• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research progress on seismic imaging technology

    2022-03-30 13:51:52ZhenChunLiYingMingQu
    Petroleum Science 2022年1期

    Zhen-Chun Li ,Ying-Ming Qu ,*

    a School of Geosciences,China University of Petroleum,Qingdao,Shandong,266580,China

    b Shandong Provincial Key Laboratory of Deep Oil & Gas,China University of Petroleum,Qingdao,Shandong,266580,China

    Keywords:Common reflection surface stack Gaussian-beam migration Reverse-time migration Least-squares reverse-time migration

    ABSTRACT High-precision seismic imaging is the core task of seismic exploration,guaranteeing the accuracy of geophysical and geological interpretation.With the development of seismic exploration,the targets become more and more complex.Imaging on complex media such as subsalt,small-scale,steeply dipping and surface topography structures brings a great challenge to imaging techniques.Therefore,the seismic imaging methods range from stacking-to migration-to inversion-based imaging,and the imaging accuracy is becoming increasingly high.This review paper includes:summarizing the development of the seismic imaging;overviewing the principles of three typical imaging methods,including common reflection surface (CRS) stack,migration-based Gaussian-beam migration (GBM) and reverse-time migration (RTM),and inversion-based least-squares reverse-time migration (LSRTM);analyzing the imaging capability of GBM,RTM and LSRTM to the special structures on three typical models and a land data set;outlooking the future perspectives of imaging methods.The main challenge of seismic imaging is to produce high-precision images for low-quality data,extremely deep reservoirs,and dual-complex structures.

    1.Introduction

    Seismic imaging technology contains three categories:stacking-,migration-and inversion-based imaging.Stacking imaging methods mainly include the common middle point(CMP)stack,the common reflection point (CRP) stack,the common conversion point (CCP)stack,and the common reflection surface (CRS,Hubral,1983;Tygel et al.,1996;Hubral et al.,1996) stack.Some field data examples suggest that the CRS stack is better than the other stacking-based imaging methods in low coverage and low signal-to-noise ratio(SNR) data.After conducting the CRS stack,a high-resolution zerooffset (ZO) profile and key kinematic parameters of the seismic wavefield can be obtained to directly invert the optimal velocity models.In the case of low SNR data,accurate kinematic parameters obtained from the CRS stack can help to produce a good initial model for the other velocity inversion methods.However,stacking-based imaging methods cannot accurately move dipping reflectors into their true subsurface positions and collapses diffractions.

    Migration-based imaging is an effective technique for imaging complex structures (O'Brien and Gray,1996;Rosenberg,2000;Glogovsky et al.,2002;Ravasi and Curtis,2013).Up to now,prestack depth migration has become the mainstream in seismic exploration due to its high imaging accuracy.There are two main types of prestack depth migration methods.The first is based on the ray theory,such as Kirchhoff migration(Schneider,1978;Kuo and Dai,1984;Dai and Kuo,1986;Wapenaar and Haime,1990;Hokstad,2000;Wu et al.,2007b;Du and Hou,2008) and Gaussian-beam migration (GBM) (Hill,1990,2001;Alkhalifah,1995;Gray and Bleistein,2009;Yang et al.,2015a,2015b).The second method is wave-equation-based migration,such as one-way wave-equation migration(Gazdag,1978;Stolt,1978;Gazdag and Sguazzero,1984;Stoffa et al.,1990;Ristow and Rühl,1994;Mulder and Plessix,2004)and reverse-time migration (RTM) based on the two-way wave equation (Whitmore,1983;McMechan,1983;Baysal et al.,1983;Loewenthal and Mufti,1983;Sun and McMechan,1986).Among the ray-based migration methods,GBM has attracted more attention because Gassian-beams presents seismic wave fields more accurate than other geometric rays.RTM has advantages over one-way wave-equation migration methods for imaging complex subsurface structures.Therefore,the rest of the paper focuses on the raybased GBM and the two-way wave-equation-based RTM.

    In the early 1980s,Cerveny et al.(1982)introduce the GBM from electromagnetism to geophysics.At first,it is used in the seismic wave forward modeling,and then gradually extended to the migration imaging (Hill,1990).Hill (2001) derive the poststack depth migration formula based on the Green function of Gaussian beam,which lays the theoretical basis for GBM.Subsequently,many geophysicists have improved the GBM to have a better adaptability and higher imaging accuracy(e.g.Nowack et al.,2003;Gray,2005).RTM can produce an image of the subsurface reflector by synthesizing forward-propagated source wavefields and backpropagated receiver wavefields,proposed by Whitmore (1983),McMechan (1983),Baysal et al.(1983) and Loewenthal and Mufti(1983).It exhibits a great advantage over ray-based methods and one-way wave-equation-based methods in imaging complex structure models(Chang and McMechan,1986,1990).Initially,RTM is implemented for post-stack migration.Chang and McMechan(1986) first applied RTM to prestack data processing.Due to the expensive computational cost of RTM,it has not been widely used in the industrial industry at first.But with the development of computer hardware,RTM starts to attract more attention from scholars and the industry.At present,RTM has moved from poststack to prestack (Chang and McMechan,1986),from 2D to 3D(Chang and McMechan,1990;Sun and McMechan,2001;Sun et al.,2006),from acoustic waves to elastic waves (Sun and McMechan,1986;Zhe and Greenhalgh,1997;Sun et al.,2006;Yan and Sava,2008;Qu et al.2015,2018;Zou et al.,2020),from isotropic media to anisotropic media (Liu et al.,2009;Huang et al.,2009;Tessmer,2010).As of now,RTM is the most accurate and robust depth migration method among all these methods (Baysal et al.,1983;McMechan,1983) because it does not make any approximation to the wave equation,and makes full use of the kinematics and dynamics information of the wave equation.It can deal with all wave types (reflection,refraction and diffraction) and has no imaging inclination limit (Chattopadhyay and McMechan,2008).The amplitude characteristics of the imaging results are maintained well(Mulder and Plessix,2004).

    Most conventional migration methods use the adjoint of the forward operator rather than its inverse (Claerbout and Abma,1992;Nemeth et al.,1999),leading to a series of imaging problems,such as low SNR,unbalanced imaging amplitude and acquisition footprint,etc.(Kuehl and Sacchi,1999;Duquet et al.,2000).To overcome the problems of the conventional migration methods,least-squares migration (LSM) based on the adjoint state theory have been proposed and developed rapidly.Since the construction of the seismic inversion framework,the LSM is implemented within ray-based(e.g.Tarantola,1984;Cole and Karrenbach,1992;Duquet et al.,2000;Yue et al.,2021),one-way wave-equationbased (e.g.Kuehl and Sacchi,2001,2003;Rickett,2003) and twoway wave-equation-based (e.g.Zhang et al.,2015;Sun et al.,2018) migration operators.The ray-based LSM can be divided into least-squares Kirchhoff migration (LSKM) (e.g.Cole and Karrenbach,1992;Nemeth et al.,1999;Duquet et al.,2000;Fomel et al.,2002;Huang et al.,2013;Liu et al.,2013;Wang et al.,2014)and least-squares Gaussian-beam migration(LSGBM)(e.g.Hu et al.,2016a;Yuan et al.,2017;Yang et al.,2018;Yue et al.,2021).The oneway wave-equation-based LSM mainly includes least-squares splitstep Fourier migration(Kuehl and Sacchi,2001,2003;Shen and Liu,2012),least-squares generalized screen migration (Wu and Maarten,1996;Zhou et al.,2014),least-squares Fourier finitedifference migration (Rickett,2003;Yang and Zhang,2008),etc.Two-way wave-equation-based LSM is also known as least-squares RTM (LSRTM),which has drawn wide attention and research because of its advantage in imaging complex structures.To improve the effectiveness of LSRTM for migrating the field data,many optimization methods have been proposed to improve the computational efficiency(e.g.Plessix and Mulder,2004;Valenciano et al.,2006;Schuster et al.,2011;Huang and Schuster,2012;Dai et al.,2013;Wu et al.,2016;Chen and Sacchi,2017),reduce the dependence on the migration velocity (e.g.Hou and Symes,2016;Sun et al.,2018),suppress the effects of the seismic wavelets (e.g.Choi and Alkhalifah,2011)and mitigate the sensitivity to noise(e.g.Brossier et al.,2010;Aravkin et al.,2011).

