嚴(yán)沁宇, 劉桐, 任藝藝, 葛毅凌, 梁戈玉
· 綜述 ·
m6A修飾在鱗狀細(xì)胞癌中的作用研究進(jìn)展*
嚴(yán)沁宇, 劉桐, 任藝藝, 葛毅凌, 梁戈玉△
(東南大學(xué)公共衛(wèi)生學(xué)院環(huán)境醫(yī)學(xué)工程教育部重點(diǎn)實(shí)驗(yàn)室,江蘇 南京 210009)
6-甲基腺苷修飾;轉(zhuǎn)錄后調(diào)控;鱗狀細(xì)胞癌
近年來,RNA表觀轉(zhuǎn)錄組學(xué)已成為生命科學(xué)領(lǐng)域研究的熱點(diǎn)。作為真核細(xì)胞中最豐富的表觀轉(zhuǎn)錄組修飾,6-甲基腺苷(6-methyladenosine, m6A)修飾是一種動(dòng)態(tài)且可逆的過程[1]。研究表明,m6A可以通過調(diào)節(jié)RNA剪接、穩(wěn)定性、定位、翻譯和衰變,參與神經(jīng)發(fā)育、免疫調(diào)節(jié)和細(xì)胞分化等各種生理行為。m6A修飾的失調(diào)會(huì)損害基因表達(dá)和細(xì)胞功能,最終導(dǎo)致癌癥、精神疾病和代謝性疾病等疾病[2]。隨著檢測技術(shù)的快速發(fā)展和相關(guān)研究的逐步深入,已證實(shí)m6A修飾異常與腫瘤的發(fā)生發(fā)展密切相關(guān),一些m6A調(diào)節(jié)因子已顯示出作為腫瘤治療生物標(biāo)志物的臨床價(jià)值[3]。
鱗狀細(xì)胞癌是一種來源于鱗狀上皮的惡性腫瘤,常見于皮膚、口腔、唇、食管、子宮頸、陰道等處。其中,頭頸部鱗狀細(xì)胞癌(head and neck squamous cell carcinoma, HNSCC)在世界癌癥記錄中排名第六[4],具有高死亡率和高復(fù)發(fā)率,嚴(yán)重危害人類健康。盡管近幾十年來治療方法有所改進(jìn),但鱗狀細(xì)胞癌的5年總生存率仍保持較低的水平。大量前期研究提示m6A修飾相關(guān)酶在各種鱗狀細(xì)胞癌的發(fā)生、發(fā)展及預(yù)后中起著至關(guān)重要的作用[5-9]。鑒于此,本文總結(jié)了目前m6A修飾在頭頸部、口腔、食管等幾大常見鱗狀細(xì)胞癌中的相關(guān)研究進(jìn)展,希望從新的角度闡釋鱗狀細(xì)胞癌發(fā)生發(fā)展的分子機(jī)制,并為其早期診斷與有效治療提供潛在的生物標(biāo)志。
m6A修飾是真核生物中最常見和最重要的RNA甲基化修飾之一,主要發(fā)生在mRNA、tRNA、rRNA及其他非編碼RNA上。m6A修飾具有RRACH的共同序列,并且主要集中在3'非翻譯區(qū)(untranslated region, UTR)終止密碼子附近[10]。m6A修飾動(dòng)態(tài)水平主要由三大類酶系統(tǒng)共同調(diào)控:甲基轉(zhuǎn)移酶(methyltransferases, writers)、去甲基化酶(demethylases, erasers)和閱讀蛋白(binding proteins, readers)。甲基轉(zhuǎn)移酶主要包括METTL3(methyltransferase-like 3)、METTL14(methyltransferase-like 14)及WTAP(Wilms' tumor 1-associated protein),三者組成復(fù)合體催化底物發(fā)生RNA m6A修飾[11-12]。METTL16作為近期新發(fā)現(xiàn)的m6A甲基轉(zhuǎn)移酶,是METTL3的同源物,主要作用是控制細(xì)胞-腺苷-L-蛋氨酸(-adenosyl-L-methionine, SAM)水平并將U6核小RNA甲基化[13]。去甲基化酶主要包括FTO(fat mass and obesity-associated protein)和ALKBH5(α-ketoglutarate-dependent dioxygenase alkB homolog 5)等一系列酶。去甲基化酶同氧分子、抗壞血酸、Fe(Ⅱ)和α-酮戊二酸一起從腺苷的6位點(diǎn)上去除甲基[14-15]。閱讀蛋白主要包括YTH(YT521-B homology)家族、胰島素生長因子2 mRNA結(jié)合蛋白(insulin-like growth factor 2 mRNA-binding proteins, IGF2BP)家族、核內(nèi)不均一核糖核蛋白(heterogeneous nuclear ribonucleoproteins, HNRNP)家族和FMR1(fragile X mental retardation type 1)等[16],主要功能為識(shí)別mRNA上的m6A修飾并與其結(jié)合,調(diào)節(jié)RNA輸出、翻譯、降解等過程,從而調(diào)控基因的表達(dá)[17]。m6A修飾與各調(diào)控因子之間復(fù)雜的相互作用可能在多個(gè)水平調(diào)控mRNA的表達(dá),參與生理和病理過程。
