Research Institute,China University of Petroleum-Beijing,Beijing,102249,China

    b Sinopec Petroleum Exploration and Production Research Institute,Beijing,100083,China

    Keywords:Three-phase behavior Water-oil-CO2 mixtures Nanopore confinement CO2 enhanced oil recovery Shale reservoirs

    ABSTRACT Accurate characterization of fluid phase behavior is an important aspect of CO2 enhanced shale oil recovery.So far,however,there has been little discussion about the nanopore confinement effect,including adsorption and capillarity on the phase equilibrium of water-oil-CO2 mixtures.In this study,an improved three-phase flash algorithm is proposed for calculating the phase behavior of water-oil-gas mixture on the basis of an extended Young-Laplace equation and a newly developed fugacity calculation model.The fugacity model can consider the effect of water-oil-gas adsorption on phase equilibrium.A water-Bakken oil-CO2 mixture is utilized to verify the accuracy of the flash algorithm and investigate the confinement effect.Results show that the confinement effect promotes the transfer of all components in the vapor phase to other phases,while the transfer of water,CO2,and lighter hydrocarbons is more significant.This leads to a large decrease,a large increase,and a small increase in the mole fraction of the vapor,oleic,and aqueous phases,respectively.When the confinement effect is considered,the density difference of vaporoleic phases decreases,and the interfacial tension of vapor-oleic phases decreases;however,the density difference of vapor-aqueous phases increases,the interfacial tension of vapor-aqueous phases still decreases.

    1.Introduction

    Shale oil plays an increasingly significant role in the energy industry and is expected to become a major contributor to the continued growth of crude production worldwide.The reserves of global shale oil resources are considerable,reaching 67,840 × 108barrels(Song et al.,2020c).The development of technologies such as hydraulic fracturing and horizontal wells has led to the successful production of shale oil,but the oil recovery from shale formations is still unsatisfactory.Recently,the use of CO2as an injection agent to further improve shale oil recovery has attracted more and more attention (Wu et al.,2020;Zhu et al.,2021).However,the addition of CO2causes the interphase mass transfers and thermodynamic properties of formation fluids to be very complicated(Zhou et al.,2020).To date,the knowledge of the phase behavior of formation fluids considering the CO2addition in shale reserves is still insufficient,which brings difficulties to the optimization design of the shale oil production (Song et al.,2021a).Hence,more research needs to be carried out to increase our knowledge of the phase behavior of shale fluids after CO2injection.

    The pore-throats of shale reservoirs are on the nanometer scale(Li and Sheng,2017).For example,in the Bakken reservoir,the radius of pore-throat is mostly between 1 and 40 nm (Nojabaei et al.,2013).The small pore size in shale formation creates spatial confinement,which leads to the unpredictable phase behavior of shale fluids (Feng et al.,2021;Yang et al.,2019).The nanopore confinement effect in shale reservoirs changes the phase behavior due to two main reasons:high capillary force (Zhang et al.,2017)and strong fluid adsorption (Song et al.,2020b).Fluid adsorption causes changes in pore size and wettability,thereby enhancing the capillarity.Besides,the fluid adsorption in nanopores may change the composition distribution of the reservoir fluids,thereby having a greater impact on the fluid property and phase behavior(Liu et al.,2018).Understanding the effect of nanopore confinement will help to accurately describe the phase behavior of confined fluids in shale reservoirs (Feng et al.,2018b).

    A considerable amount of literature has been published on the nanopore confinement effect(Luo,2018;Pitakbunkate et al.,2016;Zuo et al.,2018).Through laboratory experimental studies,it has been observed that the confinement leads to a reduction in the saturation pressure and critical property of confined fluids (Luo et al.,2019a;Tan et al.,2019).However,the experimental research mainly focuses on pure components and binary mixtures,and rarely involves mixtures above ternary(Salahshoor et al.,2018).In addition,laboratory experiments are difficult to truly reflect the unconventional characteristics of shale reservoirs,so the reliability of the experimental results remains to be discussed.To make up for the limitations of experimental research,molecular simulation methods have been applied to the study of the phase behavior of confined fluids(Feng et al.,2020;Liu and Zhang,2019;Xiong et al.,2017).Molecular simulations can provide more information about the fluid phase behavior in small spaces (Wang et al.,2021;Wu et al.,2016).But the increase in pore size or fluid complexity requires more approximation and more computational time,so it is not suitable for complex mixtures and larger spaces (Song et al.,2021b).Few studies have used molecular simulation to analyze the fluid phase behavior in pores with a radius greater than 5 nm.Thus,the development of universal and easy-to-use equation of state (EOS) models to characterize the confined fluid phase behavior has attracted increasing attention.

