陶威, 郭嶺 , 周寧超, 李陽 , 王星 , 陳濤 , 白建科 大陸動力學國家重點實驗室,西北大學地質學系,西安,710069; 陜西省礦產(chǎn)地質調查中心,西安,710068;3) 中國地質調查局西安地質調查中心,西安,710054; 中國地質調查局西寧自然資源綜合調查中心,西寧,810021
內(nèi)容提要: 巴斯克花崗閃長巖位于野馬泉島弧內(nèi),筆者等綜合野外地質、巖相學、地球化學以及鋯石U-Pb年代學等多學科手段,進而為該地區(qū)晚石炭世時期構造背景提供巖漿巖約束。巖石地球化學研究表明,巖株主量元素具有高硅、準鋁—弱過鋁質、鈣堿性的I型花崗巖特征;巖石樣品稀土元素總量在83.79×10-6 至 125.67×10-6之間,且輕/重稀土之間的比值介于5.32至8.63之間(平均值為7.1),指示輕稀土較重稀土富集。Eu 元素輕度負異常 (δEu=0.69~0.89)。樣品富集大離子親石元素(如K、Rb、Ba),且虧損高場強元素(HFSE,如Nb、Ta和Ti)及P, Nb、Ta負異常明顯。巖株鋯石n(206U)/n(238Pb)加權平均年齡為301.3±2.5 Ma (MSWD=0.33)和310.7±3.6 Ma (MSWD=0.75),表明巖株形成時代為晚石炭世。綜合區(qū)域地質特征、巖石地球化學和巖漿源區(qū)特征,表明東準噶爾地區(qū)晚石炭世(310~301 Ma)處于造山帶碰撞后的陸殼伸展構造體制,且?guī)r漿具有殼?;旌虾头峙廴凇⒃隽可L的特征。
中亞造山帶是全球重要的顯生宙增生造山帶之一,是研究顯生宙以來地球動力學和大陸增生生長的理想實驗室(Seng?r et al., 1993; Yakubchuk., 2004; Kovalenko et al., 2005; Windley et al., 2009; Kr?ner et al., 2007 ; Xiao Wenjiao et al., 2008, 2009)。東準噶爾圍限于阿爾泰南部、準噶爾盆地東部、蒙古西南部和東天山北部,是中亞造山帶的重要組成部分,該區(qū)自古生代來經(jīng)歷了大洋擴張、板塊俯沖、碰撞和后碰撞等構造演化歷史,形成了一系列島弧雜巖帶和增生雜巖(Xiao Wenjiao et al., 2008, 2009; 湯賀軍, 2021)。東準噶爾顯生宙以來演化造就了獨具特色的構造—巖漿特征,為成礦物源、動力和空間提供了良好基礎(張峰, 2014)。
目前,東準噶爾石炭紀的構造環(huán)境存在不同認識。有學者通過上石炭統(tǒng)巴塔馬依內(nèi)山組火山巖研究,對東準噶爾經(jīng)歷晚石炭世構造環(huán)境得出迥異的結論。如經(jīng)歷大陸擴展后閉合抬升演化過程(朱志新等, 2005)、裂谷環(huán)境(趙霞等, 2008)、洋殼拆沉作用下后碰撞末期的構造環(huán)境(320.2 Ma, 羅婷等, 2016)、洋內(nèi)俯沖階段(龍曉平等, 2006; 張峰等, 2014),并于320~311 Ma之間閉合(張峰等, 2014)、野馬泉島弧于330 Ma時處于雙向俯沖體制(Long Xiaoping et al., 2012)等。構造—沉積學研究也有準噶爾古生代洋盆閉合于早石炭世之前(349 Ma, 白建科等, 2018; 343.0±5.0 Ma, 黃崗等, 2012; 348 Ma, Xu Xingwang et al., 2015)和晚石炭世(336~300 Ma, 李振生等, 2016)的不同認識。而Li Di 等(2020)從構造角度認為東準噶爾地區(qū)于330~320 Ma完成碰撞,并于晚石炭世(320 Ma)左右完成擠壓向伸展構造體制轉換。與此同時,不同學者在東準地區(qū)報道的后碰撞花崗巖年代多集中于265~349 Ma范圍內(nèi)(田健, 2014; 田健等,2016; 蘇玉平等, 2006; 沈曉明等, 2013; 楊高學, 2008; 楊高學等, 2009; 胡萬龍, 2016; 甘林等, 2010; 熊雙才等, 2019a; 2019b; 張征峰等,2021; 李宗懷等, 2004; 韓寶福等, 2006)。
上述研究結果顯示,眾多學者對準噶爾洋盆的閉合時限有不同認識,且得出在相近時代(320~300 Ma)俯沖、后碰撞、擠壓向伸展的構造轉換等不同的構造背景。野馬泉島弧位于在卡拉麥里蛇綠巖帶和阿爾曼太蛇綠巖帶之間,上述不同結論對認識野馬泉島弧晚石炭世的構造背景產(chǎn)生分歧,限制了對該區(qū)基礎地質深入認識,并給找礦工作增加難度。近年來,地質填圖工作??在東準噶爾野馬泉島弧內(nèi)識別出大量石晚石炭世花崗質巖石(圖1),而花崗巖形成演化對造山帶構造演化、造山帶地殼的形成發(fā)育和殼幔相互作用等方面具有指示意義(Pitcher et al., 1997; 王濤, 2000; 吳福元等, 2007; 肖慶輝等, 2007; 張旗等, 2012)。因此,筆者等選擇位于野馬泉島弧內(nèi)巴斯克花崗閃長巖為研究對象,綜合野外地質、巖相學、鋯石U-Pb定年、地球化學和鋯石特征等方面研究,探討其巖石成因和產(chǎn)出構造環(huán)境。結合區(qū)域地質特征,進而約束準噶爾野馬泉構造帶晚石炭世構造背景。
圖1 新疆東準地區(qū)大地構造及花崗巖分布簡圖(a, 據(jù)Shen Xiaoming et al., 2011 修改)、東準噶爾巴斯克地區(qū)區(qū)域地質簡圖(b, 據(jù)注釋?修改)及巴斯克巖體剖面圖(c)Fig. 1 The tectonic map of east Junggar area and granites distribution map(a) (modified from Shen Xiaoming et al., 2011), the Geological sketch map of the Basike area in east Junggar with sampling sites (b) (modified from the note ?) and profile of the Basike pluton (c)Q—第四系;N1t—塔西河組;C2bt—巴塔馬依內(nèi)山組;D3ka—克安庫都克組;D2w2—烏魯蘇巴斯套組二段;D2w1—烏魯蘇巴斯套組一段;C2δ—晚石炭世閃長巖;C2δγ—晚石炭世花崗閃長巖;ν—輝長巖脈;δ— 閃長巖脈;δγ—花崗閃長巖巖脈;γ—花崗巖脈Q—Quaterary; N1t—Taxihe Formation; C2bt—Batamayineishan Formation; D3ka— Ke’ankuduke Formation; D2w2—the Second Member of Wulusubasitao Formation; D2w1— the First Member of Wulusubasitao Formation; C2δ—Late Carboniferous diorite; C2δγ—Late Carboniferous granodiorite; ν— gabbro dyke; δ— diorite dyke; δγ— granodiorite dyke; γ— granite dyke