    This paper firstly reviews stacking-based CRS stack,migrationbased GBM and RTM,and inversion-based LSRTM.Then,several typical models and field data are tested by using GBM,RTM,and LSRTM separately.Finally,the future development of seismic imaging is prospected.

    2.Imaging methods

    2.1.Stacking-based CRS stack

    The idea of CRS stack first comes from Hubral (1983).He first proposed the stacking method of common reflection element(CRE)based on two-parameters optimization(Keydar et al.,1989;Olalde and Rabbel,1995;Steentoft and Rabbel,1992,1994;Steentoft,1993)and CRS based on three-parameters optimization (Muller et al.,1998;Bazelaire et al.,1999;Oliva et al.,2010).Fig.1a,b and 1c show schematic diagram of MZO,Kirchhoff Prestack depth migration (PSDM) and CRS stack(Hubral et al.,1996).

    In the coordinate system established by the middle pointxmand half offseth,the approximate formula of hyperbolic travel time on the CRS surface is

    and the approximate formula of parabolic travel time on the CRS surface is

    wherev0is the near-surface velocity,α is the emergence angle of ZO rays on the surface,RNIPis the curvature radius of the normal incident point wave front andRNis the curvature radius of the normal wave front.

    Fig.2 shows CMP and CRS stacking images using a field data set.As can be seen from the comparison in Fig.2,the SNR of the CRS stacking profile is greatly improved,and the kinematic characteristics of the wavefield are maintained well.In particular,the image of deep reflectors is greatly enhanced.

    2.2.Gaussian-beam migration and reverse-time migration

    2.2.1.Gaussian-beam migration

    The most critical step in GBM is to construct the Green function.In fact,the Green function can be understood as the seismic wavefield generated by a point source,which can be solved by the following equation

    Fig.1.Schematic diagram of MZO (a),Kirchhoff PSDM (b) and CRS stack (c).

    whereGGB(x,x0;ω)denotes the Green function,x is the coordinate,x0is the source point coordinate,v presents the velocity and ?2denotes the Laplacian operator.

    As the seismic exploration pursues higher and higher accuracy,the conventional GBM cannot meet the requirements of high precision imaging,so many new GBM methods and optimization algorithms have emerged,including the Gaussian beam reverse time migration (GBRTM) (Popov et al.,2010;Yang et al.,2015b;Zhang et al.,2019),elastic GBM (Huang et al.,2017),the true amplitude GBM(Albertin et al.,2004;Gray and Bleistein,2009),Fresnel-bandbased GBM(Yang and Zhu,2018),the least-squares Gaussian beam migration (LSGBM) (Hu et al.,2016a;Yuan et al.,2017;Yang et al.,2018),anisotropic GBM (Alkhalifah,1998),viscoacoustic GBM (e.g.Wu et al.,2015;Bai et al.,2016;Dai et al.,2016),etc.

    In addition,other seismic beam migration methods,such as Fresnel beam and focusing beam(as shown in Figs.3 and 4),show better effects on seismic imaging of complex media and thus have been widely used.

    2.2.2.Reverse time migration

    The theoretical basis of RTM imaging is the time consistency principle proposed by Claerbout (1971).The imaging condition in the frequency domain can be expressed by the following equation

    whereRrepresents the imaging result,Udenotes the receiver wavefield (the upgoing wavefield),ω denotes the frequency,Dis the source wavefield(the downgoing wavefield),(x,y,z)represents the spatial coordinates,sdenotes the source andtrepresents the time.In some frequencies,Din equation (4) will be very small,or even zero,which leads to instability of the imaging condition.For this reason,Claerbout(1971)approximated equation(4)to produce the imaging result by using a zero-delay cross-correlation of upgoing and downgoing waves,which can be expressed as

    wheresmaxandtmaxrepresent the maximum shot number and the maximum recording time,respectively.

    The imaging condition expressed in equation(5)can also apply to RTM.As a result,RTM includes three steps:(1) the forward continuation of the source-side wavefield,(2) the backward continuation of the receiver-side wavefield and(3)the application of imaging conditions (Chang and McMechan,1986).

    Fig.2.CMP (a) and CRS (b) stacking profiles and magnified views in Fig.2a (c) and 2b (d).

    Fig.3.Propagation morphology of GB and Fresnel beam.(a) GB with an initial width of 1/4 wavelength;(b) GB with an initial width of one wavelength;(c) Fresnel beam.

    A great deal of research has been done on several defects of RTM.There are two main methods to improve computational efficiency and storage capacity.One is to use high-performance computation (e.g.Foltinek et al.,2009;He et al.,2010;Suh et al.,2010;Liu et al.,2010;Zhao,2021),and the other is to improve algorithms (Hayashi and Burns,1999;Symes,2007;Zhang et al.,2007b;Dussaud and Symes,2008;Guan et al.,2008;Clapp,2009;Xu et al.,2010;Nguyen and McMechan,2013).

    Fig.4.A velocity model (a) and propagation patterns of GB (b),dynamic focusing beam (c) and adaptive focusing beam (d).

    Eliminating both low-wavenumber and high-wavenumber artifacts of migration is also a huge challenge in RTM.The proposed methods for this purpose includes three main categories:the first is to change the wave equation to attenuate the artifacts during in the stage of wave propagation(e.g.Baysal et al.,1984;Loewenthal et al.,1987;Fletcher et al.,2005);the second is to improve the imaging conditions by using the Poynting vector (e.g.Yoon and Marfurt,2006) and decomposing wavefields into up-going and down-going ones (Liu et al.,2011a),etc;the third is to apply post-imaging filtering,such as Laplacian filtering,least-squares filtering (Guitton et al.,2007),dip filtering(Sun and Zhang,2009),etc.

    2.3.Inversion-based least-squares reverse time migration imaging

    The purpose of LSM is to seek a model by minimizing an objective function.The common used objective function is based on the L2 norm and the objective functionEis given as

    whereLrepresents a demigration operator(linear modeling operator),mdenotes the parameters,dobsrepresents the observed data set and ‖‖2denotes theL2-norm andmis a reflectivity model.