    Extensive research has been conducted to introduce capillary pressure and adsorption data into the traditional EOS and then to determine the phase equilibrium of fluids(Dong et al.,2016;Li and Sheng,2017;Yan et al.,2017).However,the conventional EOS equation fails to describe confinement in nature.Hence,investigators have been working to form an EOS that can consider the confinement effect (Xiong et al.,2021b).Travalloni et al.(2010)presented an extended van der Waals EOS using two interaction parameters to study the adsorption behavior of confined fluids.Luo et al.(2019b) modified the Peng-Robinson EOS with a wallmolecule interaction coefficient to compute the phase transition pressure and temperature in nanopores.Araújo and Franco (2019)developed a new Statistical Associating Fluid Theory EOS to calculate the adsorption isotherms of confined mixtures.Zhang et al.(2019) extended the Soave-Redlich-Kwong EOS considering the fluid-pore wall interaction to calculate the critical pressure and temperature of confined fluids.Song et al.(2020b) proposed an adsorption-dependent EOS(A-PR-EOS)based on the description of fluid adsorption and discussed the effect of fluid adsorption on the critical property shifts.However,the existing research on the confinement effect mainly focuses on hydrocarbons,and there is little discussion about aqueous systems.

    The shale oil reservoir contains considerable water in the form of water film or irreducible water (Feng et al.,2018a;Li et al.,2016b).Moreover,during stimulated reservoir volume (SRV) fracturing in a horizontal well tens of thousands of cubic meters of fracturing fluids (the main component is water) are injected into the formation,which increases the water saturation (Zhou et al.,2020).Several attempts have been made to study the phase behavior of the water-hydrocarbon-gas mixture in nanopores.Sun and Li(2019)presented a three-phase flash algorithm coupled with PR-EOS and capillary pressure to calculate the pressuretemperature envelope of the aqueous-oleic-vapor three-phase system.Xiong et al.(2021a) proposed an extended cubic-plusassociation EOS to determine the interfacial tensions (IFT) of CH4-CO2-H2O mixtures in shale nanopores.Zhao et al.(2021)calculated the IFT of H2O-CO2andn-C10H22-CO2systems in nanopores based on an association EOS.However,these models do not consider the effect of water-oil-gas adsorption on the fluid phase behavior.Considering the coexistence of oil,gas and water,the adsorption and distribution of fluids in the matrix pores will make the mutual solubility and the fluid properties more complicated(Guo et al.,2019;Li et al.,2016a).It is necessary to develop a new thermodynamic model that is suitable for the water-oil-gas system and can reflect the confinement effect,including fluid adsorption and capillarity.

    In this study,a novel three-phase flash algorithm considering the effect of nanopore confinement is developed to study the mutual solubility and fluid properties of water-oil-gas mixtures.A shale oil sample from Bakken is utilized in the case study.The effect of nanopore confinement on the phase mole fraction,phase equilibrium coefficient,phase density,and interfacial tension of the water-Bakken oil-CO2mixture is discussed in detail.

    2.Modeling methodology

    2.1.Improved three-phase flash algorithm

    When the fugacity(f)of each component is equal in any phase,the three-phase equilibrium can be reached.For a multicomponent mixture,the fugacity-equality condition(Sun and Li,2019)is given as,

    where superscript W,O,and V represent the aqueous,oleic,and vapor phases,respectively;w,x,andyare the mole fractions of each component in the aqueous,oleic,and vapor phases,respectively;Pis the pressure;Tis the temperature;Ncis the component number in the mixture.It is noted that the fugacity of each component is affected by the adsorption effect,and the pressure in each phase is different due to the capillary pressure.These need to be considered in the judgment of fugacity-equality to improve the flash algorithm.

    During the three-phase equilibrium calculations,distribution coefficients of components between the three phases are indispensable parameters.

    whereandare the vapor-aqueous equilibrium coefficient and vapor-oleic equilibrium coefficient of theith component,respectively.Based on the material balance equations and the definition of phase equilibrium coefficient,the following objective equations (R-R equations) for a three-phase equilibrium can be obtained,

    whereziis the overall mole fraction ofith component;ψWand ψOare the mole fractions of the aqueous and oleic phases,respectively.If we know the phase equilibrium coefficients of each component,we can solve the R-R equations for ψW,ψO,xi,yi,andwi.

    A flowchart for the three-phase flash calculation procedure is provided in Fig.1.The flowchart can be summarized as follows.

    Fig.1.The flowchart for the improved three-phase flash calculation algorithm.

    Fig.2.A fluid distribution model considering adsorption and capillarity.

    (1) Input the feed composition,component properties,temperature,oleic phase pressure,and initialize capillary pressure(PcapI).

    (2) Initial phase equilibrium coefficient (K-values).

    (5) IF the calculated capillary pressure is equal to the initial capillary pressure,the calculation ends.Otherwise,update initial capillary pressure (PcapI=Pcap) and repeat Steps 2 to 5.

    In the following sections,the calculation methods of the fugacity and capillary pressure are discussed in detail.

    2.2.Fugacity calculation considering fluid adsorption

    A fugacity calculation method for oil-gas mixtures has been proposed to consider the adsorption effect using A-PR-EOS in a previous study (Song et al.,2020b).In this paper,based on the APR-EOS and the description of water-oil-gas adsorption,a new formula is developed to determine the fugacity in water-oil-gas systems,the details of the fugacity calculation formula derivation are listed in theSupplementary Information.

    whereciandcjare the mole fraction of theith andjth components in any phase,respectively;Zis the compressibility factor;kijis the binary interaction parameter(BIP);AandBare the EOS parameter.

    wherePciis the critical pressure of theith component;Tciis the critical temperature of theith component;Ris the universal gas constant;β is the reduced adsorption density;γ is the dimensionless adsorption radius;Rpis the pore radius;δ is the adsorption thickness.