目前國內(nèi)外在m6A修飾與鱗狀細(xì)胞癌方面的研究主要著重于對(duì)腫瘤細(xì)胞的增殖、侵襲、遷移、放化療耐藥、預(yù)后等方面的影響,其揭示的相關(guān)作用靶點(diǎn)和通路也將為鱗狀細(xì)胞癌的早期診斷、治療和預(yù)防提供新的思路?,F(xiàn)分別介紹m6A修飾在頭頸部、口腔、食管及其他鱗狀細(xì)胞癌中的作用與潛在分子機(jī)制。
2.1HNSCCHNSCC是起源于鼻腔、口腔、喉部和咽部粘膜表面的鱗狀細(xì)胞癌(不包括鼻咽癌)[18],是一類侵襲性強(qiáng)、基因復(fù)雜且難以治療的的腫瘤[19],每年奪去約35萬人的生命[20]。越來越多的證據(jù)表明,m6A甲基化修飾在HNSCC腫瘤生長、轉(zhuǎn)移和預(yù)后中起著關(guān)鍵作用。
2.1.1m6A甲基轉(zhuǎn)移酶與HNSCCArumugam等[21]發(fā)現(xiàn)在HNSCC中,KIAA1429通過頻繁擴(kuò)增和突變促進(jìn)KIAA1429 mRNA的過度表達(dá),與HNSCC癌癥分期、腫瘤分級(jí)和淋巴結(jié)轉(zhuǎn)移顯著相關(guān)。Chen等[8]發(fā)現(xiàn)WTAP、METTL3和METTL14在HNSCC組織中的表達(dá)顯著上調(diào)。WTAP的高表達(dá)與腫瘤分級(jí)、腫瘤臨床分期和T分期相關(guān),起腫瘤啟動(dòng)子的作用。METTL3是唯一一個(gè)與淋巴結(jié)分期相關(guān)的調(diào)節(jié)因子,并且與N分期呈負(fù)相關(guān)。METTL14的高表達(dá)導(dǎo)致患者的預(yù)后生存較差。
喉鱗狀細(xì)胞癌(laryngeal squamous cell carcinoma, LSCC)在頭頸部鱗狀細(xì)胞癌中死亡率最高。Wang等[22]驗(yàn)證了RBM15在LSCC組織中過表達(dá),并與不良預(yù)后相關(guān)。高表達(dá)的RBM15顯著增加了TMBIM6 mRNA上的甲基化水平,并通過閱讀蛋白IGF2BP3識(shí)別而增強(qiáng)其穩(wěn)定性,從而促進(jìn)LSCC細(xì)胞的增殖、侵襲、遷移和凋亡。上述研究表明,m6A甲基轉(zhuǎn)移酶在調(diào)節(jié)HNSCC腫瘤進(jìn)展及患者預(yù)后過程中發(fā)揮關(guān)鍵作用,可能作為癌癥轉(zhuǎn)化的預(yù)后標(biāo)志物。
2.1.2m6A去甲基化酶與HNSCC在HNSCC中有7種去甲基化酶(ALKBH1、ALKBH2、ALKBH3、ALKBH4、ALKBH5、ALKBH8和FTO)的表達(dá)水平都顯著升高。其中,ALKBH3和FTO的表達(dá)水平與原發(fā)性腫瘤大小(T分期)呈正相關(guān)。沉默、、和顯著降低了HeLa細(xì)胞的存活率[23]。該研究提示單個(gè)或一組ALKBH蛋白的過度表達(dá)可作為診斷HNSCC和預(yù)測腫瘤進(jìn)展的標(biāo)志物,通過活檢或手術(shù)獲得的樣本可以進(jìn)行蛋白質(zhì)印跡分析,但是具體機(jī)制有待進(jìn)一步闡明。
2.1.3m6A閱讀蛋白與HNSCC最近的一項(xiàng)研究顯示,IGF2BP1、IGF2BP2和IGF2BP3在HNSCC中表達(dá)上調(diào),且與患者的不良預(yù)后相關(guān)[24]。IGF2BP2的高表達(dá)經(jīng)常與HNSCC中最常見的致癌基因的突變同時(shí)發(fā)生。IGF2BP家族通過穩(wěn)定和翻譯m6A修飾的致癌mRNA,包括HMGA2、TK1、HDGF、FSCN1、MKI67和CD44,促進(jìn)腫瘤發(fā)生。Deng等[25]發(fā)現(xiàn),IGF2BP2在HNSCC組織中表達(dá)上調(diào),與HNSCC的T分期、HPV狀態(tài)和總生存期相關(guān),還與患者的局部晚期頸部和淋巴結(jié)轉(zhuǎn)移密切相關(guān)。IGF2BP2通過m6A依賴性方式調(diào)節(jié)轉(zhuǎn)錄因子Slug的表達(dá),以促進(jìn)HNSCC細(xì)胞的上皮-間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition, EMT)過程和淋巴轉(zhuǎn)移[26]。Geng等[27]發(fā)現(xiàn),IGF2BP2的高表達(dá)與患者不良預(yù)后相關(guān)。LRRC59和STIP1可能作為IGF2BP2相關(guān)基因,在m6A修飾中起調(diào)節(jié)作用。IGF2BP2在HNSCC中發(fā)揮作用的機(jī)制可能包括Notch信號(hào)通路、ErbB信號(hào)通路、分解代謝、脂質(zhì)代謝和氨基酸代謝[25]。IGF2BP2在HNSCC中的惡性標(biāo)志可能包括基底細(xì)胞癌、Wnt信號(hào)通路、Hedgehog信號(hào)通路和一些與腫瘤免疫學(xué)相關(guān)的信號(hào)通路,如原發(fā)性免疫缺陷和產(chǎn)生IgA的腸道免疫網(wǎng)絡(luò)[27],這可能為HNSCC的免疫治療靶點(diǎn)提供新的見解,但具體的機(jī)制及所涉及的相關(guān)因子仍需進(jìn)一步研究。