    In recent years,the research of LSRTM mainly focuses on improving computational efficiency.The first method to improve efficiency is multisource LSRTM.Multisource LSRTM technology can combine a bunch of shot gathers into one or more supergathers for imaging,but crosstalk noise will be introduced.Some encoding technologies such as polarity encoding (e.g.Schuster et al.,2011),amplitude encoding (e.g.Hu et al.,2016b),frequency division encoding (e.g.Huang and Schuster,2012),plane wave encoding(e.g.Dai and Schuster,2013),random encoding(Li et al.,2018)and other encoding methods of LSRTM have been proposed to suppress the crosstalk noise.The second method is LSRTM based on gradient preprocessing.The method can improve the convergence rate by considering the inverse of the Hessian matrix as a preconditioner.However,solving the inverse of Hessian matrix needs a huge amount of computational cost,therefore,simplified Hessian matrices are introduced to preprocess gradients (e.g.Plessix and Mulder,2004;Valenciano et al.,2006;Gao et al.,2020).The third method is LSRTM based on regularization constraints.Reasonable regularization constraints can improve the convergence speed of LSRTM (Dai et al.,2013;Li et al.,2017a).The regularization constraint methods mainly include the local inclination constraint method (Liu et al.,2013),the prior information constraint method(Li et al.,2016),L1 sparse constraint(Wu et al.,2016,2021),sparse constraint in curved wave domain (Gao et al.,2020),local Radon transform constraint (Dutta et al.,2017),constraint in wavelet transform domain (Li et al.,2020a),etc.In addition,some instructive studies of practical LSRTM are implemented to reduce the dependence on the migration velocity (e.g.Liu and Li,2015;Hou and Symes,2016;Li et al.,2017c;Sun et al.,2018;Yang et al.,2020),the dependence on wavelets (e.g.Choi and Alkhalifah,2011;Li et al.,2017b),and the sensitivity to noise (e.g.Brossier et al.,2010;Aravkin et al.,2011;Li et al.,2017b).

    3.Case study

    3.1.Typical model examples

    Some representative complex models are selected to numerical analyze the imaging capability of GBM,RTM and LSRTM to the special structures such as salt domes,small-scale anomalies and steeply dipping reflectors.

    Fig.5.The salt dome model (a) and the imaging results from GB (b),RTM (c) and LSRTM (d).

    3.1.1.Salt dome model

    Firstly,a salt dome model is used to compare the three imaging methods on imaging the salt dome and subsalt structures.Fig.5a shows the saltdomevelocity modelwithagridsizeof301×301anda grid interval of 6 m.The model spans a rectangle area of 4800 m×3200 m and has a saltdomewithsteeply dipping flanks and subsalt structures,bringing a great challenge for imaging.The shot record consists of 75 shots,each with 301 traces,with trace spacing of 6 m and the source interval of 20 m.The source is excited on the surface.Fig.5b,cand5dshowtheimagingresultsfromGBM,RTMand LSRTM,respectively.As can be seen from Fig.5,the imaging result of subsalt reflectors from GBM has weak amplitude while the corresponding RTM result has stronger amplitude but with a low resolution.Among all the methods,LSRTM produces the best imaging result of subsalt structures in terms of amplitude and resolution.

    3.1.2.Sigsbee2A model

    We then use the SigsBee2A model (Fig.6a) to compare the imaging capability of small-scale structures.The size of the model is 500×218 with a grid spacing of 8 m×8 m.A total number of shots is 80 and the source function is a Ricker wavelet with a dominant frequency of 25 Hz.The shot record is received by 501 receivers spaced every 10 m along the surface.The time sampling interval for the imaging test is set as 0.5 ms.The synthetic records are produced by the Born modeling.Fig.6b,c and 6d are the imaging results from GBM,RTM,and LSRTM,respectively.To compare the three imaging results more clearly,we draw magnified views of Fig.6b,c and 6d,as shown in Fig.7b,c and 7d,respectively.Compared to the GBM and RTM images,the imaging result of LSRTM has clearer subsalt structure,salt dome flanks and small-scale caves.In addition,the LSRTM image has better resolution,wider illumination and more balanced amplitude.

    3.1.3.BP model

    The three imaging methods are validated on a BP model to test the imaging capability of steeply dipping structures.The size of the model is 4000 m×2540 m along horizontal and vertical directions,respectively,with a grid interval of 8 m.A total of 80 shots with a shot interval of 100 m.The source is located on the surface with a Ricker wavelet of 25 Hz dominant frequency as the source function.The data set is received by 301 receivers,spaced every 8 m on the surface.The time sampling interval for the imaging test is set as 0.6 ms with a total time length of 3 s.Fig.8b,c and 8d show the imaging results of GBM,RTM,and LSRTM,respectively.It can be seen that the GB cannot obtain the steeply dipping structures,but RTM and LSRTM can.The imaging result from LSRTM has clearer steeply dipping flanks,better resolution,more balanced amplitude and fewer artifacts than that from RTM.

    3.2.Land data example

    Finally,we conduct the three imaging methods on a set of land data.Fig.9a shows the migration velocity model,estimated by the velocity analysis.Fig.9b shows an ideal imaging result from GBM.Fig.9c illustrates imaging results produced from RTM.In Fig.9c,there are some obvious low-frequency noises and imaging artifacts.The LSRTM image after 20 iterations is displayed in Fig.9d with more improved SNR,higher resolution and balanced energy.

    Fig.6.The SigsBee2A model (a) and the imaging results from GBM (b),RTM (c) and LSRTM (d).

    Fig.7.Magnified views in Fig.6a (a),6b (b),6c (c) and 6d (d).

    4.Future perspective

    At present,the main challenge of seismic imaging is to produce high-precision images for low-quality data,extremely deep reservoirs,and dual-complex structures(LED subsurface imaging).In the future,it will have broad development prospects in the following aspects.

    Fig.8.The BP model (a) and the imaging results from GB (b),RTM (c) and LSRTM (d).

    Fig.9.Migration velocity model (a) and imaging results from GBM (b) and RTM (c) and LSRTM (d).

    4.1.Research progress on the attenuation-compensated imaging method

    The Earth has strong viscosity.Ignoring viscosity results in weak amplitude and misplacement of reflectors in images (Aki and Richards,2002;Carcione,2007),the attenuation compensation mainly includes the following two categories:

    4.1.1.Inverse Qfiltering technology

    Inverse Q filtering technologies are implemented based on the wavefield continuation (Zhang et al.2007a,2013),the series expansion (Bickel and Natarajan 1985;Pei and He,1994;Gao and Ling,1996),the phase correction (Hargreaves and Calvert,1991;Bano,1996) and both the phase correction and amplitude compensation (Futterman,1962;Hale,1981;Varela et al.,1993).Although these inverse Q filtering methods are effective and have high computational efficiency,they cannot accurately compensate for attenuation in complex geological structures.

    4.1.2.Q migration technology

    With the development of migration technology,the inverse Q migration technology has become a research hotspot.