    As for the oil-gas system,the reduced adsorption density βogand the adsorption thickness δogcan be calculated by,

    wheremandnare empirical parameters;σLJis the Lennard-Jones size parameter.

    As for the water system,the reduced adsorption density βwand the adsorption thickness δwcan be calculated by,

    As for the water-oil-gas mixture,the reduced adsorption density β and the adsorption thickness δ can be calculated by,

    where ε represents the coverage coefficient of water,which is the fraction of the wetted area of water molecules in the total pore area.In this study,ε is approximately set equal to the water feed.

    2.3.Capillary pressure calculation

    According to the research of many scholars,the fluid distribution of a three-phase system is very complicated in a confined space,which causes the diversity of the capillary pressure in shale nanopores.Sun and Li (2019) summarized six possible fluid distributions considering capillary pressure,and their research showed that for different fluid distributions,capillary pressure has similar effects on phase behavior.Thus,in this work,we only choose one possible fluid distribution to study the effect of capillarity.The given fluid distribution model considering adsorption and capillarity in a 1D capillary tube is proposed,as shown in Fig.2.

    As for the fluid distribution shown in the Fig.2,the relationship of the three phase pressures can be expressed as,

    wherePcvwis the capillary pressure between the vapor and aqueous phases;Pcvois the capillary pressure between the vapor and oleic phases.

    The Young-Laplace equation is served as the basic model to calculate the capillary pressure.With the modified pore radius and interfacial tension(IFT)(Tan and Piri,2015)and the assumptions of zero contact angle,the traditional Yong-Laplace is modified to calculatePcvwandPcvo.

    Fig.3.The phase mole fraction of the water-oil-CO2 mixture at P=10 MPa and T=388.7 K.

    Fig.4.The phase equilibrium coefficient of the water-oil-CO2 mixture at P=10 MPa and T=388.7 K:(a) vapor-aqueous equilibrium coefficient;(b) vapor-oleic equilibrium coefficient.

    Fig.5.The phase density of the water-oil-CO2 mixture at P=10 MPa and T=388.7 K.

    Fig.6.The interfacial tension and capillary pressure of the water-oil-CO2 mixture at P=10 MPa and T=388.7 K.

    where σvwis the IFT between vapor and aqueous phases in nanopore;σvois the IFT between vapor and oleic phases in nanopore;is the flat surface tension between vapor and aqueous phases;is the flat surface tension between vapor and oleic phases.

    The Macled-Sugden equation (Weinaug and Katz,1943) has been widely used to predict the interaction tension of oleic-vapor and aqueous-vapor (Dong et al.,2016;Sun and Li,2019).Therefore,The Macleod-Sugden equation is chosen to calculate the flat surface tension between two phases in this paper,

    wherePchiis the parachor;ρW,ρOand ρVare the molar density of the aqueous,oleic,and vapor phases,respectively.

    3.Results and discussion

    The effect of confinement on the three-phase equilibrium of the water-oil-CO2mixture is discussed.A shale oil sample from the Bakken reservoir(Nojabaei et al.,2013)is utilized in the case study.The physical properties and the BIPs of the components are shown in Tables 1 and 2,respectively.The phase equilibrium coefficients of the water-oil-gas mixture in the bulk state are calculated and compared with the PVTsim software and with our three-phase flash code,and the comparison results are shown in Table S3 in theSupplementary Information.It is found that the phase equilibrium coefficients calculated by our code are very consistent with those calculated from PVTsim(The average error is 0.023%),which verifies the correctness and robustness of our algorithm.

    Table 1 Composition data of the water-oil-CO2 mixture(Nojabaei et al.,2013).

    Table 2 BIPs of the water-oil-CO2 mixture(Nojabaei et al.,2013).

    3.1.Phase mole fraction

    The effect of confinement on the mass transport of water-oil-gas mixtures is investigated using the improved three-phase flash algorithm.Fig.3 shows the phase mole fractions of the water-oil-CO2mixture under different pore radii atP=10 MPa andT=388.7 K.The system contains 32.02 mol% aqueous,20.99 mol% oleic,and 46.99 mol%vapor under the pore radius of 100 nm.With a decrease in the pore size (especially when theRpis less than 40 nm),the mole fraction of the vapor phase decreases,and the mole fraction of oleic and aqueous phases increases.When the pore radius is reduced to 10 nm,the mole fraction of the aqueous phase slightly increases to 34.46%,the mole fraction of the oleic phase increases to 35.82%,and the mole fraction of the vapor phase decreases to 29.72%.The result shows that the nanopore confinement effect promotes the transfer of molecules in the vapor phase to the aqueous and oleic phases.That is because the confined molecules have a layered and ordered structure caused by the nanopore constraints and the fluid-wall interactions (Wu et al.,2016).Therefore,the molecules in nanopores have a tendency to form denser phases,namely the aqueous and oleic phases.