圖 3 東準噶爾巴斯克花崗閃長巖TAS分類圖解(a) (底圖據(jù) Middlemost, 1994); SiO2—K2O圖解(b) (底圖據(jù)Ewart, 1982); SiO2—AR巖石序列判別圖解(c) (底圖據(jù)Wright, 1969); A/NK—A/CNK圖解(d) (底圖據(jù)Maniar, 1989) Fig. 3 The TAS diagram (a) (after Middlemost, 1994), diagram of SiO2 vs K2O (b) (after Ewart, 1982), SiO2 vs AR diagram (c) (after Wright, 1969), A/CNK vs A/NK diagrams (d) (after Maniar et al., 1989) of the Basike granodiorite in east Junggar1—橄欖輝長巖;2a—堿性輝長巖;2b—亞堿性輝長巖;3—輝長閃長巖;4—閃長巖;5—花崗閃長巖;6—花崗巖;7—硅英巖;8—二長輝長巖;9—二長閃長巖;10—二長巖;11—石英二長巖;12—正長巖;13—副長石輝長巖;14—副長石二長閃長巖;15—副長石二長正長巖;16—副長正長巖;17—副長深成巖;18—霓方鈉巖/磷霞巖/粗白榴巖1—Peridotgaooro; 2a—alkali gabbro; 2b—subalkaline gabbro; 3—gabbroic diorite; 4—diorite; 5— granodiorite; 6—granite; 7—quartzolite; 8—monzogabbro; 9—monzodiorite; 10—monzonite; 11—quartz monzonite; 12—syenite; 13—foidgarrbo; 14—foidmonzodiorite; 15—foidmonzosyenite; 16—foidsyenite; 17—foidolite; 18—tawile / urtite / italite
本次所研究的巴斯克花崗閃長巖位于野馬泉島弧帶內(nèi)(圖1)。區(qū)域出露地層主要為泥盆系卓木巴斯套組(D1z)淺海相的碎屑巖、烏魯蘇巴斯套組(D2w2)淺海相粗碎屑巖、蘊都喀拉組(D2yd)細碎屑巖、克安庫都克組(D3ka)細碎屑巖;石炭系黑山頭組(C1h)陸源碎屑巖和火山碎屑巖、姜巴斯套組(C1j)淺海相碎屑巖—火山碎屑巖、南部被第四系沖洪積砂、礫石覆蓋。花崗閃長巖呈淺肉紅色(圖2a),似斑狀結構,斑晶為斜長石或鉀長石,基質為細粒顯晶質斜長石、鉀長石、石英、角閃石等,巖石為塊狀構造。野外見花崗閃長巖內(nèi)攜帶有巴塔瑪依內(nèi)山組(C2bt)安山巖捕擄體(圖2b),表明其侵位時代不早于晚石炭世。巖石礦物主要包括斜長石(45%~50%)、鉀長石(20%~25%)、石英(20%~25%)、角閃石(7%)和少量輝石,此外還含少量副礦物(鋯石、磷灰石等)和不透明礦物。其中,斜長石呈半自形長柱狀—他形粒狀、板狀,發(fā)育環(huán)帶結構(圖2c);鉀長石呈半自形—他形粒狀、板狀,發(fā)育卡氏雙晶;石英呈他形粒狀;角閃石(圖2d)呈半自形—他形,發(fā)育簡單雙晶,后期發(fā)生綠泥石化。巖石后期經(jīng)歷蝕變,具體表現(xiàn)為發(fā)育絹云母化、高嶺土化、綠泥石化等,鏡下可觀察到長石邊部發(fā)生蝕變(圖2c、d)。受后期構造作用影響,巖株野外多呈碎裂狀。
圖2 東準噶爾巴斯克花崗閃長巖宏觀和顯微結構特征: (a)花崗閃長巖野外照片;(b)氣孔狀安山巖捕擄體;(c)長條狀斜長石環(huán)帶結構;(d)角閃石顯微特征Fig. 2 The petrological photos, micro-structure characteristics of the Basike granodiorite in east Junggar: (a) field photo of granodiorite, (b) the xenolith of vesiculate andesite, (c) ring structure of plagioclase, (d) microscope characteristics of hornblendePl—斜長石、Kf—鉀長石、Am—角閃石、Q—石英Pl—plagioclase, Kf—k-feldspar; Am—hornblende, Q—quartz
鋯石的挑選、制靶在西安瑞石地質科技有限公司實驗室進行。樣品粉碎后,用浮選和電磁選方法進行鋯石單礦物分選,并將鋯石樣品置于環(huán)氧樹脂中,之后用無色透明的環(huán)氧樹脂固定,待環(huán)氧樹脂固化后拋光使鋯石曝露一半晶面。之后通過透射光、反射光和CL圖像詳細研究鋯石的晶體形貌和內(nèi)部結構特征,選擇無明顯裂痕及包裹體的鋯石進行測年。
鋯石陰極發(fā)光、微量元素含量和U-Pb同位素定年在自然資源部巖漿作用成礦與找礦重點實驗室完成(中國地質調查局西安地質調查中心)。陰極發(fā)光選用JEOL JSM-6510A型掃描電鏡上配置的Chromal CL 2陰極發(fā)光探頭,分析條件為:加速電壓10 kV,束流SS65,工作距離14 mm。鋯石微量元素含量和U-Pb同位素定年激光剝蝕系統(tǒng)為GeoLas Pro,ICP-MS為Agilent 7700x。激光剝蝕過程中采用氦氣作載氣、氬氣為補償氣以調節(jié)靈敏度,二者在進入ICP之前通過一個T型接頭混合。每個時間分辨分析數(shù)據(jù)包括大約10 s的空白信號和40 s的樣品信號。對分析數(shù)據(jù)的離線處理(包括對樣品和空白信號的選擇、儀器靈敏度漂移校正、元素含量及U—Th—Pb同位素比值和年齡計算)采用軟件Glitter 4.4 (Van Achterbergh et al., 2001)完成,詳細儀器參數(shù)和測試過程可參考李艷廣等(2015)。U-Pb同位素定年中采用鋯石標準91500作外標進行同位素分餾校正。對于與分析時間有關的U—Th—Pb同位素比值漂移,利用91500的變化采用線性內(nèi)插的方式進行了校正。鋯石樣品的U-Pb年齡諧和圖繪制和年齡權重平均計算均采用Isoplot/Exver3(Ludwig, 2003)完成。鋯石微量元素含量利用參考標樣NIST610玻璃作為多外標、Si作內(nèi)標的方法進行定量計算。 NIST610玻璃中元素含量的推薦值據(jù)GeoReM數(shù)據(jù)庫 (http://georem.mpch-mainz.gwdg.de/)。
主量、微量和稀土元素分析測試均在自然資源部巖漿作用成礦與找礦重點實驗室完成(中國地質調查局西安地質調查中心)。主量元素采用SX45型熒光光譜分析(XRF)進行分析,其中FeO含量通過濕化學方法測定,使用的儀器是荷蘭帕納科公司AxiosmAX波長色散X射線熒光光譜儀,相對標準偏差值(RSD)≤0.134,均方根穩(wěn)定性(RMS Rel)(%)≤0.050。稀土和微量元素分析采用美國Thermo Fisher公司生產(chǎn)的X-SeriesII型電感耦合等離子質譜儀(ICP-MS)測定,檢測限優(yōu)于5×10-9,相對標準偏差優(yōu)于5%。