    Inverse Q migration has been implemented with the ray-based method (Traynin and Reilly,2008;Xie et al.,2009),one-way wave equation method (Dai and West,1994;Zhang and Wapenaar,2002;Zhang et al.,2013;Sun and Fu,2013;Guo and Lou,2014),RTM method (Deng and McMechan,2007;Bai et al.,2013;Zhu et al.,2014;Zhou et al.,2018;Qu and Li,2019) and LSRTM method(Li et al.,2014;Dutta and Schuster,2014;Dai et al.,2015;Sun et al.,2016;Chen et al.,2017;Yang and Zhu,2019;Qu et al.,2021).For the Q-compensated RTM,when compensating the wavefield decay in the attenuating medium,high-frequency noise will grow exponentially with time,resulting in instability(Zhang et al.,2010;Fletcher et al.,2012;Bai et al.,2013;Zhu et al.,2014).To solve this problem,the regularization operator method(Zhang et al.,2010),the high-pass filtering method(Zhu et al.,2014)and the adjoint operator method(Dutta and Schuster,2014;Li et al.,2014)are proposed for stabling backward-propagation.Figs.10 and 11 show a numerical example of Q-compensated LSRTM with viscoacoustic data for a salt model (Li et al.,2014).

    4.2.Research progress on imaging in the anisotropic medium

    Alkhalifah(1998)made an acoustic approximation of the elastic wave equation and deduced the fourth-order pseudo-acoustic wave equation in vertical transverse isotropy(VTI)media according to the dispersion relation approximation theory.Zhou et al.(2006)simplified the fourth-order qP wave equation in VTI media to a second-order form by introducing various forms of auxiliary wavefields.To improve the accuracy of calculating wavefield in VTI media,Hestholm (2009) further proposed the first-order qP wave equation of VTI media.Recently,some anisotropic quasi-acoustic LSRTM methods are proposed based on the adjoint state theory(e.g.Li et al.,2017d;Zhu et al.,2018;Huang and Li,2019;Guo et al.,2019;Mu et al.,2020).Qu et al.(2017a) proposed a viscoacoustic anisotropy LSRTM.Figs.12 and 13 show a numerical example of prestack pure-qP wave RTM of the 2D BP2007 TTI model (Huang and Li,2017).

    4.3.Research progress on imaging for surface topography

    Fig.10.A salt model.(a) Velocity model;(b) Q model;(c) Background velocity model;(d) Slowness perturbation (Li et al.,2014).

    Fig.11.Comparison of image results of salt model.(a) Image result at 1st iteration;(b) applying high-pass filtering to Fig.11a;(c) Image result at 50th iteration of viscoacoustic LSRTM;(d)Image result at 50th iteration of acoustic LSRTM;(e)Comparison of wavenumber spectrums,where the trace numbered with 1,2,3 is the wavenumber spectrum of the image result of acoustic LSRTM,viscoacoustic LSRTM,ideal image result,respectively;(f)Comparison of image result in Fig.11c(dash line)and 11d(real line)at location A and B(Li et al.,2014).

    Extreme surface topography brings a great challenge to imaging subsurface structures.The commonly used elevation static correction method based on the assumption of surface consistency is not applicable.The ray imaging methods have good adaptability to complex near-surface conditions and can directly carry out wavefield continuation and migration imaging on the undulating surface(Wiggins,1984;Gray,2005;Jager et al.,2003;Yue et al.,2012;Yang et al.,2015a,2015b;Huang et al.,2015a,2015b).For wave-equationbased RTM and LSRTM methods,wavefield continuation operators based on the finite-difference method (FDM) (Li et al.,2019),the finite-element method (FEM) (Moczo et al.,1997),the pseudospectral method (PSM) (Fornberg and Ghrist,1999),the spectralelement method (SEM) (Madec et al.,2009) and the grid method(GM)(Zhang,2004)have been constructed to produce topographic wavefields.Among these methods,FDMs have been widely introduced to implement LSRTM because of their robustness,high computational efficiency,small memory storage and easy implementation.RTM and LSRTM based on the conventional finitedifference operator use uniform rectangular grids to simulate forward-propagated source wavefields and backward-propagated receiver-side wavefields,leading to strong scattering and diffracted noise.Therefore,some curvilinear grid schemes(Hestholm and Ruud,1994;Zhang and Chen,2006;Qu et al.,2017b),variable grid scheme (Jastram and Behle,1992;Huang et al.,2015a,2015b)and various coordinate systems(Shragge,2009;Ma and Alkhalifah,2013;Zhu et al.,2019) are developed to improve the accuracy and efficiency of seismic wavefield continuation.Fig.14 shows a numerical example of topographic QRTM on a modified attenuating Marmousi model with irregular surface (Qu and Li,2019).

    Fig.12.2D TTI BP2007 model of velocity v (a),dip parameter θ (b),Thomsen parameter ε (c) and δ (d).

    Fig.13.Prestack pure-qP wave RTM image of the 2D BP2007 TTI model(Huang and Li,2017).

    4.4.Research progress on elastic multi-component imaging

    Multi-component seismic data contain more target structure information (Jin et al.,1998;Xie and Wu,2005) and maintain the kinematics (travel time,path,etc.) and dynamics (waveform,amplitude,frequency,phase and polarization characteristics,etc.)properties of the seismic wavefield (Ma et al.,2011).Due to the existence of shear waves,multi-component seismic data can better identify the reservoir fluid,estimate the fracture distribution,and analyze the anisotropy (Du et al.,2012).

    Therefore,multi-component seismic data migration imaging is an effective technique for imaging complex subsurface structures(O'Brien and Gray,1996;Rosenberg,2000;Glogovsky et al.,2002;Ravasi and Curtis,2013;Wang et al.,2013).For elastic wave migration,RTM is still a common choice(Baysal et al.,1983;Levin,1984;Chang and McMechan,1986,1987,1994;Zhe and Greenhalgh,1997;Yoon and Marfurt,2006;Sun and McMechan,2001,Sun et al.,2006;Du and Qin,2009;Yan and Xie,2012).

    Sun and McMechan (2001) proposed to use the acoustic RTM process to deal with the elastic wave data.Firstly,the elastic wave seismic data is separated into P-and S-waves,and then the acoustic RTM is carried out separately for the two wave modes.Sun et al.(2006)extended this approach to a 3D case.Elastic RTM(ERTM)is a better choice to migrate for multi-component data (Sun and McMechan,1986;Chang and McMechan,1994;Zhe and Greenhalgh,1997;Yan and Sava,2008;Qu et al.,2015),implemented by the forms of scalar (e.g.Sun and McMechan,2001,Sun et al.,2006) and vector ERTM (e.g.Gu et al.,2015).Among these,the vector ERTM method can correctly deal with the transformation between wave modes,and completely maintain the vector characteristics of seismic waves in the wavefield reconstruction.Therefore,vector imaging is the development trend of ERTM.However,crosstalk noise between P-andS-wavewill cause severeartifacts in multicomponent images (Yan and Sava,2008).To reduce the imaging crosstalk artifacts,P-and S-wave modes should be separated in the forward-and backward-wavefield (Yan and Sava,2008).In an isotropic medium,P-and S-wavefield can be easily separated by using the Helmholtz decomposition to calculate divergence and curl fields to the full wavefields (Aki and Richards,2002),however changing the amplitude and phase attributes(Sun and McMechan,2001;Sun et al.,2006).Besides,in this method,polarity reversals should be corrected in PS and SP images(Balch and Erdemir,1994;Du et al.,2012).Vector ERTMs based on the decoupled P-and S-wave equations are proposed (e.g.Gu et al.,2015;Du et al.,2017) to overcome these above problems.Thus,Elastic LSRTM(ELSRTM)has been rapidly developed in recent years(e.g.Chen and Sacchi,2017;Duan et al.,2017;Feng andSchuster.2017;Ren et al.,2017;Rochaand Sava,2018;Sun et al.,2018;Feng and Huang,2020).To suppress the crosstalk noise between P-and S-wave in ELSRTM,various ELSRTM methods based on the wavefield separation have been gradually developed(Gao et al.,2017;Gu et al.,2018;Qu et al.2018,2019b;Guo and McMechan,2018;Yang et al.,2019;Konuk and Shragge,2020).Figs.15-16 illustrate a numerical example of ERTM and ELSRTM on Marmousi2 model(Gu et al.,2018).