總之,高表達(dá)的IGF2BP家族可能通過多種機(jī)制聯(lián)合促進(jìn)HNSCC的發(fā)生與發(fā)展,在未來的研究中,需更深入地探索IGF2BP家族的關(guān)鍵蛋白及相關(guān)信號(hào)通路在HNSCC中的調(diào)控作用,從而為其診療提供更多的選擇與理論依據(jù)。
Li等[28]發(fā)現(xiàn),是一種在HNSCC組織中低表達(dá)的抑癌基因。YTHDC2低表達(dá)患者的總生存期(overall survival, OS)和無復(fù)發(fā)生存期均低于高表達(dá)患者。此外,YTHDC2表達(dá)與HNSCC中CD4+T細(xì)胞亞群浸潤水平呈正相關(guān),可能成為HNSCC預(yù)后和免疫浸潤的潛在標(biāo)志物。Zhou等[29]發(fā)現(xiàn),YTHDC2是OS的獨(dú)立危險(xiǎn)因素,與較好的預(yù)后有關(guān),YTHDC2高表達(dá)的患者長期生存率較高。GSEA分析表明,YTHDC2的高表達(dá)與細(xì)胞凋亡、泛素介導(dǎo)的蛋白水解、長時(shí)程增強(qiáng)和RIG-I-like受體信號(hào)通路等關(guān)鍵通路相關(guān),揭示了HNSCC發(fā)病的潛在機(jī)制。由此可見,作為一種重要的抑癌基因,將來可能成為診斷HNSCC的一個(gè)關(guān)鍵靶點(diǎn),為HNSCC的治療與干預(yù)提供新的視野。
Ye等[30]發(fā)現(xiàn),YTHDF1誘導(dǎo)下咽部鱗狀細(xì)胞癌(hypopharynx squamous cell carcinoma, HPSCC)的發(fā)生取決于體內(nèi)鐵的代謝。YTHDF1通過m6A依賴性機(jī)制正向調(diào)節(jié)轉(zhuǎn)鐵蛋白受體(transferrin receptor, TFRC)mRNA的翻譯,增強(qiáng)了HPSCC中TFRC的表達(dá),導(dǎo)致FaDu細(xì)胞內(nèi)鐵含量、Fe2+和活性氧(reactive oxygen species, ROS)水平的升高。過量的鐵導(dǎo)致氧化還原失衡并在腫瘤細(xì)胞中產(chǎn)生ROS,進(jìn)而增加基因組的不穩(wěn)定性和增殖。體內(nèi)外實(shí)驗(yàn)表明,下調(diào)YTHDF1可以明顯抑制腫瘤生長、集落形成和遷移。從治療的角度來看,針對(duì)YTHDF1和TFRC介導(dǎo)的鐵代謝可能是HPSCC的一個(gè)有希望的策略。
綜合上文我們發(fā)現(xiàn),m6A修飾在HNSCC中發(fā)揮著不可忽視的作用。參與HNSCC的m6A調(diào)控蛋白中,METTL14、IGF2BP3和YTHDF1都呈現(xiàn)高表達(dá),與患者的不良預(yù)后相關(guān);而YTHDC2是唯一一個(gè)低表達(dá)的修飾因子,與患者較好的預(yù)后相關(guān)。這些調(diào)控蛋白有望成為預(yù)測HNSCC預(yù)后的生物標(biāo)志物。m6A修飾在HNSCC中作用及機(jī)制的總結(jié)見表1及圖1。
表1 m6A修飾在頭頸部鱗狀細(xì)胞癌中的調(diào)控作用
Figure 1.Role of m6A regulators in head and neck squamous cell carcinoma (HNSCC).
2.2口腔鱗狀細(xì)胞癌(oral squamous cell carcinoma, OSCC)OSCC是口腔和頜面部最常見的腫瘤[31],治愈率低、淋巴轉(zhuǎn)移風(fēng)險(xiǎn)和復(fù)發(fā)率都較高[32],嚴(yán)重影響患者的生命健康。m6A修飾調(diào)控蛋白的表達(dá)異常能導(dǎo)致OSCC的增殖、轉(zhuǎn)移和耐藥等。