    3.2.Phase equilibrium coefficient

    In this section,the phase equilibrium coefficients of the wateroil-CO2mixture are calculated to further illustrate the effect of confinement on mass transport.Fig.4 presents the vapor-aqueous equilibrium coefficient(KW)and vapor-oleic equilibrium coefficient(KO)of each component under different pore radii.As the pore size decreases,theKWandKOof water,CO2,and lighter hydrocarbons(including C1,C2,C3,and C4) are all decreased,theKWandKOof heavier hydrocarbon (including C5-C6,C7-C12,C12-C21,and C22-C28) are all increased.This means that all components in the vapor phase tend to enter the other phases,but the transfer of water,CO2,and lighter hydrocarbons is more significant due to their high initial content in the vapor phase.An important phenomenon can also be found in Fig.4:for almost all components,the change ofKOis more significant thanKW.In other words,the confinement effect presents a greater impact on the transfers between the vapor and oleic phases than the component between the vapor and aqueous phases.

    3.3.Phase density

    Here,the fluid phase density of the water-oil-CO2mixture under different pore sizes is calculated and shown in Fig.5.The result shows that the density of the aqueous phase is almost unchanged,the density of the oleic phase is reduced sharply,the density of the vapor phase is reduced slightly with the reduction of pore radius.That causes the density difference between the aqueous and vapor phases to increase and the density difference between the oleic and vapor phases to decrease.The reason is that the heavy components have a greater tendency to enter the oleic phase than light components (Song et al.,2020a),resulting in an increase in the proportion of light components in the vapor phase and a slight decrease in the density of the vapor phase.On the other hand,due to the high initial content of light components in the vapor phase,the number of light components entering the oleic phase is greater than the number of heavy components.Therefore,the light components in the oleic phase increase,and the density of the oleic phase decreases.

    3.4.Interfacial tension and capillary pressure

    Fig.6 shows the IFT of the water-oil-CO2mixture under different pore radius.It can be observed that the IFT between vapor and aqueous phases (σvw)and the IFT between vapor and oleic phases(σvo)are both decreased with the reduction of the pore size.Due to the presence of nanopore confinement,the composition differences between vapor and liquid phases become smaller,leading to a decrease in σvwand σvo.Besides,the confinement effect presents a greater impact on the transfers between the vapor and oleic phases than the transfers between the vapor and aqueous phases.Thus,the change of σvois more significant than σvw,as shown in Fig.6.

    The capillary pressures of the water-oil-CO2mixture under different pore radii are also shown in Fig.6.As the pore size becomes smaller,the capillary pressure between vapor and aqueous phases(Pcvw)continues to increase;however,the capillary pressure between vapor and oleic phases(Pcvo)increases under larger pore sizes and then decreases under extremely small pore sizes(such asRp<7 nm).It can be attributed to the fact that the reduced IFT and the decreased pore size have opposite effects on capillary pressure.For the vapor-aqueous phases,the σvwchanges slowly,so the influence of the pore radius is dominant.For the vapor-oleic phases,the σvochanges slowly under a larger pore radius,thus the influence of pore radius is also dominant;However,the σvochanges greatly under extremely small pore radii,thus the σvois relatively more dominant inPcvo,resulting in a decrease inPcvoas the pore size decreases.

    4.Conclusions

    In this study,an improved three-phase flash algorithm is proposed to study the effect of nanopore confinement,i.e.,the synthetic effect of fluid adsorption and capillary pressure on the phase equilibrium of the water-oil-CO2mixture.The main finding and conclusions are summarized as follows.

    (1) The confinement effect promotes the transfer of components in the vapor phase to the aqueous and oleic phases,and the transfer of water,CO2,and lighter hydrocarbons is more significant.This leads to a large decrease,a large increase,and a small increase in the mole fractions of the vapor,oleic,and aqueous phases,respectively.

    (2) Due to the confinement effect,the density difference between the aqueous and vapor phases increases,and the density difference between the oleic and vapor phases decreases.

    (3) When the confinement effect is considered,the σvwand σvoare both decreased with the reduction of the pore size,while the change of σvois more significant than σvw.

    (4) ThePcvwcontinues to increase with the reduction of the pore size;however,thePcvoincreases under larger pore size and then decreases under smaller pore size (such asRp<7 nm).

    (5) The confinement effect presents a greater impact on the transfers between the vapor and oleic phases than the transfers between the vapor and aqueous phases.Besides,when theRpis less than 40 nm,the confinement effect is noteworthy and cannot be ignored.

    Declaration of competing interest

    The authors declare no competing financial interest.

    Acknowledgements

    The financial support from National Natural Science Foundation of China (52074319,U19B6003-02) and Strategic Cooperation Technology Project of CNPC (ZLZX 2020-01-08) is gratefully acknowledged.We also wish to thank Haining Zhao at China University of Petroleum-Beijing for his great help on the phase behavior calculation.

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.petsci.2021.09.024.