    4.5.Research progress on geological target-oriented imaging

    Fig.14.Topograhic attenuating Marmousi velocity (a) and Q (b) models,and images obtained from noncompensated (c) and Q-compensated (d) RTM (Qu and Li,2019).

    Fig.15.Marmousi2 model of P-velocity (a),S-velocity (b) and density (c).

    In recent years,the computational cost of seismic imaging became more and more expensive due the continuous increase of complexity of imaging algorithms.Geophysicists begin to focus imaging on local targets.In general,geological target-oriented imaging methods can be divided into model-selective local target imaging methods (e.g.Tang and Biondi,2011;Maranganti and Agnihotri,2014) and data-selective local target imaging methods(e.g.Araya et al.,2016).

    4.5.1.The model-selective local target imaging method

    Model-selective local target imaging methods are mainly as follows:(1)the special observation system method.The main idea of this method is to place the observation system closer to the target.(2) Data datum reconstruction method.It reconstructs conventional seismic data to the vicinity of the target (Berryhill,1984;Bakulin and Calvert,2006;Dong et al.,2009;Wapenaar et al.,2014;Ravasi et al.,2016;Guo and Alkhalifah,2020).The imaging quality of the target depends on the accuracy of the Green function estimation between the surface and the target area.(3)Acoustic-elastic coupled wavefield continuation method.This method uses elastic waves in some areas and acoustic waves in other areas(Willemsen and Malcolm,2017).This method is usually applied in the simulation and imaging of ocean bottom seismic(OBS)data in deep-sea environments(e.g.Choi et al.,2008;Madec et al.,2009;Qu et al.,2017b,2020a).(4) Seismic imaging optimization algorithm guided by geological target.This method improves the original operator by proposing a geological target-oriented operator to increase the imaging efficiency (Valenciano et al.,2006;Tang,2009;Malcolm and Willemsen,2016;Wang et al.,2017).

    Fig.16.Imaging results in PP-(a) and PS-(b) component from ERTM and in λ-(c) and μ-(d) component from ELSRTM (Gu et al.,2018).

    4.5.2.The data-selective local target imaging method

    Data-selective local target imaging methods include prismatic wave,multiples,diffraction wave imaging,etc.

    (1) Prismatic waves imaging

    Prismatic waves may illuminate steeply dipping structural areas where primaries cannot be acquired.Therefore,prismatic waves can be used to improve the illumination and imaging effect on steeply dipping structures (Farmer et al.,2006;Malcolm and De Hoop,2010,Malcolm et al.,2011;Qu et al.,2016).Although the energy of prismatic waves is much weaker than that of primaries,by using prismatic waves,RTMs still can construct subsurface images with higher precision and resolution in steeply dipping structural regions poorly illuminated by primaries (Dai,2012;Liu and Weglein,2014;Deeks and Lumley,2015).

    (2) Imaging of multiples

    Multiples have a longer travel path and a smaller reflection angle than primaries,so they have a wider transverse illumination area and a higher vertical resolution.Multiples imaging can be broadly classified into four categories.Firstly,the multiples are converted into quasi-primaries and then migrated.This multiples imaging method is implemented with ray migration (Reiter et al.,1991;He et al.,2007) or wave equation migration (Berkhout and Verschuur,2003;Verschuur and Berkhout,2005).Secondly,loworder multiples are used as seismic sources to achieve high-order multiples imaging (e.g.Youn and Zhou,2001;Liu et al.,2011b).Figs.17 and 18 show an example of imaging of different-order multiples (Li et al.,2017e).Thirdly,Marchenko imaging (e.g.Slob et al.,2014;Wapenaar et al.,2017;Lomas et al.,2020).Fourthly,least-squares multiples imaging.It mainly includes the ray-based least-squares migration of multiples (Brown and Guitton,2005)and LSRTM of multiples(Wong et al.,2015;Tu and Herrmann,2015;Liu and Liu,2016;Qu et al.,2020b,2020c;Li et al.,2020b).

    (3) Diffraction wave imaging

    There are two types of diffraction imaging methods:direct and indirect imaging by using diffractions.The direct imaging methods mainly include the Kirchhoff methods(Kozlov et al.,2004;Wu et al.,2007a;Moser and Howard,2010;Koren and Ravve,2010;Sun et al.,2014),the angle-domain methods (Zhu and Wu,2010;Bai et al.,2011;Reshef,2008;Reshef and Landa,2009).In this method,the energy of the diffraction is directly separated in the imaging process according to the energy difference between the reflections and the diffractions.The indirect methods produce theimagingof diffraction step-by-step:firstly,the diffractions should be separated from prestack gathers,such as,common-shot,plane-wave,common-offset gathers,etc.Then,diffraction waves will be imaged individually.The indirect diffraction imaging method mainly includes commonoffset gather methods(Landa et al.,1987),common diffraction point profile methods(Kanasewich and Phadke,1988),common-shot record methods (Nowak,2005;Khaidukov et al.,2004;Moser and Howard,2010),plane wave record methods (Taner et al.,2006)and others(Papziner and Nick,1998;Bansal and Imhof,2005).

    5.Conclusions

    Fig.17.Velocity model(a)and separation results of different-order multiples for the complex model.(b)Single shot record,(c)the separated primaries,(d)the separated first-order multiples,(e) the separated second-order multiples,and (f) the separated third-order multiples (Li et al.,2017e).

    Fig.18.Imaging results from RTM with (a) and without (b) multiples (Li et al.,2017e).

    Imaging technology has always been a hot but difficult topic,as well as,set in the central stage in the field of seismic exploration.In recent years,with the progress of oil and gas exploration,exploration targets have also become more and more complex.It challenges our imaging technologies immensely and forces the development of seismic imaging technologies to adapt to the complex irregular surface,intense variation of velocity,poor illumination in subsalt areas,and small-scale and steeply dipping structures,etc.Compared with the stacking-and migration-based imaging methods,the inversion-based imaging methods produce a better image with higher spatial resolution,fewer migration artifacts,and better-balanced reflector amplitudes.Although the inversion-based imaging methods show huge promise to improve the imaging quality significantly,they still need to improve computational efficiency,reduce the dependence on the migration velocity and wavelets,and mitigate the sensitivity to noise.In the future,the seismic imaging technology will have broad development prospects,including attenuation-compensated imaging,anisotropic imaging,imaging with surface topography,elastic multi-component imaging,and geological target-oriented imaging.