2.2.1m6A甲基轉(zhuǎn)移酶與OSCCLiu等[33]發(fā)現(xiàn),METTL3在OSCC中高表達(dá),與患者的預(yù)后不良有關(guān)。METTL3的表達(dá)水平與腫瘤分期、臨床分期和淋巴結(jié)轉(zhuǎn)移均呈顯著正相關(guān)。METTL3能夠識(shí)別BMI1 3'UTR上的m6A位點(diǎn),并與IGF2BP1合作促進(jìn)BMI1的翻譯,促進(jìn)OSCC的增殖和轉(zhuǎn)移。Zhao等[34]發(fā)現(xiàn),METTL3針對(duì)c-Myc轉(zhuǎn)錄本的3'UTR安裝m6A修飾,并通過YTHDF1介導(dǎo)的m6A修飾增強(qiáng)了c-Myc的穩(wěn)定性,從而引起了OSCC腫瘤的發(fā)生。Ai等[35]發(fā)現(xiàn),METTL3通過調(diào)節(jié)PRMT5和PD-L1來增強(qiáng)OSCC的轉(zhuǎn)移和增殖。這些研究提示METTL3可能通過調(diào)控多個(gè)下游靶基因促進(jìn)OSCC的增殖和轉(zhuǎn)移,與腫瘤的轉(zhuǎn)歸及預(yù)后密切相關(guān)。
2.2.2m6A去甲基化酶與OSCCLi等[36]的研究表明,高表達(dá)FTO的OSCC患者顯示出更大的腫瘤大小、更高的TNM分期、更差的分化和更短的生存時(shí)間。敲減顯著抑制了OSCC細(xì)胞活力、集落形成和腫瘤生長。此外,F(xiàn)TO在調(diào)節(jié)YAP1 mRNA穩(wěn)定性中發(fā)揮重要作用,F(xiàn)TO的耗竭加速了YAP1 mRNA的降解,提示靶向FTO/YAP1軸可能是干預(yù)OSCC患者的一種新的策略。Wang等[37]發(fā)現(xiàn),F(xiàn)TO通過靶向上調(diào)OSCC細(xì)胞系HSC3和CAL33的關(guān)鍵調(diào)控基因真核翻譯起始因子γ1,在調(diào)節(jié)自噬和腫瘤發(fā)生中起關(guān)鍵作用。這表明FTO抑制劑可能成為治療OSCC的潛在候選藥物,將給OSCC的治療帶來新的希望。
此外,m6A去甲基化酶在OSCC的耐藥發(fā)展中也起著重要的調(diào)節(jié)作用。OSCC最常用的化療方案是順鉑,或單獨(dú)使用,或與5-氟尿嘧啶和多西他賽聯(lián)合使用。研究報(bào)道,RNA解旋酶DDX3(DEAD-box helicase 3 X-linked)通過ALKBH5直接調(diào)控m6A,降低腫瘤干細(xì)胞轉(zhuǎn)錄因子FOXM1(forkhead box protein M1)和NANOG的轉(zhuǎn)錄,導(dǎo)致化療耐藥[38-39]。這提示m6A去甲基化酶在參與OSCC發(fā)病機(jī)制的調(diào)控中是極其復(fù)雜的,今后針對(duì)其引起的耐藥性仍需進(jìn)一步研究,具體的分子機(jī)制仍需探索。
2.2.3m6A閱讀蛋白與OSCCZhu等[40]發(fā)現(xiàn),在OSCC組織中,HNRNPA2B1是眾多m6A調(diào)節(jié)因子中最重要的預(yù)后位點(diǎn),HNRNPA2B1的高表達(dá)與患者較差的總生存率顯著相關(guān),與腫瘤分期、T分期和淋巴結(jié)轉(zhuǎn)移有關(guān),但與分級(jí)無顯著相關(guān)。機(jī)制上,HNRNPA2B1通過LINE-1/TGF-β1/Smad2/Slug信號(hào)通路靶向EMT,促進(jìn)OSCC的癌變。
Huang等[41]發(fā)現(xiàn),HNRNPC是OSCC中獨(dú)立的預(yù)后生物標(biāo)志物,HNRNPC的表達(dá)水平與晚期臨床分期和淋巴結(jié)轉(zhuǎn)移呈正相關(guān),高表達(dá)的HNRNPC通過增強(qiáng)SCC9和CAL27細(xì)胞中N-鈣黏蛋白、基質(zhì)金屬蛋白酶9和波形蛋白表達(dá)及抑制E-鈣黏蛋白表達(dá)來觸發(fā)EMT,從而促進(jìn)OSCC的增殖、遷移和侵襲。
以上兩項(xiàng)研究說明,m6A閱讀蛋白主要通過促進(jìn)EMT過程發(fā)揮致癌作用,這為研究OSCC的靶向治療提供了新的路徑。m6A修飾在OSCC中作用及機(jī)制的總結(jié)見表2及圖2。
表2 m6A修飾在頭頸部鱗狀細(xì)胞癌中的調(diào)控作用
Figure 2.Role of m6A regulators in oral squamous cell carcinoma (OSCC).
2.3食管鱗狀細(xì)胞癌(esophageal squamous cell carcinoma, ESCC)ESCC是食管癌中最常見的病理類型,是一種高度侵襲性和耐藥性的腫瘤,惡性程度高、復(fù)發(fā)率高、預(yù)后差[42]。大量研究顯示,m6A修飾可通過多種機(jī)制參與到ESCC的腫瘤進(jìn)展過程中。