    成人手机av| 久久青草综合色| 久久这里只有精品19| 欧美精品人与动牲交sv欧美| 免费在线观看完整版高清| 久久精品熟女亚洲av麻豆精品| 欧美3d第一页| 日日爽夜夜爽网站| 在线观看免费日韩欧美大片| 国产在线视频一区二区| 成年女人在线观看亚洲视频| 国产在线一区二区三区精| 日韩一区二区三区影片| 99久国产av精品国产电影| 在线观看美女被高潮喷水网站| av播播在线观看一区| 欧美最新免费一区二区三区| 在线观看免费视频网站a站| 国产精品一二三区在线看| 午夜91福利影院| 欧美另类一区| 色婷婷av一区二区三区视频| 寂寞人妻少妇视频99o| 波野结衣二区三区在线| 亚洲精品美女久久久久99蜜臀 | 91aial.com中文字幕在线观看| 伊人久久国产一区二区| 精品卡一卡二卡四卡免费| 两性夫妻黄色片 | 最近中文字幕2019免费版| 亚洲久久久国产精品| 一个人免费看片子| 超碰97精品在线观看| 国产亚洲精品久久久com| 男男h啪啪无遮挡| 天堂8中文在线网| 国产精品欧美亚洲77777| 国产成人91sexporn| 视频在线观看一区二区三区| 免费看不卡的av| 九九爱精品视频在线观看| av电影中文网址| 制服人妻中文乱码| 亚洲欧洲国产日韩| 美女大奶头黄色视频| 性高湖久久久久久久久免费观看| 新久久久久国产一级毛片| 欧美成人午夜精品| 久久精品国产综合久久久 | 老女人水多毛片| 丝袜在线中文字幕| 51国产日韩欧美| 中文字幕精品免费在线观看视频 | 久久久精品免费免费高清| 久久99热6这里只有精品| 91精品国产国语对白视频| 人人澡人人妻人| 国产高清国产精品国产三级| 亚洲综合色网址| 九色成人免费人妻av| 免费观看a级毛片全部| 国产福利在线免费观看视频| 久久国产精品大桥未久av| 欧美激情 高清一区二区三区| 免费少妇av软件| 亚洲精品国产av蜜桃| 免费黄色在线免费观看| 老司机亚洲免费影院| 午夜老司机福利剧场| 91在线精品国自产拍蜜月| 精品少妇久久久久久888优播| 制服人妻中文乱码| 中文字幕最新亚洲高清| 欧美亚洲 丝袜 人妻 在线| 边亲边吃奶的免费视频| 国产精品久久久久久久电影| 丝瓜视频免费看黄片| 熟女人妻精品中文字幕| 国产视频首页在线观看| 国产精品国产三级专区第一集| 欧美最新免费一区二区三区| 免费看不卡的av| 国产在线一区二区三区精| av在线老鸭窝| 久久久国产欧美日韩av| 久久久久久人妻| 国产爽快片一区二区三区| 女人被躁到高潮嗷嗷叫费观| 国产一级毛片在线| 欧美成人精品欧美一级黄| 热re99久久精品国产66热6| 香蕉精品网在线| 侵犯人妻中文字幕一二三四区| 成人漫画全彩无遮挡| 国产高清国产精品国产三级| 草草在线视频免费看| av在线观看视频网站免费| 狠狠婷婷综合久久久久久88av| 在线天堂中文资源库| 亚洲欧美成人精品一区二区| 在线观看一区二区三区激情| 亚洲精品中文字幕在线视频| 亚洲精品成人av观看孕妇| 亚洲三级黄色毛片| 嫩草影院入口| 亚洲国产精品一区三区| 国产亚洲午夜精品一区二区久久| √禁漫天堂资源中文www| 最新中文字幕久久久久| 最新中文字幕久久久久| 国产麻豆69| 亚洲一级一片aⅴ在线观看| 久久这里有精品视频免费| 水蜜桃什么品种好| 亚洲精品第二区| 在线观看www视频免费| 天堂俺去俺来也www色官网| 一边摸一边做爽爽视频免费| 人妻少妇偷人精品九色| 欧美精品亚洲一区二区| 国产精品一二三区在线看| 三级国产精品片| 女人被躁到高潮嗷嗷叫费观| 亚洲伊人色综图| 午夜免费观看性视频| 人人妻人人澡人人爽人人夜夜| 久久久久久久久久人人人人人人| 午夜福利网站1000一区二区三区| 另类亚洲欧美激情| 久久亚洲国产成人精品v| 中文字幕免费在线视频6| 老司机影院成人| 熟女人妻精品中文字幕| 久久精品久久精品一区二区三区| 国产精品国产三级国产av玫瑰| 日本vs欧美在线观看视频| 成人黄色视频免费在线看| 午夜av观看不卡| 看非洲黑人一级黄片| 色吧在线观看| 黑人猛操日本美女一级片| 观看美女的网站| 国产成人a∨麻豆精品| 午夜老司机福利剧场| 中文乱码字字幕精品一区二区三区| 久久精品久久久久久久性| 97精品久久久久久久久久精品| 一本大道久久a久久精品| 亚洲成人手机| 美国免费a级毛片| 午夜91福利影院| 性色avwww在线观看| 性色avwww在线观看| 