巴斯克花崗閃長巖10件樣品主量元素和微量元素分析結果見表1(樣品BSK01~BSK05采樣位置N45°43′35.12″、E89°41′52.01″,樣品BSK06~BSK10采樣位置N45°43′51.53″、E89°42′7.60″,圖1)?;◢忛W長巖樣品SiO2變化范圍65.7%~68.6%,平均為67.112%。全堿(K2O+Na2O)變化范圍6.94%~7.98%,平均為7.457%。Na2O/ K2O變化范圍1.34~1.88,平均為1.58。Al2O3變化范圍為14.78%~15.50%,平均為15.11%。鋁飽和指數(shù)(A/CNK)變化范圍為0.93~1.03,平均為0.96。A/NK變化范圍為1.33~1.54,平均為1.43。樣品里特曼指數(shù)σ變化范圍2.04~2.53,平均為2.28,屬鈣堿性系列。在侵入巖TAS圖解中,樣品點均落入花崗閃長巖范圍內(nèi)(圖3a),在K2O—SiO2(圖3b)和SiO2—AR圖解(圖3c)中,樣品投點均落入鈣堿性花崗巖的范圍內(nèi),A/NK—A/CNK 圖解顯示花崗閃長巖為準鋁質至弱過鋁質(圖3d)。
表1 東準噶爾巴斯克花崗閃長巖主量(%)、微量元素及稀土(×10-6)分析結果Table 1 Analytical results of major(%), trace elements(×10-6) and REE(×10-6) of the Basike granodiorite,east Junggar
花崗閃長巖樣品的稀土元素總量 (ΣREE)變化于(83.79×10-6~125.67×10-6之間,LREE/HREE變化范圍為5.32~8.63,平均為7.1。(La/Yb)N變化范圍為5.78~10.14,平均為8.027。在球粒隕石標準化稀土配分圖(圖4a)中,樣品稀土配分曲線近乎一致,均顯示右傾特征,說明輕稀土較重稀土相對富集。巖石樣品均具有輕微Eu負異常(δEu=0.69~0.89),平均值為0.75,指示有少量斜長石的結晶分異析出(Henderson,1982)。
圖4 東準噶爾巴斯克花崗閃長巖稀土元素球粒隕石標準化配分模式圖(a) (據(jù)Sun et al., 1989)和微量元素原始地幔標準化蛛網(wǎng)圖(b) (據(jù)Sun et al., 1989)Fig. 4 Chondrite-normalized REE patterns (a) (after Sun et al., 1989) and primitive mantle-normalized trace element spider diagrams (b) (after Sun et al., 1989) for Basike granodiorite in east Junggar
在原始地幔標準化的微量元素蛛網(wǎng)圖上(圖4b),樣品均具有相似的配分曲線模式,富集大離子親石元素(LILE,如K、Rb、Ba)和輕稀土元素(LREE),而虧損高場強元素(HFSE,如Nb、Ta和Ti)及P, Nb、Ta負異常明顯。
本次研究在巖株內(nèi)采集兩個年齡樣品巖性均為似斑狀花崗閃長巖,鋯石U-Pb測試結果見表2。BSK-1TW年齡樣品采自巖株南部邊緣,樣品經(jīng)緯度N45°43′35.12″、E89°41′52.01″(圖1a)。樣品鋯石形態(tài)上多呈以長柱狀和短板狀,大部分鋯石具有典型的巖漿結晶的振蕩環(huán)帶結構(圖5a)。鋯石粒徑大多介于60~110 μm,長寬比1∶1~5∶1。Th、U質量分數(shù)分別為16×10-6~353×10-6和29×10-6~314×10-6, Th/U值變化于0.39~1.12,平均為0.65。除了一個測點外,剩余27個測點Th/U均大于0.4,屬于巖漿結晶鋯石(Rubatto et al., 2000)。在鋯石U-Pb 年齡諧和曲線圖中,28個分析點均位于U-Pb諧和線上或其附近的一個很小的區(qū)域內(nèi)(圖6a),表面年齡變化范圍為293~307 Ma(圖6b),其n(206U)/n(238Pb)加權平均年齡為301.3±2.5 Ma (MSWD=0.33)。
圖5 東準噶爾巴斯克花崗閃長巖鋯石陰極發(fā)光圖像(a)、( b),鋯石(Ti)溫度—Th/U圖解(c) Fig. 5 CL images (a),(b) , zircon(Ti) temperature —Th/U diagram (c) of the zircons from the Basike granodiorite in east Junggar
圖6 東準噶爾巴斯克花崗閃長巖鋯石U-Pb年齡諧和圖和加權平均年齡:BSK-1TW(a)、 (b),BSK-2TW(c)、 (d)Fig. 6 U-Pb concordia diagrams and weighted mean 206Pb/238U age diagrams of the zircons from Basike granodiorite in east Junggar: the BSK-1TW(a), (b); the BSK-2TW(c), (d)
圖 7 東準噶爾巴斯克花崗閃長巖株SiO2—P2O5(a) (底圖據(jù)Green,1995)、SiO2—Na2O(b) (底圖據(jù)Collins et al.,1982)圖解Fig. 7 The diagrams of SiO2 vs P2O5 (a) (after Green, 1995) and SiO2 vs Na2O (b) (after Collins et al.,1982 ) of the Basike granodiorite in east Junggar
圖 8 東準噶爾巴斯克花崗閃長巖Rb/Sr—Rb/Ba(a) (底圖據(jù)Sylvester,1998)和A/FM—C/FM圖(b) (底圖據(jù)Alther et al.,2000)Fig. 8 The diagram showing Rb/Sr—Rb/Ba(a) (after Sylvester,1998) and A/FM—C/FM (b) (after Alther et al.,2000) of Basike granodiorite in east Junggar
BSK-2TW樣品采自巖株中部偏東位置,樣品經(jīng)緯度N45°43′51.53″、E89°42′7.60″(圖1a)。該樣品鋯石形態(tài)上多呈以長柱狀,大部分鋯石具有典型的巖漿結晶的振蕩環(huán)帶結構(圖5b)。鋯石粒徑大多介于90~320 μm,長寬比1∶1~3∶1。Th、U質量分數(shù)分別為16×10-6~171×10-6和33×10-6~188×10-6, Th/U值變化于0.37~0.91,平均為0.68。除了一個測點外,剩余27個測點Th/U均大于0.4,屬于巖漿結晶鋯石(Rubatto et al., 2000)。在鋯石U-Pb 年齡諧和曲線圖中,27個分析點均位于U-Pb諧和線上或其附近的一個很小的區(qū)域內(nèi)(圖6c),表面年齡變化范圍為297~325 Ma(圖6d),其n(206U)/n(238Pb)加權平均年齡為310.7±3.6 Ma (MSWD=0.75)。此外,在該樣品中見有一顆n(206U)/n(238Pb)年齡為436 Ma的鋯石(圖5b),根據(jù)鋯石CL圖像觀察鋯石形態(tài)、磨圓及碎裂程度等特征,可判斷其為捕獲鋯石。