2.3.1m6A甲基轉(zhuǎn)移酶與ESCCHan等[43]觀察到,METTL3在ESCC組織中表達(dá)上調(diào),并與患者預(yù)后不良相關(guān)。METTL3的表達(dá)水平也與晚期腫瘤分級(jí)、癌癥分期及高淋巴結(jié)轉(zhuǎn)移活性有關(guān)。METTL3通過促進(jìn)NOTCH1的表達(dá)和Notch信號(hào)通路的激活,提高ESCC細(xì)胞的生長、遷移和侵襲能力。Zou等[44]發(fā)現(xiàn),METTL3可能通過p21依賴性模式調(diào)節(jié)ESCC細(xì)胞周期,通過p21軸誘導(dǎo)ESCC發(fā)生、發(fā)展。敲除可顯著抑制體外ESCC的生長、侵襲和遷移,并誘導(dǎo)細(xì)胞凋亡,同時(shí)降低PI3K和AKT的磷酸化水平[45]。Chen等[46]證實(shí),谷氨酰胺酶2(glutaminase 2, GLS2)是由METTL3通過m6A修飾調(diào)控的下游靶點(diǎn),敲除導(dǎo)致GLS2在mRNA和蛋白水平上的表達(dá)顯著下調(diào),從而抑制ESCC細(xì)胞的遷移和侵襲。這些研究提示,高表達(dá)的METTL3可能通過多種調(diào)控機(jī)制協(xié)同促進(jìn)ESCC細(xì)胞的惡性進(jìn)展,METTL3作為ESCC患者預(yù)后惡化的預(yù)測因子及抑癌藥物研發(fā)的靶點(diǎn)有很大的臨床價(jià)值。
Liu等[47]在ESCC中發(fā)現(xiàn)了一個(gè)關(guān)鍵的調(diào)節(jié)性METTL14-miR-99a-5p-TRIB2正反饋回路,通過Akt/mTOR/S6K1/HDAC2抑制p21,從而促進(jìn)ESCC中腫瘤干細(xì)胞的持久性和放射抗性。然而,目前關(guān)于METTL14調(diào)控ESCC發(fā)生發(fā)展進(jìn)程的機(jī)制研究報(bào)道較少,具體調(diào)控機(jī)制有待進(jìn)一步探索。
2.3.2m6A去甲基化酶與ESCCLiu等[48]發(fā)現(xiàn),F(xiàn)TO在ESCC組織中高表達(dá),與不良預(yù)后相關(guān);FTO通過上調(diào)基質(zhì)金屬蛋白酶13促進(jìn)ESCC的增殖和遷移。Cui等[49]的研究表明,上調(diào)的FTO可降低ESCC細(xì)胞中LINC00022的m6A水平,并使其與p21蛋白結(jié)合,通過泛素-蛋白酶體途徑促進(jìn)p21蛋白的衰變與降解,促進(jìn)細(xì)胞增殖和腫瘤生長。
與之相反,Xiao等[42]發(fā)現(xiàn),ALKBH5在ESCC中的表達(dá)下調(diào),并且與腫瘤大小、淋巴結(jié)浸潤程度、臨床分期和組織學(xué)分級(jí)呈負(fù)相關(guān)。ALKBH5負(fù)調(diào)控ESCC細(xì)胞的增殖、致瘤性、遷移和侵襲,在ESCC中起抑癌作用。Xue等[50]報(bào)道,在ESCC細(xì)胞中,miR-193a-3p和ALKBH5之間存在正反饋調(diào)節(jié),ALKBH5能夠通過m6A修飾影響miR-193-3p的表達(dá),從而抑制ESCC細(xì)胞系KYSE-150和ECA109的增殖、遷移和侵襲。這表明,雖然FTO和ALKBH5的作用均使得RNA發(fā)生去甲基化,但它們在ESCC中的表達(dá)水平不同,產(chǎn)生的作用效果也截然相反。我們推測其中的差異可能與FTO和ALKBH5具有不同的細(xì)胞內(nèi)定位和組織分布有關(guān),也可能是RNA被不同的m6A閱讀蛋白選擇性識(shí)別所致,具體的原因仍需更深層次探討。
2.3.3m6A閱讀蛋白與ESCCGuo等[51]發(fā)現(xiàn),在ESCC中HNRNPA2B1顯著高表達(dá),HNRNPA2B1作為一種致癌因子,通過上調(diào)脂肪酸合成酶ACLY和ACC1加速脂肪酸合成,促進(jìn)ESCC進(jìn)展。實(shí)驗(yàn)表明,敲減可顯著抑制ESCC細(xì)胞的增殖、遷移和侵襲。另有研究顯示,YTHDF2主要通過與lncRNA LINC00022轉(zhuǎn)錄物結(jié)合并促進(jìn)其在ESCC細(xì)胞中的衰變,發(fā)揮腫瘤抑制作用[49]。
綜合上述結(jié)果可以推測,m6A修飾及其相關(guān)調(diào)控因子可能參與了不同信號(hào)通路介導(dǎo)的ESCC病理過程。這些發(fā)現(xiàn)為進(jìn)一步了解ESCC的發(fā)病機(jī)制提供了新的依據(jù),有望為其藥物治療提供新的靶點(diǎn),提高療效,預(yù)測和改善預(yù)后。m6A修飾在ESCC中作用及機(jī)制的總結(jié)見表3及圖3。
表3 m6A修飾在食管鱗狀細(xì)胞癌中的調(diào)控作用
Figure 3.Role of m6A regulators in esophageal squamous cell carcinoma (ESCC).