日韩免费高清中文字幕av| 一区二区三区乱码不卡18| 人妻人人澡人人爽人人| 性色avwww在线观看| 99久久精品国产国产毛片| 久久国内精品自在自线图片| 中文字幕精品免费在线观看视频 | 久久精品国产a三级三级三级| 熟妇人妻不卡中文字幕| 国产一区有黄有色的免费视频| 久久狼人影院| 日韩一区二区视频免费看| 免费大片黄手机在线观看| 久久鲁丝午夜福利片| 少妇精品久久久久久久| 王馨瑶露胸无遮挡在线观看| 国产亚洲精品久久久com| a级毛色黄片| 成年av动漫网址| 国产色爽女视频免费观看| 在线观看一区二区三区激情| 免费在线观看完整版高清| 成年人免费黄色播放视频| 性高湖久久久久久久久免费观看| 人人妻人人澡人人爽人人夜夜| 免费女性裸体啪啪无遮挡网站| 成人毛片a级毛片在线播放| 亚洲av国产av综合av卡| 日韩不卡一区二区三区视频在线| 精品午夜福利在线看| 久久影院123| 大片免费播放器 马上看| 熟女人妻精品中文字幕| 久久精品国产a三级三级三级| 久久久久国产精品人妻一区二区| 又黄又粗又硬又大视频| 日本欧美国产在线视频| 一区二区三区四区激情视频| 狂野欧美激情性xxxx在线观看| 男女高潮啪啪啪动态图| 成人国语在线视频| 我的女老师完整版在线观看| 有码 亚洲区| 国产高清国产精品国产三级| 美女内射精品一级片tv| 久久久久国产精品人妻一区二区| 三上悠亚av全集在线观看| h视频一区二区三区| 国产一区二区三区综合在线观看 | 99久久综合免费| 午夜福利视频精品| 黄色毛片三级朝国网站| 王馨瑶露胸无遮挡在线观看| 亚洲精品日本国产第一区| 国产精品一区www在线观看| 捣出白浆h1v1| 久久亚洲国产成人精品v| 久久久久精品人妻al黑| 亚洲经典国产精华液单| 天堂中文最新版在线下载| 亚洲av欧美aⅴ国产| 国产精品成人在线| 免费播放大片免费观看视频在线观看| 99久久中文字幕三级久久日本| 久久影院123| 一级毛片我不卡| 国产精品99久久99久久久不卡 | 久久免费观看电影| 亚洲美女视频黄频| 国产成人精品婷婷| 免费观看性生交大片5| 我要看黄色一级片免费的| 国产精品久久久久久久久免| 亚洲精品久久成人aⅴ小说| www.av在线官网国产| 91午夜精品亚洲一区二区三区| 精品久久蜜臀av无| 亚洲国产av影院在线观看| 免费高清在线观看视频在线观看| 久久久久精品久久久久真实原创| 有码 亚洲区| 一级毛片我不卡| 性色av一级| 久久婷婷青草| 免费高清在线观看日韩| 日本与韩国留学比较| 成人国产av品久久久| 精品熟女少妇av免费看| 精品午夜福利在线看| 国产亚洲欧美精品永久| 大香蕉97超碰在线| 国产xxxxx性猛交| 九草在线视频观看| 亚洲av国产av综合av卡| 视频中文字幕在线观看| 香蕉精品网在线| 国产男女超爽视频在线观看| 久久精品国产自在天天线| 国精品久久久久久国模美| 天天躁夜夜躁狠狠躁躁| 国产av精品麻豆| 午夜av观看不卡| 欧美日韩视频高清一区二区三区二| 久久人人97超碰香蕉20202| 国产在线免费精品| 少妇人妻久久综合中文| 在线 av 中文字幕| 亚洲精华国产精华液的使用体验| 亚洲色图 男人天堂 中文字幕 | 国产亚洲午夜精品一区二区久久| 美女xxoo啪啪120秒动态图| 亚洲精品国产色婷婷电影| 丰满迷人的少妇在线观看| 精品久久久精品久久久| 中文字幕亚洲精品专区| 久久精品人人爽人人爽视色| 国产一区二区在线观看日韩| 91在线精品国自产拍蜜月| 2021少妇久久久久久久久久久| 一本大道久久a久久精品| 欧美精品亚洲一区二区| 国产乱来视频区| 久久久精品免费免费高清| 亚洲欧美一区二区三区黑人 | 久久久久久久久久久免费av| 国产精品偷伦视频观看了| 亚洲综合色网址| 午夜91福利影院| 欧美 日韩 精品 国产| 国产精品国产av在线观看| 免费女性裸体啪啪无遮挡网站| 一区二区av电影网| 亚洲综合色网址| 午夜免费鲁丝| 免费黄色在线免费观看| 在线观看一区二区三区激情| 欧美最新免费一区二区三区| 日本与韩国留学比较| 高清av免费在线| 精品少妇内射三级| 一级黄片播放器| 国产高清三级在线| 日本黄色日本黄色录像| 国产精品 国内视频| 一级毛片 在线播放| 黄色怎么调成土黄色| 最近2019中文字幕mv第一页| 在线观看人妻少妇| 国产有黄有色有爽视频| 桃花免费在线播放| 