綜合礦物組成和地球化學特征,花崗巖成因類型可分為S 型、I 型、A 型和 M型4種。礦物學約束而言,巖石樣品中含I型花崗巖特征性礦物原生角閃石 (Miller, 1985;鄧晉福等, 2015b);地球化學特征表明花崗閃長巖屬鈣堿性巖石,鋁飽和指數(shù)(A/CNK)平均值為0.96,輕稀土富集,(La/Yb)N平均值為8.03,同時具有負銪異常(δEu平均值0.75),富集Th、U、Rb等大離子親石元素(LILE),而虧損Nb、Ta、Ti和P高場強元素(HFSE),具有 I型花崗巖的特征(周建厚等, 2015)。樣品在SiO2—P2O5圖解顯示P2O5與SiO2呈負相關(圖7a),與I型花崗巖呈現(xiàn)出一致性(Wolf et al., 1994)。并且,巖石樣品的P2O5含量在0.14%~0.16%之間,而典型S型花崗巖中常具有較高的P2O5含量(>0.20%) (Chappell, 1999)。與此同時,樣品的A/CNK值介于0.93~1.03之間,與典型的S型花崗巖中較高的A/CNK值(>1.1)不同(Chappell et al., 1992)。因此,巴斯克花崗閃長巖屬于鈣堿性、準鋁—弱過鋁質I型花崗巖。
樣品Nb/Ta值(11.30~12.68)與大陸地殼Nb/Ta值范圍(11~14,Taylor and Maclennan, 1985; Rudnick et al., 2000)相近。但Rudnick 等 (2000)認為在一定條件下,大陸地殼和虧損地幔均可能含有相近的Nb/Ta、Nb/La和Ti/Zr值。并且,樣品Zr/Hf值38.01~40.63(平均39.59)高于幔源比值36.30和殼源比值33.00(Hofmann, 1988; Green, 1995);Rb/Sr值(平均0.21)略低于全球上地殼的平均值0.32(Taylor et al., 1995);Rb/Nb值(平均7.75)也低于全球上地殼的平均值9.33(McLennan, 2001),且同時遠高于大洋巖石圈和陸幔(黎彤等, 2011)。上述微量元素的相關比值特征,說明花崗閃長巖的巖漿與典型的幔源巖漿和殼源巖漿均具有一定的差異性。
與此同時,樣品的Mg#指數(shù)41.41~50.42,平均值為45.54,大于地殼部分熔融的熔體形成的巖石的Mg#值(40),表明巖漿熔融過程中有地幔源物質參與(Rapp et al.,1995。CaO/Na2O值0.47~0.70,大于0.3暗示源區(qū)含有砂巖(Sylvester, 1989),Rb/Ba—Rb/Sr和A/MF—C/MF圖解 (圖8a, b)也顯示出源區(qū)為基性巖和變砂巖的混溶特征。Chappell(1988)認為地殼深部中基性變火成巖是I型花崗巖的源巖,但受幔源巖漿改造的沉積物重熔同樣可以形成I型花崗巖(Kemp et al., 2007)。與此同時,Collins 等 (2008)認為在地殼重熔過程中沉積物成分的減少和火成巖等成分所占比重增大,同樣可以使巖漿成分由S型向I型轉變,形成I型或者S—I過渡類型巖漿。而且,我們針對巖石中具有環(huán)帶結構的斜長石進行電子探針測試,結果顯示斜長石中CaO的含量從核部到邊部具有先降低—突然升高—再降低的特征(另文發(fā)表),明顯不同于正常巖漿演化所顯示的正環(huán)帶,也暗示不同巖漿的混融作用。因此,巴斯克花崗閃長巖巖漿在形成過程中存在殼幔巖漿混合作用。
已如前述,本次所采兩個年齡樣品巖性雖均為似斑狀花崗閃長巖,但年齡鋯石U-Pb定年相差約9 Ma。為探究其年齡差別的原因,筆者等將兩采樣點附近的地球化學特征進行對比發(fā)現(xiàn),樣品的主量元素隨著SiO2含量的增加,演化趨勢不同(圖9)。而且,兩組樣品中稀土元素球粒隕石標準化配分模式圖不盡相同,特別是重稀土含量顯示高、低分組的特征(圖4a)。同時,兩年齡樣品中鋯石粒徑大小及長寬比顯著不同(圖5a,b),鋯石中Th、U元素含量也有較大差別(表2)。此外,兩組樣品全巖Zr溫度(據(jù)Boehnke et al., 2013)和鋯石(Ti)溫度(據(jù)Ferry and Watson, 2007)計算結果(表1)顯示BSK-1采樣點的全巖 (Zr)平均溫度為852.2℃,而BSK-2采樣點獲得的全巖(Zr)平均溫度則為886.5℃,兩者相差約35度℃;樣品BSK-1和BSK-2的鋯石(Ti)溫度分別為840.7℃(表2)和878.6℃(表2),仍相差約38℃。而且,樣品中鋯石(Ti)溫度和鋯石中Th/U值圖解(圖5c)顯示兩者經(jīng)歷了不一致的溫度趨勢,上述特征均暗示兩者經(jīng)歷不同的地質演化過程。因此,結合巴斯克花崗閃長巖鋯石U-Pb年齡結果,該巖株具有巖漿分批熔融、增量生長的特征。
圖9 東準噶爾巴斯克花崗閃長巖BSK-1與BSK-2主量元素哈克圖解Fig. 9 Hacker plots of major elements for BSK-1and BSK-2 from Basike granodiorite in east Junggar
相關研究結果表明,多數(shù)巖體均具有分批次巖漿上升,從而引起巖體增量生長的特征。例如,貝勒庫都克黑云母正長花崗巖中10顆鋯石U-Pb得出年齡范圍為263~304 Ma,且年齡差最大可達41 Ma(楊高學, 2008)。與此同時,其他區(qū)域也有相似的巖漿分批增量生長研究實例,如內(nèi)蒙古南部任家營子巖體(Li Shan et al., 2013),西秦嶺美武巖體(Luo Biji et al., 2015)和南秦嶺東江口巖體(Li Yang et al., 2019)、高橋巖體(Tao Wei et al., 2021)、華陽巖體(Hu Fangyang et al., 2018)等。巴斯克花崗閃長巖年齡特征也表明該區(qū)晚石炭世構造巖漿活動持續(xù)了一個時期。
不同構造單元也分布著不同的火成巖 (鄧晉福等, 2015a),且花崗巖主、微量元素組成能夠在一定程度上反映巖漿巖形成時的大地構造環(huán)境。本次樣品地球化學特征顯示其Ⅰ型花崗巖類,而該類可以形成于板塊俯沖階段或后碰撞階段(Pitcher et al., 1987; 韓寶福, 2007; 周建厚等, 2015)。而巖石樣品見有暗色礦物角閃石,且地球化學結果顯示SiO2含量小于70%,Na2O/K2O大于1,弱的負銪異常(δEu平均值0.75)及不同程度的虧損高場強元素Nb、Ta、Ti、P,這些特點與碰撞晚期或后碰撞巖漿巖特點相一致(Harris et al., 1986; Liegeois et al., 1998)。同時,樣品在Rb—Y+Nb圖解(圖10a)中主體落入后碰撞花崗巖范圍內(nèi),在R1—R2圖解(圖10b)中樣品落入板塊碰撞后隆起期或造山晚期花崗巖范圍,表明其產(chǎn)出背景應為造山碰撞后階段。