圖3m6A調(diào)控因子在食管鱗狀細(xì)胞癌中的作用
2.4其他鱗狀細(xì)胞癌在肺鱗狀細(xì)胞癌(lung squamous cell carcinoma, LUSC)的發(fā)生發(fā)展中,也有一些m6A調(diào)節(jié)因子參與其中。有學(xué)者認(rèn)為,F(xiàn)TO可能是LUSC的一個(gè)預(yù)后因素[52]。Liu等[53]發(fā)現(xiàn),LUSC細(xì)胞系中FTO的表達(dá)顯著升高,F(xiàn)TO通過降低MZF1 mRNA轉(zhuǎn)錄本中的m6A水平和mRNA穩(wěn)定性來增強(qiáng)MZF1的表達(dá),促進(jìn)LUSC的發(fā)生。敲除可有效抑制LUSC細(xì)胞系L78和NCI-H520的增殖和侵襲,促進(jìn)細(xì)胞凋亡。Sun等[54]的研究顯示,YTHDC2在LUSC細(xì)胞中明顯低表達(dá),與分化不良、淋巴結(jié)轉(zhuǎn)移、腫瘤大小和分期顯著相關(guān)。Xu等[55]的研究表明,缺氧介導(dǎo)的YTHDF2過表達(dá)通過激活mTOR/AKT信號(hào)通路,并且誘導(dǎo)LUSC中的EMT過程,促進(jìn)細(xì)胞增殖和侵襲,最終導(dǎo)致LUSC患者的預(yù)后較差。這些發(fā)現(xiàn)提高了目前對(duì)m6A修飾在LUSC發(fā)展過程中生物學(xué)作用的潛在機(jī)制的理解,并可能為LUSC的治療提供潛在靶點(diǎn)。
在皮膚鱗狀細(xì)胞癌(cutaneous squamous cell carcinoma, cSCC)組織中,METTL3表達(dá)上調(diào),通過調(diào)節(jié)cSCC中ΔNp63的表達(dá)促進(jìn)cSCC的細(xì)胞增殖、分化和腫瘤生長;敲除可減弱cSCC細(xì)胞的干性,包括體外集落形成能力和體內(nèi)致瘤性[56]。
在宮頸鱗狀細(xì)胞癌(cervical squamous cell carcinoma, CSCC)組織中,F(xiàn)TO的表達(dá)升高,并通過降低mRNA轉(zhuǎn)錄物中的m6A水平上調(diào)β-catenin的表達(dá),進(jìn)而增加ERCC1(excision repair cross complementing group 1)的活性,從而在體外和體內(nèi)增強(qiáng)化療-放療的抗性[57]。Pan等[58]探索m6A調(diào)節(jié)因子在CSCC中的預(yù)后特征,發(fā)現(xiàn)HNRNPC、KIAA1429、WTAP和ZC3H13的高表達(dá)水平與較差的生存率相關(guān),而YTHDC1和YTHDF1的高表達(dá)水平與較長的OS相關(guān),該預(yù)后特征可能作為預(yù)測患者生存結(jié)果的有效工具。
m6A修飾在LUSC、cSCC和CSCC中作用及機(jī)制的總結(jié)見表4。
表4 m6A修飾在肺、皮膚和宮頸鱗狀細(xì)胞癌中的調(diào)控作用
綜上所述,m6A及其相關(guān)酶的變化與HNSCC、OSCC、ESCC、LUSC等多種鱗狀細(xì)胞癌的發(fā)生發(fā)展關(guān)系密切;m6A修飾可通過影響mRNA穩(wěn)定性、調(diào)控下游靶基因的表達(dá)、激活EMT、調(diào)節(jié)腫瘤細(xì)胞干性等多種機(jī)制在鱗狀細(xì)胞癌的發(fā)生、發(fā)展及治療中發(fā)揮重要作用。這些結(jié)果進(jìn)一步豐富了m6A修飾與鱗狀細(xì)胞癌的作用靶點(diǎn)和途徑,也為后續(xù)從轉(zhuǎn)錄后水平研究鱗狀細(xì)胞癌的病理、病理生理反應(yīng)及臨床診治提供了更廣闊的思路。
m6A修飾被認(rèn)為是真核生物mRNA中最常見的修飾類型,主要通過甲基轉(zhuǎn)移酶(writers)和去甲基化酶(erasers)的共同作用實(shí)現(xiàn)動(dòng)態(tài)可逆調(diào)節(jié),并且被閱讀蛋白(readers)特異性識(shí)別并結(jié)合,發(fā)揮基因調(diào)控作用。從上述研究我們發(fā)現(xiàn),在鱗狀細(xì)胞癌中出現(xiàn)了多樣化的m6A修飾,因其調(diào)控的靶基因不同,所涉及的腫瘤進(jìn)程也不同,主要包括腫瘤細(xì)胞增殖、侵襲、遷移、腫瘤分級(jí)、臨床分期、TNM分期、OS、預(yù)后等。
在眾多參與鱗狀細(xì)胞癌的m6A修飾調(diào)控因子中,METTL3和FTO的研究最為廣泛,其機(jī)制研究也相對(duì)深入。METTL3和FTO在頭頸部、口腔、食管及肺鱗狀細(xì)胞癌中表達(dá)均顯著上調(diào),發(fā)揮致癌作用,提示其作為早期診療及預(yù)后判斷有效生物標(biāo)志的可能性。AKLBH5在HNSCC中高表達(dá),促進(jìn)腫瘤生長;在OSCC中可降低腫瘤干細(xì)胞轉(zhuǎn)錄因子的轉(zhuǎn)錄導(dǎo)致化療耐藥;而在ESCC中卻呈現(xiàn)低表達(dá),起到抑癌作用。同一個(gè)調(diào)節(jié)因子在不同類型的鱗狀細(xì)胞癌中發(fā)揮截然不同的作用,推測可能是由于其調(diào)控的下游靶基因不同所致,也可能歸因于來自不同部位的腫瘤的異質(zhì)性。但其中具體的分子機(jī)制、細(xì)胞效應(yīng)和信號(hào)通路尚不清楚,仍需進(jìn)一步深入研究。值得注意的是,YTHDC2在HNSCC和LUSC中都呈現(xiàn)表達(dá)下調(diào),過表達(dá)YTHDC2使腫瘤的增殖和遷移能力受到顯著抑制,提示其將來有可能成為研究鱗狀細(xì)胞癌的一個(gè)關(guān)鍵的抑癌因子和新的治療靶點(diǎn)。
目前,已有相關(guān)研究探索m6A去甲基化酶的抑制劑在腫瘤治療中的潛在作用。例如,R-2-羥基戊二酸(R-2-hydroxyglutarate, R-2HG)可通過抑制FTO活性,降低MYC/CEBPA轉(zhuǎn)錄物的穩(wěn)定性,從而抑制白血病細(xì)胞增殖,發(fā)揮廣泛的抗白血病活性[59]。R-2HG還可以通過調(diào)節(jié)FTO/m6A而甲基化ERα/miR16-5p/YAP1信號(hào)通路,從而抑制膽管癌生長[60]。
盡管目前有研究認(rèn)為m6A相關(guān)調(diào)節(jié)因子及信號(hào)通路可以作為鱗狀細(xì)胞癌的治療靶點(diǎn),但現(xiàn)有關(guān)于m6A修飾參與調(diào)節(jié)鱗狀細(xì)胞癌的研究仍比較有限,大多止步于其在腫瘤中的表達(dá)水平及功能,而對(duì)調(diào)控腫瘤的分子機(jī)制的研究卻不夠深入。因此,迫切需要進(jìn)一步開展m6A修飾在鱗狀細(xì)胞癌相關(guān)領(lǐng)域的研究,以期發(fā)掘具有特異性和敏感性的生物標(biāo)志物,為實(shí)現(xiàn)鱗狀細(xì)胞癌的早期診斷和精準(zhǔn)治療提供科學(xué)依據(jù)。
[1] Zhou Z, Lv J, Yu H, et al. Mechanism of RNA modification6-methyladenosine in human cancer[J]. Mol Cancer, 2020, 19(1):104.