亚洲精品av麻豆狂野| 国产精品一二三区在线看| 亚洲在久久综合| 一级,二级,三级黄色视频| 九色成人免费人妻av| 九色亚洲精品在线播放| 日韩视频在线欧美| 看免费成人av毛片| 26uuu在线亚洲综合色| 免费大片18禁| 婷婷色av中文字幕| 亚洲成av片中文字幕在线观看 | 国产深夜福利视频在线观看| 各种免费的搞黄视频| 国产1区2区3区精品| 国产精品一二三区在线看| 成年动漫av网址| 国产免费一级a男人的天堂| 久久这里只有精品19| 黄色毛片三级朝国网站| 国产欧美日韩一区二区三区在线| 伦精品一区二区三区| 久久99精品国语久久久| 精品一区在线观看国产| 9热在线视频观看99| 成人综合一区亚洲| 免费观看av网站的网址| 亚洲综合色惰| 亚洲精品国产av成人精品| 国产亚洲av片在线观看秒播厂| 美女脱内裤让男人舔精品视频| 亚洲伊人久久精品综合| 啦啦啦视频在线资源免费观看| 亚洲av免费高清在线观看| 超碰97精品在线观看| 亚洲欧美色中文字幕在线| 精品酒店卫生间| 一级片免费观看大全| 一区二区av电影网| 国产亚洲午夜精品一区二区久久| 美女福利国产在线| 建设人人有责人人尽责人人享有的| av在线app专区| 永久网站在线| 日本vs欧美在线观看视频| 王馨瑶露胸无遮挡在线观看| 97在线人人人人妻| 久久人妻熟女aⅴ| 啦啦啦在线观看免费高清www| 五月天丁香电影| 人妻 亚洲 视频| 亚洲精品乱码久久久久久按摩| 久久久精品94久久精品| 免费黄色在线免费观看| 成年人免费黄色播放视频| 极品人妻少妇av视频| 少妇猛男粗大的猛烈进出视频| 999精品在线视频| 亚洲久久久国产精品| 欧美精品一区二区免费开放| 色视频在线一区二区三区| 国产精品一二三区在线看| 国产成人午夜福利电影在线观看| 久久免费观看电影| 一级毛片电影观看| 日韩 亚洲 欧美在线| 午夜视频国产福利| 男女边摸边吃奶| 成人影院久久| 丰满饥渴人妻一区二区三| 久久av网站| 如日韩欧美国产精品一区二区三区| 在线观看美女被高潮喷水网站| 啦啦啦啦在线视频资源| 亚洲性久久影院| 日本av免费视频播放| 亚洲婷婷狠狠爱综合网| 十八禁高潮呻吟视频| 精品熟女少妇av免费看| 精品久久国产蜜桃| 少妇熟女欧美另类| 欧美+日韩+精品| 精品一区二区免费观看| 国产在视频线精品| 午夜福利乱码中文字幕| av在线观看视频网站免费| 啦啦啦视频在线资源免费观看| 伊人久久国产一区二区| 国产福利在线免费观看视频| 久久青草综合色| 精品亚洲成a人片在线观看| 这个男人来自地球电影免费观看 | 国产无遮挡羞羞视频在线观看| 久久av网站| 草草在线视频免费看| 婷婷色综合www| 久久这里有精品视频免费| 蜜臀久久99精品久久宅男| 免费观看性生交大片5| 亚洲精品一区蜜桃| 永久网站在线| 成人18禁高潮啪啪吃奶动态图| 国产一级毛片在线| 久久女婷五月综合色啪小说| 亚洲综合色网址| a级毛色黄片| 久久久久久久久久久免费av| 国产精品人妻久久久影院| 三级国产精品片| 人人妻人人澡人人爽人人夜夜| 亚洲av福利一区| 如何舔出高潮| 人人妻人人爽人人添夜夜欢视频| 最新的欧美精品一区二区| 男女边吃奶边做爰视频| 久久久久精品性色| 亚洲国产看品久久| 在线看a的网站| 亚洲国产欧美在线一区| 中文字幕精品免费在线观看视频 | 国产极品天堂在线| 免费av中文字幕在线| 在线免费观看不下载黄p国产| 人人妻人人爽人人添夜夜欢视频| 草草在线视频免费看| 丝袜脚勾引网站| 久久久久精品人妻al黑| 一级毛片 在线播放| 在线免费观看不下载黄p国产| 久久久久久久久久久免费av| 久久人人爽人人爽人人片va| 欧美丝袜亚洲另类| 国产av精品麻豆| 搡老乐熟女国产| 十八禁高潮呻吟视频| 满18在线观看网站| 成人国语在线视频| 男人爽女人下面视频在线观看| 18+在线观看网站| 少妇人妻久久综合中文| 亚洲人与动物交配视频| 久久亚洲国产成人精品v| 久久精品久久久久久噜噜老黄| 高清欧美精品videossex| 赤兔流量卡办理| 国产一区二区在线观看日韩| 中文字幕精品免费在线观看视频 | 99九九在线精品视频| 欧美97在线视频| 国产一区二区三区av在线| 一级毛片我不卡| 久久久欧美国产精品| 日韩不卡一区二区三区视频在线| 97人妻天天添夜夜摸| 日韩不卡一区二区三区视频在线| 精品一区在线观看国产| 国产成人欧美| 在线看a的网站| 高清不卡的av网站| 热99久久久久精品小说推荐| 亚洲美女视频黄频| 51国产日韩欧美| 亚洲中文av在线| 国产男女内射视频| 男人舔女人的私密视频| 一级片免费观看大全| 精品少妇内射三级| 午夜免费男女啪啪视频观看| 日韩制服骚丝袜av| 亚洲高清免费不卡视频| 黑人巨大精品欧美一区二区蜜桃 | 亚洲综合色网址| 下体分泌物呈黄色| 国产精品一区二区在线观看99| www.