圖10 東準噶爾巴斯克花崗閃長巖構造背景圖解(a) (底圖據(jù)Pearce et al.,1984)和R1—R2圖解(b) 底圖據(jù)Batchelor et al.,1985)Fig. 10 The tectonic environment diagrams (a) (after Pearce et al.,1984) and R1—R2 diagram (b) (after Batchelor et al.,1985) ofthe Basike granodiorite in east JunggarR1 = 4nSi-11[ n(Na)+ n(K) ]-2[n(Fe)+ n(Ti)];R2 = 6n(Ca)+ 2n(Mg) + n(Al) ORG—洋脊花崗巖; VAG—火山弧花崗巖; WPG—板內(nèi)花崗巖; syn-COLG—同碰撞花崗巖; post-COLG—后碰撞花崗巖; ① 地幔斜長花崗巖; ② 破壞性活動板塊邊緣(板塊碰撞前)花崗巖; ③ 板塊碰撞后隆起期花崗巖; ④ 晚造山期花崗巖; ⑤ 非造山區(qū)A型花崗巖; ⑥ 同碰撞(S型)花崗巖; ⑦ 造山期后A型花崗巖ORG— Ocean-ridge granite; VAG— volcanic-arc granite; WPG— intraplate granite; syn-COLG— syn-collision granite; Post-COLG— post-collision granite; ① mantle fractionates; ② pre-plate collision; ③ post-collision uplift; ④ late-orogenic; ⑤ anorogenic; ⑥ syn-collision; ⑦ post-orogenic
在利用地球化學圖解的同時,一定要結合巖石構造組合及其時空演化等多方面地質證據(jù) (鄧晉福等, 2015b)。上述結論也得到本項目在該地區(qū)獲得的地質證據(jù)支持,本研究的花崗閃長巖侵入最新圍巖為晚石炭世巴塔馬依內(nèi)山組(C2bt)。該組在區(qū)內(nèi)主要巖性為玄武巖、玄武質火山角礫巖、火山集塊巖、深灰色杏仁狀英安巖、玄武巖夾流紋巖等,并以堿性玄武巖—粗面巖雙峰式系列為特征,表現(xiàn)出大陸裂谷性質(大陸板內(nèi)拉張區(qū)域)的巖石特征?。這一證據(jù)也表明侵入其中的花崗閃長巖(310~301 Ma)處于造山后伸展階段。
綜上所述,東準地區(qū)野馬泉島弧在晚石炭世(310~301 Ma)處于碰撞后、幔源巖漿底侵作用下伸展構造背景。同時,地幔底侵作用引起區(qū)域地溫梯度升高,下地殼部分熔融并混入部分地幔物質形成花崗質巖漿(圖11a)。且由于該期構造—巖漿事件持續(xù)時間較長,在上述構造體制下巖漿分批次熔融、巖株增量生長(圖11b,c),進而導致地殼發(fā)生垂向增生與再造。
圖11 東準噶爾地區(qū)晚石炭世構造重建(a)及巖株兩階段侵位(b、c)示意圖Fig. 11 Sketch diagrams for the Late Carboniferous tectonic reconstruction(a) and magma two-phase intrusive process of stock(b,c) in the Basike area
(1) 東準噶爾地區(qū)巴斯克花崗閃長巖為富鈉、鈣堿性、準鋁—弱過鋁質的I型花崗質巖石,在巖漿形成過程中存在少量幔源物質的混入及殼幔巖漿混合作用。
(2) 巴斯克花崗閃長巖鋯石n(206U)/n(238Pb)加權平均年齡為301.3±2.5 Ma (n=28,MSWD=0.33)至310.7±3.6 Ma (n=27,MSWD=0.75),形成時代屬于晚石炭世。
(3) 綜合兩組樣品主微量元素特征、全巖(Zr)溫度、鋯石(Ti)溫度及鋯石U-Pb定年結果,表明該巖株具有巖漿分批熔融、增量生長的特征。
(4) 野馬泉島弧地區(qū)在晚石炭世(310~301 Ma)處于后碰撞伸展構造體制,軟流圈上涌引起幔源巖漿底侵,區(qū)域地溫梯度升高,導致該區(qū)地殼發(fā)生垂向增生與再造。
致謝:野外工作得到黃崗高級工程師、宇峰工程師的幫助; 參加野外工作的還有張雷、徐巖、梁博、姚文豐等同志; 成文得到侯廣順教授、秦江鋒副教授、陳雋璐研究員的指導; 熊雙才工程師等三位審稿專家和章雨旭研究員的寶貴意見和建議,提高了本文質量; 筆者等在此致以衷心的感謝!
注 釋/Notes
? 中國地質調查局西安地質調查中心. 2019. 新疆東準噶爾別勒庫都克幅幅區(qū)域地質礦產(chǎn)調查報告. 西安: 中國地質調查局西安地質調查中心.
? 陜西省地質礦產(chǎn)勘查開發(fā)局區(qū)域地質礦產(chǎn)研究院. 2012. 新疆1∶25萬滴水泉幅、北塔山幅區(qū)域地質調查報告(修測). 咸陽: 陜西省地質礦產(chǎn)勘查開發(fā)局區(qū)域地質礦產(chǎn)研究院.
(The literature whose publishing year followed by a “&” is in Chinese with English abstract; The literature whose publishing year followed by a “#” is in Chinese without English abstract)
白建科, 陳雋璐, 唐卓, 張越. 2018. 新疆準噶爾古生代洋盆閉合時限——來自卡拉麥里地區(qū)石炭紀碎屑鋯石U-Pb年代學的約束.地質通報, 37(1):26~38.
鄧晉福, 馮艷芳, 狄永軍, 劉翠, 肖慶輝, 蘇尚國, 趙國春, 孟斐, 馬帥, 姚圖. 2015a. 巖漿弧火成巖構造組合與洋陸轉換. 地質論評, 61(3):473~484.
鄧晉福, 劉翠, 馮艷芳, 肖慶輝, 狄永軍, 蘇尚國, 趙國春, 段培新, 戴蒙. 2015b. 關于火成巖常用圖解的正確使用: 討論與建議. 地質論評, 61(4):717~734.
甘林, 唐紅峰, 韓宇捷. 2010. 新疆東準噶爾野馬泉花崗巖體的年齡和地球化學特征. 巖石學報, 26(8): 2374~2388
韓寶福, 季建清, 宋彪, 陳立輝, 張磊. 2006. 新疆準噶爾晚古生代陸殼垂向生長(I)——后碰撞深成巖漿活動的時限. 巖石學報, 22(5): 1077~1086.
韓寶福. 2007. 后碰撞花崗巖類的多樣性及其構造環(huán)境判別的復雜性.地學前緣, 14(3):64~72.
胡萬龍. 2016. 新疆東準噶爾老鴉泉晚石炭世花崗巖地球化學特征及地質意義. 導師:王金榮. 蘭州:蘭州大學碩士學位論文: 1~70.
黃崗, 牛廣智, 王新錄, 郭俊, 宇峰. 2012. 新疆東準噶爾卡拉麥里蛇綠巖的形成和侵位時限——來自輝綠巖和凝灰?guī)rLA-ICP-MS鋯石U-Pb年齡的證據(jù).地質通報, 31( 8) :1267~1278.
黎彤, 袁懷雨. 2011. 大洋巖石圈和大陸巖石圈的元素豐度. 地球化學, 40(1): 1~5.
李艷廣, 汪雙雙, 劉民武, 孟恩, 魏小燕, 趙慧博, 靳夢琪.2015.斜鋯石LA-ICP-MS U-Pb定年方法及應用. 地質學報,89(12):2400~2418.
李振生, 聶峰, 田曉莉, 石永紅, 牛浩, 王創(chuàng). 2016. 東準噶爾構造帶晚古生代地層時代的厘定及其對區(qū)域構造演化意義.地質學報,90(3):569~588.
李宗懷, 韓寶福, 李辛子, 杜蔚, 楊斌. 2004. 新疆準噶爾地區(qū)花崗巖中微粒閃長質包體特征及后碰撞花崗質巖巖漿起源和演化.巖石礦物學雜志, 23(3):214~226.
龍曉平, 孫敏, 袁超, 肖文交, 陳漢林, 趙永久, 蔡克大, 李繼亮. 2006. 東準噶爾石炭系火山巖的形成機制及其對準噶爾洋盆閉合時限的制約. 巖石學報, 22(1): 31~40.