[2] Yang C, Hu Y, Zhou B, et al. The role of m6A modification in physiology and disease[J]. Cell Death Dis, 2020, 11(11):960.
[3] Zhou Y, Yang J, Tian Z, et al. Research progress concerning m6A methylation and cancer[J]. Oncol Lett, 2021, 22(5):775.
[4] Subha ST, Chin JW, Cheah YK, et al. Multiple microRNA signature panel as promising potential for diagnosis and prognosis of head and neck cancer[J]. Mol Biol Rep, 2022, 49(2):1501-1511.
[5] Zhang X, Lu N, Wang L, et al. Recent advances of m6A methylation modification in esophageal squamous cell carcinoma[J]. Cancer Cell Int, 2021, 21(1):421.
[6] Li DQ, Huang CC, Zhang G, et al. FTO demethylates YAP mRNA promoting oral squamous cell carcinoma tumorigenesis[J]. Neoplasma, 2021.
[7] Zhang K, Han Z, Zhao H, et al. An integrated model of FTO and METTL3 expression that predicts prognosis in lung squamous cell carcinoma patients[J]. Ann Transl Med, 2021,9(20):1523.
[8] Chen Y, Jiang X, Li X, et al. The methylation modification of m6A regulators contributes to the prognosis of head and neck squamous cell carcinoma[J]. Ann Transl Med, 2021, 9(16):1346.
[9] Zhang Y, Li L, Ye Z, et al. Identification of m6A methyltransferase-related genes predicts prognosis and immune infiltrates in head and neck squamous cell carcinoma[J]. Ann Transl Med, 2021, 9(20):1554.
[10] Sun T, Wu R, Ming L. The role of m6A RNA methylation in cancer[J]. Biomed Pharmacother, 2019, 112:108613.
[11] Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA6-methyladenosine methyltransferase[J]. Cell Res, 2014, 24(2):177-189.
[12] Liu L, Wang Y, Wu J, et al.6-Methyladenosine: a potential breakthrough for human cancer[J]. Mol Ther Nucleic Acids, 2020, 19:804-813.
[13] Shima H, Matsumoto M, Ishigami Y, et al.-Adenosylmethionine synthesis is regulated by selective6-adenosine methylation and mrna degradation involving METTL16 and YTHDC1[J]. Cell Rep, 2017, 21(12):3354-3363.
[14] Maity A, Das B.6-methyladenosine modification in mRNA: machinery, function and implications for health and diseases[J]. FEBS J, 2016, 283(9):1607-1630.
[15] Hu Y, Wang S, Liu J, et al. New sights in cancer: Component and function of6-methyladenosine modification[J]. Biomed Pharmacother, 2020, 122:109694.
[16] Zhou Z, Lv J, Yu H, et al. Mechanism of RNA modification6-methyladenosine in human cancer[J]. Mol Cancer, 2020, 19(1):104.
[17] Wang T, Kong S, Tao M, et al. The potential role of RNA6-methyladenosine in cancer progression[J]. Mol Cancer, 2020, 19(1):88.
[18] Chow L. Head and neck cancer. Reply[J]. N Engl J Med, 2020, 382(20):e57.
[19] Alsahafi E, Begg K, Amelio I, et al. Clinical update on head and neck cancer: molecular biology and ongoing challenges[J]. Cell Death Dis, 2019, 10(8):540.
[20] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424.
[21] Arumugam P, George R, Jayaseelan VP. Aberrations of m6A regulators are associated with tumorigenesis and metastasis in head and neck squamous cell carcinoma[J]. Arch Oral Biol, 2021, 122:105030.
[22] Wang X, Tian L, Li Y, et al. RBM15 facilitates laryngeal squamous cell carcinoma progression by regulating TMBIM6 stability through IGF2BP3 dependent[J]. J Exp Clin Cancer Res, 2021, 40(1):80.
[23] Pil?ys T, Marcinkowski M, Kukwa W, et al. ALKBH overexpression in head and neck cancer: potential target for novel anticancer therapy[J]. Sci Rep, 2019, 9(1):13249.
[24] Paramasivam A, George R, Priyadharsini JV. Genomic and transcriptomic alterations in m6A regulatory genes are associated with tumorigenesis and poor prognosis in head and neck squamous cell carcinoma[J]. Am J Cancer Res, 2021, 11(7):3688-3697.