熟女人妻精品国产 | 制服诱惑二区| 老司机亚洲免费影院| 国产在线免费精品| 一级毛片电影观看| videos熟女内射| 两性夫妻黄色片 | 青春草国产在线视频| 国产在线免费精品| 久久久国产一区二区| 啦啦啦啦在线视频资源| 天天操日日干夜夜撸| 美女xxoo啪啪120秒动态图| 熟妇人妻不卡中文字幕| 婷婷色麻豆天堂久久| 一二三四中文在线观看免费高清| 国产xxxxx性猛交| 街头女战士在线观看网站| 嫩草影院入口| 国产成人午夜福利电影在线观看| 久久精品国产自在天天线| 在线免费观看不下载黄p国产| 色94色欧美一区二区| 成人18禁高潮啪啪吃奶动态图| 午夜影院在线不卡| 久久久久精品久久久久真实原创| 亚洲五月色婷婷综合| 全区人妻精品视频| 91在线精品国自产拍蜜月| 两个人免费观看高清视频| 我的女老师完整版在线观看| 国产精品久久久久久久久免| 日韩人妻精品一区2区三区| 嫩草影院入口| 在线天堂中文资源库| 久久午夜综合久久蜜桃| 国产免费又黄又爽又色| 99热国产这里只有精品6| 久久99热6这里只有精品| 亚洲欧美一区二区三区黑人 | 日韩中文字幕视频在线看片| 欧美成人精品欧美一级黄| 日韩人妻精品一区2区三区| 亚洲国产最新在线播放| 国产一区二区三区综合在线观看 | 国产高清三级在线| 色吧在线观看| 老女人水多毛片| av片东京热男人的天堂| 极品少妇高潮喷水抽搐| 街头女战士在线观看网站| 久久久久精品性色| 国产有黄有色有爽视频| 中文字幕av电影在线播放| 午夜免费男女啪啪视频观看| 在线观看三级黄色| 高清在线视频一区二区三区| 观看av在线不卡| a级毛色黄片| 一级片免费观看大全| 久久国内精品自在自线图片| www.av在线官网国产| 久久ye,这里只有精品| 精品国产一区二区三区四区第35| 女人精品久久久久毛片| 九九爱精品视频在线观看| 婷婷色综合大香蕉| 亚洲av综合色区一区| freevideosex欧美| 成年人午夜在线观看视频| 成人亚洲精品一区在线观看| 亚洲精品久久午夜乱码| 宅男免费午夜| 日韩av免费高清视频| 国产高清三级在线| 国产一区二区在线观看av| 蜜桃国产av成人99| 街头女战士在线观看网站| 亚洲欧美一区二区三区国产| 男女免费视频国产| 亚洲欧美清纯卡通| 国产精品久久久久久久电影| 男男h啪啪无遮挡| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品人妻在线不人妻| 国产亚洲欧美精品永久| av在线老鸭窝| 精品一区二区免费观看| 久久久久久人人人人人| 成人黄色视频免费在线看| 亚洲av综合色区一区| 蜜臀久久99精品久久宅男| 曰老女人黄片| 永久免费av网站大全| 国产老妇伦熟女老妇高清| 免费观看在线日韩| av电影中文网址| 熟女电影av网| 久久韩国三级中文字幕| 大香蕉久久网| 国产1区2区3区精品| 国产一区二区激情短视频 | 免费大片黄手机在线观看| 久久久久人妻精品一区果冻| 男人添女人高潮全过程视频| 亚洲一级一片aⅴ在线观看| 99久久人妻综合| 欧美bdsm另类| 香蕉精品网在线| 街头女战士在线观看网站| 少妇人妻精品综合一区二区| 国产成人精品无人区| 免费日韩欧美在线观看| 日本免费在线观看一区| 美女内射精品一级片tv| 人人妻人人澡人人爽人人夜夜| 久久97久久精品| 丰满饥渴人妻一区二区三| 在线看a的网站| 99久国产av精品国产电影| 精品熟女少妇av免费看| 99久久综合免费| 美女脱内裤让男人舔精品视频| 欧美日韩国产mv在线观看视频| 亚洲av电影在线进入| 99九九在线精品视频| 久久人妻熟女aⅴ| 在现免费观看毛片| 亚洲一码二码三码区别大吗| 久久久久精品性色| 国产精品 国内视频| 亚洲精品成人av观看孕妇| 国产精品偷伦视频观看了| 亚洲精品中文字幕在线视频| 日本午夜av视频| 日韩制服丝袜自拍偷拍| 亚洲综合色惰| 久久狼人影院|