    Acknowledgment

    This research is supported by seismic wave propagation and imaging (SWPI) group of China University of Petroleum (East China).This research is supported by National Natural Science Foundation of China (42174138,41904101,42074133),Natural Science Foundation of Shandong Province (ZR2019QD004),Fundamental Research Funds for the Central Universities (19CX02010A),the Major Scientific and Technological Projects of CNPC (ZD 2019-183-003) and Talent introduction fund of China University of Petroleum(East China) (20180041).

    天堂√8在线中文| 91大片在线观看| 黄色毛片三级朝国网站| 国产午夜福利久久久久久| 婷婷精品国产亚洲av在线| 国产精品,欧美在线| 欧美成人性av电影在线观看| 中出人妻视频一区二区| 久久精品亚洲精品国产色婷小说| 成人三级黄色视频| 国产亚洲精品久久久久5区| 久99久视频精品免费| 亚洲在线自拍视频| 老司机靠b影院| 亚洲成人国产一区在线观看| 国产亚洲av嫩草精品影院| 日本三级黄在线观看| 国产精品乱码一区二三区的特点| 搡老岳熟女国产| 国产精品精品国产色婷婷| 国产成人影院久久av| √禁漫天堂资源中文www| 亚洲自偷自拍图片 自拍| 国产精品影院久久| 欧美激情高清一区二区三区| 成人三级做爰电影| 亚洲色图av天堂| 国产一区在线观看成人免费| 日本 欧美在线| 欧美日韩亚洲国产一区二区在线观看| 日韩国内少妇激情av| 亚洲美女黄片视频| 日日干狠狠操夜夜爽| 首页视频小说图片口味搜索| 日本熟妇午夜| 两个人免费观看高清视频| 亚洲av熟女| www国产在线视频色| 欧美乱码精品一区二区三区| 一级a爱片免费观看的视频| 香蕉丝袜av| av片东京热男人的天堂| 欧美国产精品va在线观看不卡| 国产野战对白在线观看| 国产一区二区三区在线臀色熟女| 99久久国产精品久久久| 亚洲精品av麻豆狂野| 亚洲欧美精品综合一区二区三区| 午夜福利一区二区在线看| 极品教师在线免费播放| 精品一区二区三区四区五区乱码| 国产激情偷乱视频一区二区| ponron亚洲| 少妇被粗大的猛进出69影院| 美女高潮喷水抽搐中文字幕| 深夜精品福利| 亚洲自拍偷在线| 亚洲国产精品sss在线观看| 国产三级在线视频| 日韩精品青青久久久久久| 伊人久久大香线蕉亚洲五| 少妇粗大呻吟视频| 身体一侧抽搐| 老司机靠b影院| 好男人电影高清在线观看| av天堂在线播放| 亚洲欧美日韩无卡精品| 国产精品香港三级国产av潘金莲| 国产一区二区激情短视频| 亚洲五月婷婷丁香| 中文字幕高清在线视频| 免费看a级黄色片| 精品国产国语对白av| 老司机靠b影院| 国产av不卡久久| 欧美日韩福利视频一区二区| 欧美乱码精品一区二区三区| 久热这里只有精品99| 视频在线观看一区二区三区| 怎么达到女性高潮| 97碰自拍视频| av在线天堂中文字幕| e午夜精品久久久久久久| 精品国产国语对白av| 国产亚洲精品第一综合不卡| 99久久无色码亚洲精品果冻| 天堂影院成人在线观看| 国内少妇人妻偷人精品xxx网站 | 国产高清视频在线播放一区| 美女高潮到喷水免费观看| 精品熟女少妇八av免费久了| 国产高清videossex| 色综合婷婷激情| 美国免费a级毛片| 午夜激情av网站| 色在线成人网| 免费搜索国产男女视频| 精品国产乱子伦一区二区三区| 亚洲精品国产区一区二| 女性生殖器流出的白浆| 成熟少妇高潮喷水视频| 亚洲中文字幕一区二区三区有码在线看 | 美国免费a级毛片| 成人三级黄色视频| 国产亚洲av嫩草精品影院| 欧美最黄视频在线播放免费| www.自偷自拍.com| 大型av网站在线播放| 欧洲精品卡2卡3卡4卡5卡区| 妹子高潮喷水视频| 国内毛片毛片毛片毛片毛片| 成人18禁在线播放| 亚洲 国产 在线| 99国产综合亚洲精品| 国产单亲对白刺激| 一二三四在线观看免费中文在| 18禁国产床啪视频网站| 国产熟女午夜一区二区三区| 成人精品一区二区免费| av欧美777| 1024视频免费在线观看| 波多野结衣巨乳人妻| 国产亚洲精品第一综合不卡| 中国美女看黄片| 久久伊人香网站| 亚洲国产日韩欧美精品在线观看 | 亚洲av熟女| 亚洲真实伦在线观看| 成人亚洲精品一区在线观看| 国产精品久久视频播放| 操出白浆在线播放| 午夜福利成人在线免费观看| 欧美最黄视频在线播放免费| 亚洲自偷自拍图片 自拍| 国产亚洲av高清不卡| 国产野战对白在线观看| 长腿黑丝高跟| 一个人观看的视频www高清免费观看 | 成人18禁在线播放| 日日夜夜操网爽| 亚洲av电影在线进入| 成在线人永久免费视频| 在线观看免费日韩欧美大片| 亚洲成人久久爱视频| 我的亚洲天堂| 亚洲五月色婷婷综合| 两个人免费观看高清视频| 俺也久久电影网| 高清在线国产一区| 啦啦啦观看免费观看视频高清| 不卡av一区二区三区| 国产乱人伦免费视频| 亚洲av五月六月丁香网| 一二三四在线观看免费中文在| 亚洲五月色婷婷综合| 成人av一区二区三区在线看| www.999成人在线观看| 亚洲七黄色美女视频| 国产麻豆成人av免费视频| 男女那种视频在线观看| 不卡av一区二区三区| 久久精品人妻少妇| avwww免费| 久久中文字幕人妻熟女| 精品熟女少妇八av免费久了| 精品一区二区三区av网在线观看| 国产精品免费视频内射| 久久精品国产清高在天天线| 国产精品久久视频播放| 日韩大尺度精品在线看网址| 亚洲国产精品sss在线观看| 日韩高清综合在线| 亚洲自偷自拍图片 自拍| 国产精品免费一区二区三区在线| 中文字幕精品亚洲无线码一区 | 欧美黑人精品巨大| x7x7x7水蜜桃| 国产午夜福利久久久久久| 国产精品自产拍在线观看55亚洲| 国产高清videossex| 日本免费一区二区三区高清不卡| 男女视频在线观看网站免费 | 精品电影一区二区在线| 男女视频在线观看网站免费 | 亚洲专区中文字幕在线| 最近最新中文字幕大全免费视频| 国产激情偷乱视频一区二区| 美女午夜性视频免费| 亚洲熟妇熟女久久| www.