羅婷, 陳帥, 廖群安, 陳繼平, 胡朝斌, 王富明, 田健, 吳魏偉, 2016. 東準噶爾晚石炭世雙峰式火山巖年代學、地球化學及其構造意義. 地球科學, 41(11): 1845~1862.
沈曉明, 張海祥, 馬林. 2013. 阿爾泰南緣晚石炭世淡色花崗巖的發(fā)現(xiàn)及其構造意義.大地構造與成礦學, 37(4):721~729.
蘇玉平, 唐紅峰, 劉叢強, 侯廣順, 梁莉莉. 2006. 新疆東準噶爾蘇吉泉鋁質A型花崗巖的確立及其初步研究. 巖石礦物學雜志, 5(3):175~184.
湯賀軍. 2021. 新疆東準噶爾扎河壩及鄰區(qū)古生代構造演化與成巖成礦研究. 導師: 吳珍漢. 北京:中國地質科學院博士學位論文.
田健, 廖群安, 樊光明, 聶小妹, 胡朝斌, 王富明, 陳帥, 吳魏偉. 2016. 東準噶爾卡拉麥里斷裂以南幔源底侵體、“釘合花崗巖體”的發(fā)現(xiàn)及其地質意義. 巖石學報, 32(6): 1715~1730.
田健. 2014. 東準噶爾卡拉麥里地區(qū)早石炭世侵入巖的巖石學特征及其地質意義. 導師:廖群安. 武漢:中國地質大學(武漢)碩士學位論文.
王濤. 2000. 花崗巖研究與大陸動力學. 地學前緣, 7 (增刊): 137~146.
吳福元, 李獻華, 楊進輝,鄭永飛. 2007. 花崗巖成因研究的若干問題. 巖石學報, 23(6): 1217~1238.
肖慶輝, 邱瑞照, 邢作云, 張昱, 伍光英, 童勁松. 2007. 花崗巖成因研究前沿的認識. 地質論評,53(增刊):17~27.
熊雙才,李 廣,張征峰.2019a. 東準噶爾晚石炭世構造體制轉變:來自 A2 型流紋巖的證據(jù).地質力學學報,25(S1):49~52.
熊雙才,張征峰,李廣,劉潤澤,華敘登,趙富莊,周鵬飛,李關祿. 2019b. 東準噶爾老爺廟地區(qū)堿性花崗巖鋯石U-Pb 定年、地球化學及其地質意義.地質論評,65(1):221~231.
楊高學. 2008. 新疆東準噶爾卡拉麥里地區(qū)花崗巖類研究. 導師: 李永軍. 西安: 長安大學碩士學位論文.
楊高學, 李永軍, 吳宏恩, 司國輝, 金朝, 張永智. 2009. 東準噶爾卡拉麥里地區(qū)黃羊山花崗巖和包體LA-ICP-MS鋯石U-Pb測年及地質意義. 巖石學報, 25(12): 3197~3207.
張峰. 2014. 東準噶爾卡拉麥里地區(qū)金銅多金屬礦成礦規(guī)律與成礦預測. 導師: 陳建平. 北京:中國地質大學(北京)博士學位論文.
張峰, 陳建平, 徐濤, 范俊杰, 潘愛軍, 郭曉東, 李杰美, 朝銀銀. 2014. 東準噶爾晚古生代依舊存在俯沖消減作用——來自石炭紀火山巖巖石學、地球化學及年代學證據(jù). 大地構造與成礦學, 38(1):140~156.
張旗, 李承東. 2012. 花崗巖:地球動力學意義. 北京: 海洋出版社: 1~276.
張征峰,熊雙才,范香蓮.2021.東準噶爾木炭窯地區(qū)同造山花崗巖鋯石U-Pb定年、地球化學及地質意義. 地質論評,67(1):231~241.
趙霞, 賈承造, 張光亞, 衛(wèi)延召, 賴紹聰, 方向, 張麗君. 2008. 準噶爾盆地陸東—五彩灣地區(qū)石炭系中、基性火山巖地球化學及其形成環(huán)境. 地學前緣, 15(2):272~279.
周建厚,豐成友,沈燈亮,李大新,王輝,張明玉,馬圣鈔.2015.新疆祁漫塔格維寶礦區(qū)西北部花崗閃長巖年代學、地球化學及其構造意義.地質學報,89(3):471~486.
朱志新, 李少貞, 李篙齡. 2005. 東準噶爾紙房地區(qū)晚石炭世巴塔瑪依內(nèi)山組陸相火山—沉積體系特征. 新疆地質, 23(1): 14~25.
Altherr R, Holl A, Hegner E, Langer C, Kreuzer H. 2000. High-potassium,calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50:51~73.
Bai Jianke, Chen Junlu, Tang Zuo, Zhang Yue. 2018&.The closure time of Junggar Paleozoic oceanic basin: Evidence from Carboniferous detrital zircon U-Pb geochronology in Kalamaili area. Geological Bulletin of China, 37(1):26~38.
Batchelor R A, Bowden P. 1985. Petrorgenetic interpretation of granitoid rock series using multicationic parameters. Chemistry Geology, 50(48):43~55.
Boehnke P, Watson E B, Trail D , Harrison T M, Schmit A K. 2013. Zircon saturation re-revisited. Chemical Geology, 351: 324~334.
Chappell B W, White A J R. 1992. I-and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Ediburgh: Earth Sciences, 83(1~2): 1 ~ 26.
Chappell B W. 1988. Origin of infracrustal (I-type) granite magmas. Transactions of the Royal Society of Ediburgh: Earth Sciences, 79:71 ~ 86.
Chappell B W. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46 ( 3): 535 ~ 551.
Collins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol., 80(2): 189~200.
Collins W J, Richards S W. 2008. Geodynamic significance of S-type granite in circunm- Pacific orogens. Geology, 36(7): 559~562.
Deng Jinfu, Feng Yanfang, Di Yongjun, Liu Cui, Xiao Qinghui, Su Shangguo, Zhao Guochun, Meng Fei, Ma Shuai, Yao Tu. 2015a&. Magmatic arc and ocean—continent transion: Discussion. Geological Review, 61(3):473~484.
Deng Jinfu, Liu Cui, Feng Yanfang, Xiao Qinghui, Di Yongjun, Su Shangguo, Zhao Guochun, Duan Peixin, Dai Meng. 2015b&. On the correct application in the common igneous petrological diagram: Discussion and suggestion. Geological Review, 61(4):717~734.
Ewart A. 1982. The mineralogy and petrology of Tertiary—recent orogenic volcanic rocks: With special reference to the andesitic—basaltic compositional range. In: Thorpe R S. ed. Chichester: Andesites. New York:Wiley: 25~87.
Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol., 154:429~437.
Gan Lin, Tang Hongfeng, Han Yujie. 2010&. Geochronology and geochemical characteristics of the Yemaquan granitic pluton in East Junggar, Xinjiang. Acta Petrologica Sinica, 26(8): 2374~2388
Green T H. 1995. Significance of Nb/Ta as an indicator of geochemicalprocesses in the crust—mantle system. Chemical Geology, 120: 347~359.
Harris N, Marzouki F, Ali S. 1986. The Jabel Sayid complex, Arabian Shield: geochemical constraints on the origin of peralkaline and related granites. Journal of the Geological Society, 143(2):287~295.
Han Baofu, Ji Jianqing, Song Biao, Chen Lihui, Zhang Lei. 2006&. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China(I): Timing of post-collisional plutonism. Acta Petrologica Sinica, 22(5): 1077~1086.
Han Baofu. 2007&. Diverse post-collisional granitoids and their tectonic setting discrimination. Eartn Science Frontiers, 14(3):64~72.