熟女人妻精品国产| 欧美av亚洲av综合av国产av| 精品欧美国产一区二区三| 国产亚洲精品综合一区在线观看 | 最近最新免费中文字幕在线| 亚洲国产日韩欧美精品在线观看 | 99国产精品99久久久久| 国产精品,欧美在线| 国内精品久久久久久久电影| 精品国产亚洲在线| 亚洲av熟女| 欧美最黄视频在线播放免费| 久久99热这里只有精品18| 人人妻人人澡人人看| 成人国产综合亚洲| 露出奶头的视频| √禁漫天堂资源中文www| 好男人电影高清在线观看| 男女视频在线观看网站免费 | 亚洲精品在线观看二区| 给我免费播放毛片高清在线观看| 岛国在线观看网站| 国产精品自产拍在线观看55亚洲| 看免费av毛片| 一进一出好大好爽视频| 精品午夜福利视频在线观看一区| 亚洲精品在线观看二区| 一本一本综合久久| 曰老女人黄片| 久久中文字幕一级| 精品国内亚洲2022精品成人| 18禁国产床啪视频网站| 精品久久久久久成人av| 日本五十路高清| 这个男人来自地球电影免费观看| 国产亚洲精品一区二区www| 免费在线观看完整版高清| 国产97色在线日韩免费| 天天躁夜夜躁狠狠躁躁| 欧美成狂野欧美在线观看| 中文字幕精品免费在线观看视频| 久久久久久久午夜电影| 国产精品一区二区免费欧美| 美女免费视频网站| 亚洲人成伊人成综合网2020| 亚洲国产欧美日韩在线播放| a在线观看视频网站| 一本大道久久a久久精品| 男女床上黄色一级片免费看| 大香蕉久久成人网| 欧美国产精品va在线观看不卡| 88av欧美| 欧美色视频一区免费| 国产精品电影一区二区三区| 美女国产高潮福利片在线看| 亚洲 国产 在线| 欧美黄色片欧美黄色片| 麻豆av在线久日| 精品久久久久久成人av| 国产精品1区2区在线观看.| 国产高清激情床上av| 欧美成人性av电影在线观看| 校园春色视频在线观看| 757午夜福利合集在线观看| 亚洲欧美日韩无卡精品| 亚洲av第一区精品v没综合| 亚洲欧美精品综合久久99| 欧美精品啪啪一区二区三区| avwww免费| 久久久久国内视频| 亚洲人成网站高清观看| 12—13女人毛片做爰片一| 19禁男女啪啪无遮挡网站| 日韩有码中文字幕| 91九色精品人成在线观看| 丁香欧美五月| 色精品久久人妻99蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品一区二区三区四区久久 | 国产男靠女视频免费网站| 两性夫妻黄色片| 亚洲av五月六月丁香网| 满18在线观看网站| 日韩国内少妇激情av| 视频区欧美日本亚洲| 欧美大码av| 99re在线观看精品视频| 狂野欧美激情性xxxx| 精品电影一区二区在线| 一级作爱视频免费观看| 亚洲人成网站在线播放欧美日韩| 久久亚洲真实| 日韩国内少妇激情av| 欧美日韩中文字幕国产精品一区二区三区| 久久午夜综合久久蜜桃| 欧美午夜高清在线| www.熟女人妻精品国产| 草草在线视频免费看| 国产区一区二久久| 波多野结衣高清无吗| 一本一本综合久久| 国产一级毛片七仙女欲春2 | av天堂在线播放| 男人操女人黄网站| 动漫黄色视频在线观看| 丝袜人妻中文字幕| 变态另类成人亚洲欧美熟女| 日日干狠狠操夜夜爽| 在线观看舔阴道视频| 欧美激情极品国产一区二区三区| 亚洲欧美日韩高清在线视频| 精品乱码久久久久久99久播| 伦理电影免费视频| 久久99热这里只有精品18| 99久久综合精品五月天人人| 波多野结衣av一区二区av| bbb黄色大片| 999久久久精品免费观看国产| 久久天躁狠狠躁夜夜2o2o| 老司机深夜福利视频在线观看| 久久久水蜜桃国产精品网| xxx96com| 美女高潮喷水抽搐中文字幕| 精品久久久久久久久久免费视频| 在线免费观看的www视频| 国产精品久久电影中文字幕| avwww免费| 精品久久蜜臀av无| 97人妻精品一区二区三区麻豆 | 999久久久精品免费观看国产| 欧美成人一区二区免费高清观看 | 亚洲av成人一区二区三| 国产精品爽爽va在线观看网站 | 国产一卡二卡三卡精品| 99热这里只有精品一区 | 国产精品乱码一区二三区的特点| 国产一区二区三区在线臀色熟女| 91在线观看av| 久久久国产精品麻豆| 窝窝影院91人妻| 久久久久久久久久黄片| 我的亚洲天堂| 久久久水蜜桃国产精品网| 国产在线精品亚洲第一网站| 亚洲,欧美精品.| 伦理电影免费视频| 亚洲成人国产一区在线观看| 国产在线精品亚洲第一网站| 美女高潮喷水抽搐中文字幕| 啦啦啦观看免费观看视频高清| 免费在线观看完整版高清| 免费人成视频x8x8入口观看| 国产精品亚洲美女久久久| 国产精品自产拍在线观看55亚洲| 中文资源天堂在线| 欧美性猛交╳xxx乱大交人| 精品久久久久久久人妻蜜臀av| 国产欧美日韩精品亚洲av| 精品久久久久久久久久免费视频| 国产欧美日韩精品亚洲av| 黄色a级毛片大全视频| 久久精品国产清高在天天线| 久久久久久久久免费视频了| www.999成人在线观看| 淫妇啪啪啪对白视频| 香蕉av资源在线| 日本在线视频免费播放| 18禁国产床啪视频网站| 国产成人av激情在线播放| 亚洲av美国av| 脱女人内裤的视频| 99在线人妻在线中文字幕| 免费在线观看日本一区| 国产一区二区激情短视频| 可以在线观看毛片的网站| 久久精品影院6| 免费观看精品视频网站| av有码第一页| 色播在线永久视频| 午夜亚洲福利在线播放| 欧美精品啪啪一区二区三区| av超薄肉色丝袜交足视频| 精品福利观看| 高清毛片免费观看视频网站| 麻豆久久精品国产亚洲av| 午夜精品在线福利| 大型黄色视频在线免费观看| 日本撒尿小便嘘嘘汇集6| 亚洲精品在线观看二区| 亚洲成国产人片在线观看| 亚洲国产精品sss在线观看| www国产在线视频色| 巨乳人妻的诱惑在线观看| 免费看日本二区| www日本黄色视频网| 校园春色视频在线观看| 久久天堂一区二区三区四区| 国内精品久久久久精免费| 岛国视频午夜一区免费看| 国产精品一区二区免费欧美| 欧美激情极品国产一区二区三区| 色综合婷婷激情| 成在线人永久免费视频| 亚洲最大成人中文| 母亲3免费完整高清在线观看| 