Henderson P. 1982. Inorganie Geochemistry. New York: Pergamon Press:1~353.
Hofmann A W. 1988. Chemical differentiation of the Earth: The relationshipbetween mantle‘continental crust’and oceanic crust. Earth and Planetary Science Letters, 90(3): 297~314.
Hu Fangyang, Liu Shuwen, Ducea M N, Zhang Wanyi, Chapman J B, Fu Jinghao, Wang Maojiang, 2018. Interaction among magmas from various sources and crustal melting processes during continental collision: Insights from the Huayang intrusive complex of the South Qinling Belt, China. Journal of Petrology, 59:735~770.
Hu Wanlong. 2016&. Geochemical Characteristics and Geological Significance of Late Carboniferous Granites from the Laoyaquan in Eastern Junggar, Xinjiang. Tutor: Wang Jinrong. Master thesis of Lanzhou University: 1~70.
Huang Gang, Niu Guangzhi, Wang Xinlu, Guo Jun, Yu Feng. 2012&. Formation and emplacement age of Karamaili ophiolite: LA-ICP-MS zircon U-Pb age evidence from the diabase and tuff in eastern Junggar, Xinjiang. Geological Bulletin of China, 31(8):1267~1278.
Kemp A I S, Hawkesworth C J, Foster G J, Gray C M, Paterson B A, Hergt J M, Whitehouse M J, Woodhead J D. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf—O isotopes in zircon. Science, 315(5814): 980~983.
Kovalenko A, Clemens J D, Savatenkov V. 2005. Petrogenetic constraints for the genesis of Archaean sanukitoid suites: Geochemistry and isotopic evidence from Karelia, Baltic Shield. Lithos,79(1~2):147~160.
Kr?ner A, Windley B F, Badarch G, Tomurtogoo O, Hegner E, Jahn B M, Gruschka S, Khain E V, Demoux A, Wingate M T D. 2007. Accretionary growth and crust-formation in the central Asian Orogenic Belt and comparison with the Arabian—Nubian shield. In: Hatcher R D Jr, Carlson M P, McBride J H, Martinez Catalan J R. eds. 4-D Framework of Continental Crust. Geological Society of America Memoir 200: 181~209; Doi:110.1130/2007. 1200(1111)
Li Di, He Dengfa, Sun Min, Zhang Lei. 2020. The role of arc—arc collision in accretionary orogenesis: Insights from ca. 320 Ma tectono—sedimentary transition in the Karamaili area, NW China. Tectonics; Doi: 10.1029/2019TC005623.
Li Shan, Wilde Simon A, Wang Tao, Guo Qianqian. 2013. Incremental growth and origin of the Cretaceous Renjiayingzi pluton, southern Inner Mongolia, China: Evidence from structure, geochemistry and geochronology. Journal of Asian Earth Sciences, 75: 226~242.
Li Tong, Yuan Huaiyu. 2011&. Element abundance in the oceanic and the continental lithospheres. Geochimica, 40(1): 1~5.
Li Yang, Li Sanzhong, Liang Wentian, Lu Rukui, Zhang Youjun, Li Xiyao, Wang Pengcheng, Somerville I, Zhang Guowei. 2019. Incremental emplacement and syn-tectonic deformation of Late Triassic granites in the Qinling Orogen: Structural and geochronological constraints. Gondwana Research, 72:194~212.
Li Yanguang, Wang Shuangshuang, Liu Minwu, Meng En, Wei Xiaoyan,Zhao Huibo, Jin Mengqi.2015&.U-Pb dating study of Baddeleyite by LA-ICP-MS: Technique and application. Acta Geologica Sinica,89(12):2400~2418.
Li Zhensheng, Nie Feng, Tian Xiaoli, Shi Yonghong, Niu Hao, Wang Chuang. 2016&. Redefinition of formation age of Late Paleozoic strata in the eastern Junggar tectonic zone and its implications for evolution of regional geological structure. Acta Geologica Sinica,90(3):569~588.
Li Zonghuai, Han Baofu, Li Xinzi, Du Wei, Yang Bin. 2004&. Microgranular dioritic enclaves in Junggar granites and their implications for the origin and evolution of post-collisional granitic magmatism in North Xinjiang. Acta Petrologica et Mineralogica, 23(3):214~226.
Liegeois J P, Navez J, Hertogen J, Black R. 1998. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids: The use of sliding normalization. Lithos, 45(1):1~28.
Long Xiaoping, Sun Min, Yuan Chao, Xiao Wenjiao, Chen Hanlin, Zhao Yongjiu, Cai Keda, Li Jiliang. 2006&. Genesis of Carboniferous volcanic rocks in the eastern Junggar: Constrains on the closure of the Junggar ocean. Acta Petrologica Sinica, 22(1): 31~40.
Long Xiaoping, Yuan Chao, Sun Min, Safonova I, Xiao Wenjiao, Wang Yujing. 2012. Geochemistry and U-Pb detrital zircon dating of Paleozoic graywackes in east Junggar, NW China: Insights into subduction—accretion processes in the southern Central Asian Orogenic Belt. Gondwana Research, 21:637~653.
Ludwig K R. 2003. Users Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication: 25~32.
Luo Biji, Zhang Hongfei, Xu Wangchun, Guo Liang, Pan Fabin, Yang He. 2015. The Middle Triassic Meiwu batholith, west Qinling, central China: Implications for the evolution of compositional diversity in a composite batholith. Journal of Petrology, 56:1139~1172.
Luo Ting, Chen Shuai, Liao Qun’an, Chen Jiping, Hu Chaobin, Wang Fuming, Tian Jian, Wu Weiwei. 2016&. Geochronology, geochemistry and geological significance of the Late Carboniferous bimodal volcanic rocks in the eastern Junggar. Earth Science, 41(11): 1845~1862.
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635~643.
McLenan S M. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem., Geophys., Geosyst., 2(4): 203~236.
Middlemost E A. 1994. Namingmaterials in the magma / igneous rock system. Earth-Science Reviews, 37(3): 215~224.
Miller C F. 1985. Are strongly peraluminous magmas derived frompolitic sedimentary source. J. Geol., 93: 673~689.
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4):956~983.
Pitcher W S. 1987. Granites and yet more granites forty years on.Geologische Rundschau, 76(1):51~79.
Pitcher W S. 1997. The Nature and Origin of Granite (second edition). London: Chapman & Hall: 1~345.
Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8~32 kbar: implications for continental growth and crust—mantle recycling. Journal of Petrology, 369(4): 891~931.
Rubatto D, Williams I S. 2000. Imageing, trace element geochemistry and mineral inclusions: Linking U-Pb ages with metamorphic conditions. EOS, 21: 25
Rudnick R L, Barth M, Horn I, Mcdonough W F. 2000. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science, 287(5451): 278~281.
Seng?r A M C, Natal’ in B A, Burtman V S. 1993. Evolution of Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 364:299~307.
Shen Xiaoming, Zhang Haixiang, Ma Lin. 2013&. Discovery of the Late Carboniferous Leucogranite in the Southern Altay Range and its tectonic implications. Geotectonica et Metallogenia,37(4):721~729.
Shen Xiaoming, Zhang Haixiang, Wang Qiang, Wyman D A, Yang Yueheng. 2011. Late Devonian—Early Permian A-type granites in the southern Altay Range, Northwest China: Petrogenesis and implications for tectonic setting of ‘A2-type’ granites. Journal of Asian Earth Sciences,42: 986~1007.
Su Yuping, Tang Hongfeng, Liu Congqiang, Hou Guangshun, Liang Lili. 2006&. The determination and a preliminary study of Sujiquan aluminous A-type granites in East Junggar, Xinjiang. Acta Petrologica et Mineralogica, 5(3):175~184.
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:implications or mantle composition and processes. In: Saunders A D, Norry M J. eds. Magmatism in the Ocean Basins: Geological Society Special Publications London, 42: 313~345.
Sylvester P J. 1989. Post-collisional alkaline granites. Journal of Geology, 97(3): 261~281.
Sylvester P J. 1998. Post-collisional strongly peraluminous granites. Lithos, 45:29~44.
Tang Hejun. 2021&. Paleozoic Tectonic Evolution, Diagenesis and Mineralization of the Zhaheba and Its Adjacent Areas in East Junggar, Xinjiang. Supervisor: Wu Zhenhan. Beijing: Ph. D. thesis of Chinese Academy of Geological Sciences.
Tao Wei, Li Yang, Chen Yingtao, Lu Rukui, Ran Yazhou, Zhang Pengpeng, Zhang Guowei.2021. Syn-tectonic emplacement during sinistral transpression: The Late Triassic Gaoqiao pluton in the South Qinling Belt, central China. Geological Journal, 56:995~1011.
Taylor S R, McLennan S M. 1985.The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications.
Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust. Rev. Geophys., 33: 241~265.
Tian Jian, Liao Qun’an, Fan Guangming, Nie Xiaomei, Hu Chaobin, Wang Fuming, Chen Shuai, Wu Weiwei. 2016. Mantle underplated pluton and stitching granites pluton from south side of the Karemaili fault in the eastern Junggar: Geochronological, geochemical and Sr—Nd isotopic constrains on their petrogenesis and tectonic implications. Acta Petrologica Sinica, 32(6): 1715~1730.
Tian Jian. 2014&.The Petrological Characteristics and Tectonics Implications for Early Carboniferous Instrusions from the Area of Karemaili in Eastern Junggar. Supervisor: Liao Qun’an. Wuhan: Master thesis of China University of Geosciences(Wuhan) .
Van Achterbergh E, Ryan C G, Jackson S E, Griffin W. 2001.Data reduction software for LA-ICP-MS. In: Sylvester P J. ed. Laser—Ablation—ICP MS in the Earth Sciences: Principles and Applications. Mineralogical Society of Canada Short Course Series, (29): 239~243.
Wang Tao. 2000&. Studies on granites and continental dynamics. Eartn Science Frontiers, 7(supp.): 137~146.
Windley B F, Garde A A. 2009. Arc-generated blocks with crustal sections in the North Atlantic craton of West Greenland: Crustal growth in the Archean with modern analogues. Earth-Science Reviews, 93(1~2):1~30.
Wolf M B, London D. 1994. Apatite dissolution into peraluminoushaplogranitic melts: An experimental study of solubilities andmechanisms. Geochimica et Cosmochimica Acta, 58 (19): 4127~4245.
Wright J B. 1969. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis. Geological Magazine, 106(4):370~384.
Wu Fuyuan, Li Xianhua, Yang Jinhui, Zheng Yongfei. 2007&. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217~1238.
Xiao Qinghui, Qiu Ruizhao, Xing Zuoyun, Zhan Yu, Wu Guangying, Tong Jinsong. 2007&. Major frontiers on studies of granite formation. Geological Review,53(Supp):17~27.
Xiao Wenjiao, Kr?ner A, Windley B. 2009. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic. International Journal of Earth Science, 98(1):1185~1188.
Xiao Wenjiao, Pirajno F, Seltmann R. 2008. Geodynamics and metallogeny of the Altaid orogen. Journal of Asian Earth Science, (32):77~81.
Xiong Shuangcai, Li Guang, Zhang Zhengfeng. 2019a&. Late Carboniferous tectonic regime transition in east Junggar: Evidence from A2-type rhyolite. Journal of Geomechanics, 25 ( S1) : 49~52.
Xiong Shuangcai, Zhang Zhengfeng, Li Guang, Liu Runze,Hua Xudeng, Zhao Fuzhuang, Zhou Pengfei, Li Guanlu. 2019b&. Zircon U-Pb dating, geochemical characteristics of alkali-granites in Laoyemiao area, eastern Junggar, and geological significance. Geological Review, 65 (1):221~231.
Xu Xingwang, Jiang Neng, Li Xianhua, Wu Chu, Qu Xun, Zhou Gang, Dong Lianhui. 2015. Spatial—temporal framework for the closure of the Junggar Ocean in central Asia: New SIMS zircon U-Pb ages of the ophiolitic mélange and collisional igneous rocks in the Zhifang area, east Junggar. Journal of Asian Earth Sciences; http://dx.doi.org/10.1016/j.jseaes.2015.06.017
Yakubchuk A. 2004. Architecture and mineral deposit settings of the Altaid orogenic collage: A revised model. Journal of Asian Earth Sciences, 23:761~779.
Yang Gaoxue. 2008&. The Study of Granitoids in Kalamaili Area of Easten Junggar, Xinjiang. Supervisor: Li Yongjun. Xi’an: Master thesis of Chang’an University.
Yang Gaoxue, Li Yongjun, Wu Hong’en, Si Guohui, Jin Chao, Zhang Yongzhi. 2009&. LA-ICP-MS zircon U-Pb dating of the Huangyangshan pluton and its enclaves from Kalamaili area eastern Junggar, Xinjiang, and geological implications. Acta Petrologica Sinica, 25(12): 3197~3207.
Zhang Feng. 2014&. Metallogenic Characteristics and Prediction of Gold and Copper Polymetallic Deposits in Kalamaily,Eastern Junggar, Xinjiang. Supervisor: Chen Jianping. Beijing: Ph. D. thesis of China University of Geosciences.
Zhang Feng, Chen Jianping, Xu Tao, Fan Junjie, Pan Aijun, Guo Xiaodong, Li Jiemei, Chao Yinyin. 2014&. Late Paleozoic subduction in the eastern Junggar: Evidence from the petrology, geochemistry and geochronology of Carboniferous volcanic rocks. Geotectonica et Metallogenia, 38(1):140~156.
Zhang Qi, Li Chengdong. 2012&. Granites: Implications for Continental Geodynamic. Beijing: Ocean Press:1~276.
Zhang Zhengfeng,Xiong Shuangcai,Fan Xianglian.2021&. Zircon U-Pb dating, geochemistry and geological significance of synorogenic granit in Mutanyao area, eastern Junggar. Geological Review,67(1):231~241.
Zhao Xia, Jia Chengzao, Zhang Guangya, Wei Yanzhao, Lai Saocong, Fang Xiang, Zhang Lijun. 2008&. Geochemistry and tectonic settings of Carboniferous intermediate—basic volcanic rocks in Ludong—Wucaiwan, Junggar Basin. Eartn Science Frontiers, 15(2):272~279.
Zhou Jianhou, Feng Chengyou, Shen Dengliang, Li Daxin, Wang Hui, Zhang Mingyu, Ma Shengchao. 2015&. Geochronology, geochemistry and tectonic implications of granodiorite in the northwest of Weibao deposit, Qimantage, Xinjiang. Acta Geological Sinica, 89(3):471~486.
Zhu Zhixin, Li Shaozhen, Li Gaoling. 2005&. The characteristics of sedimentary system——Continental facies volcano in later Carboniferous Batamayi Group, Zhifang region, east Junggar. Xinjiang Geology, 23(1): 14~25.