亚洲av五月六月丁香网| a在线观看视频网站| 在线观看www视频免费| 国产欧美日韩一区二区精品| 韩国精品一区二区三区| 国产单亲对白刺激| 婷婷六月久久综合丁香| 最近最新中文字幕大全电影3 | 欧洲精品卡2卡3卡4卡5卡区| 宅男免费午夜| 日日爽夜夜爽网站| 国内毛片毛片毛片毛片毛片| 白带黄色成豆腐渣| 禁无遮挡网站| 男人舔女人的私密视频| 在线av久久热| 国产高清激情床上av| 一本精品99久久精品77| 19禁男女啪啪无遮挡网站| 中文字幕高清在线视频| 亚洲av第一区精品v没综合| 婷婷亚洲欧美| 十八禁人妻一区二区| 国产午夜福利久久久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 波多野结衣高清无吗| 欧美中文日本在线观看视频| 久久精品国产亚洲av香蕉五月| 久久久久精品国产欧美久久久| 亚洲av美国av| 久久久久久久久中文| 欧美性猛交╳xxx乱大交人| 日本熟妇午夜| 俺也久久电影网| 999精品在线视频| 国产国语露脸激情在线看| 国产亚洲精品第一综合不卡| www.精华液| 欧美午夜高清在线| 窝窝影院91人妻| 99国产综合亚洲精品| 亚洲国产精品合色在线| 高清毛片免费观看视频网站| 大型黄色视频在线免费观看| 久久草成人影院| 久久亚洲精品不卡| 50天的宝宝边吃奶边哭怎么回事| or卡值多少钱| 亚洲午夜精品一区,二区,三区| 最近最新免费中文字幕在线| 成人特级黄色片久久久久久久| 国产av又大| 国产精品久久久久久亚洲av鲁大| 国产亚洲欧美精品永久| 国产精品免费一区二区三区在线| 亚洲av中文字字幕乱码综合 | 熟女电影av网| 久99久视频精品免费| 91成人精品电影| 国产激情久久老熟女| 久久久久久久久久黄片| 99久久99久久久精品蜜桃| 日本免费a在线| 成年版毛片免费区| 1024手机看黄色片| 最好的美女福利视频网| 色尼玛亚洲综合影院| 国产精品一区二区三区四区久久 | www.999成人在线观看| 午夜日韩欧美国产| 欧美在线一区亚洲| 妹子高潮喷水视频| 桃色一区二区三区在线观看| 国产蜜桃级精品一区二区三区| 日韩大尺度精品在线看网址| 少妇裸体淫交视频免费看高清 | 国产精品综合久久久久久久免费| 性欧美人与动物交配| 黄色女人牲交| 日日爽夜夜爽网站| 最近最新中文字幕大全免费视频| 精品国产亚洲在线| 国产区一区二久久| 亚洲激情在线av| 亚洲 欧美一区二区三区| 99国产综合亚洲精品| 国产精品1区2区在线观看.| 99在线视频只有这里精品首页| 亚洲精品一区av在线观看| 精品久久久久久成人av| 亚洲片人在线观看| 亚洲国产精品久久男人天堂| 亚洲,欧美精品.| 男男h啪啪无遮挡| 亚洲av电影在线进入| 一区二区三区国产精品乱码| 亚洲九九香蕉| 久久香蕉精品热| 国产精品美女特级片免费视频播放器 | 中文资源天堂在线| 18美女黄网站色大片免费观看| 亚洲成人久久性| 首页视频小说图片口味搜索| 18禁国产床啪视频网站| 99久久99久久久精品蜜桃| 老鸭窝网址在线观看| 少妇粗大呻吟视频| 国产v大片淫在线免费观看| 国产精品免费一区二区三区在线| 欧美日本视频| 18禁裸乳无遮挡免费网站照片 | 香蕉国产在线看| 亚洲精品一区av在线观看| 黄色丝袜av网址大全| 视频区欧美日本亚洲| 1024视频免费在线观看| 一级毛片高清免费大全| 在线永久观看黄色视频| 欧洲精品卡2卡3卡4卡5卡区| 黄色女人牲交| 日韩有码中文字幕| 老汉色∧v一级毛片| 麻豆国产av国片精品| 亚洲人成网站在线播放欧美日韩| 99久久无色码亚洲精品果冻| 成人永久免费在线观看视频| 国产黄a三级三级三级人| 久久青草综合色| 老汉色av国产亚洲站长工具| 在线国产一区二区在线| 国产黄色小视频在线观看| 亚洲专区国产一区二区| 一边摸一边抽搐一进一小说| 侵犯人妻中文字幕一二三四区| 国产主播在线观看一区二区| 午夜福利成人在线免费观看| 精品国产一区二区三区四区第35| 国内精品久久久久久久电影| www日本黄色视频网| 国内久久婷婷六月综合欲色啪| 黄色女人牲交| www.熟女人妻精品国产| 亚洲av美国av| 脱女人内裤的视频| a级毛片a级免费在线| 欧美乱色亚洲激情| 女同久久另类99精品国产91| 视频区欧美日本亚洲| 91九色精品人成在线观看| 国产高清有码在线观看视频 | 黑人欧美特级aaaaaa片| 日韩三级视频一区二区三区| 一级毛片精品| 免费观看人在逋| 在线观看66精品国产| 别揉我奶头~嗯~啊~动态视频| 久久精品人妻少妇| 成年免费大片在线观看| 午夜福利欧美成人| 亚洲第一电影网av| 99在线人妻在线中文字幕| 国产成+人综合+亚洲专区| 国产精品久久视频播放| 国产成人欧美| 非洲黑人性xxxx精品又粗又长| 国产男靠女视频免费网站| 精品午夜福利视频在线观看一区| 国产私拍福利视频在线观看| 麻豆一二三区av精品| а√天堂www在线а√下载| 一边摸一边做爽爽视频免费| 一进一出抽搐动态| 国产不卡一卡二| 夜夜躁狠狠躁天天躁| 成人亚洲精品一区在线观看| 欧美激情久久久久久爽电影| 麻豆av在线久日| 侵犯人妻中文字幕一二三四区| 后天国语完整版免费观看| 波多野结衣高清无吗| 午夜福利成人在线免费观看| 日本精品一区二区三区蜜桃| 国产精品电影一区二区三区| 免费女性裸体啪啪无遮挡网站| 少妇 在线观看| 一进一出抽搐动态| 美女午夜性视频免费| 精品一区二区三区av网在线观看| 国产精品精品国产色婷婷| 欧美不卡视频在线免费观看 | 久9热在线精品视频| 午夜福利18| 观看免费一级毛片| 视频区欧美日本亚洲| 中文资源天堂在线| 最近最新免费中文字幕在线| 国内少妇人妻偷人精品xxx网站 | 国产精品一区二区三区四区久久 | 伊人久久大香线蕉亚洲五| 两人在一起打扑克的视频| 午夜a级毛片| 人人澡人人妻人| 女性生殖器流出的白浆| 欧美乱色亚洲激情| 午夜福利在线观看吧| 亚洲精品中文字幕在线视频| 老司机午夜十八禁免费视频| 国产又爽黄色视频| 久久热在线av| 91成年电影在线观看| 亚洲国产精品合色在线| a在线观看视频网站| 男人舔女人的私密视频| 特大巨黑吊av在线直播 | 成人18禁高潮啪啪吃奶动态图| 亚洲精品国产精品久久久不卡| 亚洲自偷自拍图片 自拍| 在线观看午夜福利视频| 18禁观看日本| 中出人妻视频一区二区| 日韩欧美三级三区|