[25] Deng X, Jiang Q, Liu Z, et al. Clinical significance of an m6A reader gene, IGF2BP2, in head and neck squamous cell carcinoma[J]. Front Mol Biosci, 2020, 7:68.
[26] Yu D, Pan M, Li Y, et al. RNA6-methyladenosine reader IGF2BP2 promotes lymphatic metastasis and epithelial-mesenchymal transition of head and neck squamous carcinoma cells via stabilizing slug mRNA in an m6A-dependent manner[J]. J Exp Clin Cancer Res, 2022, 41(1):6.
[27] Geng X, Zhang Y, Zeng Z, et al. Molecular characteristics, prognostic value, and immune characteristics of m6A regulators identified in head and neck squamous cell carcinoma[J]. Front Oncol, 2021, 11:629718.
[28] Li Y, Zheng J N, Wang E H, et al. The m6A reader protein YTHDC2 is a potential biomarker and associated with immune infiltration in head and neck squamous cell carcinoma[J]. PeerJ, 2020, 8:e10385.
[29] Zhou X, Han J, Zhen X, et al. Analysis of genetic alteration signatures and prognostic values of m6A regulatory genes in head and neck squamous cell carcinoma[J]. Front Oncol, 2020, 10:718.
[30] Ye J, Wang Z, Chen X, et al. YTHDF1-enhanced iron metabolism depends on TFRC m6A methylation[J]. Theranostics, 2020, 10(26):12072-12089.
[31] Zhou X, Xue D, Qiu J. Identification of biomarkers related to glycolysis with weighted gene co-expression network analysis in oral squamous cell carcinoma[J]. Head Neck, 2022, 44(1):89-103.
[32] Cheng Y, Li S, Gao L, et al. The molecular basis and therapeutic aspects of cisplatin resistance in oral squamous cell carcinoma[J]. Front Oncol, 2021, 11:761379.
[33] Liu L, Wu Y, Li Q, et al. METTL3 promotes tumorigenesis and metastasis through BMI1 m6A methylation in oral squamous cell carcinoma[J]. Mol Ther, 2020, 28(10):2177-2190.
[34] Zhao W, Cui Y, Liu L, et al. METTL3 facilitates oral squamous cell carcinoma tumorigenesis by enhancing c-Myc stability via YTHDF1-mediated m6A modification[J]. Mol Ther Nucleic Acids, 2020, 20:1-12.
[35] Ai Y, Liu S, Luo H, et al. METTL3 intensifies the progress of oral squamous cell carcinoma via modulating the m6A amount of PRMT5 and PD-L1[J]. J Immunol Res, 2021, 2021:6149558.
[36] Li DQ, Huang CC, Zhang G, et al. FTO demethylates YAP mRNA promoting oral squamous cell carcinoma tumorigenesis[J]. Neoplasma, 2022, 69(1):71-79.
[37] Wang F, Liao Y, Zhang M, et al.6-methyladenosine demethyltransferase FTO-mediated autophagy in malignant development of oral squamous cell carcinoma[J]. Oncogene, 2021, 40(22):3885-3898.
[38] Jing FY, Zhou LM, Ning YJ, et al. The biological function, mechanism, and clinical significance of m6A RNA modifications in head and neck carcinoma: a systematic review[J]. Front Cell Dev Biol, 2021, 9:683254.
[39] Shriwas O, Priyadarshini M, Samal SK, et al. DDX3 modulates cisplatin resistance in OSCC through ALKBH5-mediated m6A-demethylation of FOXM1 and NANOG[J]. Apoptosis, 2020, 25(3/4):233-246.
[40] Zhu F, Yang T, Yao M, et al. HNRNPA2B1, as a m6A reader, promotes tumorigenesis and metastasis of oral squamous cell carcinoma[J]. Front Oncol, 2021, 11:716921.
[41] Huang GZ, Wu QQ, Zheng ZN, et al. M6A-related bioinformatics analysis reveals that HNRNPC facilitates progression of OSCC via EMT[J]. Aging (Albany NY), 2020, 12(12):11667-11684.
[42] Xiao D, Fang TX, Lei Y, et al. m6A demethylase ALKBH5 suppression contributes to esophageal squamous cell carcinoma progression[J]. Aging (Albany NY), 2021, 13(17):21497-21512.
[43] Han H, Yang C, Zhang S, et al. METTL3-mediated m6A mRNA modification promotes esophageal cancer initiation and progression via Notch signaling pathway[J]. Mol Ther Nucleic Acids, 2021, 26:333-346.
[44] Zou J, Zhong X, Zhou X, et al. The m6A methyltransferase METTL3 regulates proliferation in esophageal squamous cell carcinoma[J]. Biochem Biophys Res Commun, 2021, 580:48-55.
[45] Hu W, Liu W, Liang H, et al. Silencing of methyltransferase-like 3 inhibits oesophageal squamous cell carcinoma[J]. Exp Ther Med, 2020, 20(6):138.
[46] Chen X, Huang L, Yang T, et al. METTL3 promotes esophageal squamous cell carcinoma metastasis through enhancing GLS2 expression[J]. Front Oncol, 2021, 11:667451.
[47] Liu Z, Wu K, Gu S, et al. A methyltransferase-like 14/miR-99a-5p/tribble 2 positive feedback circuit promotes cancer stem cell persistence and radioresistance via histone deacetylase 2-mediated epigenetic modulation in esophageal squamous cell carcinoma[J]. Clin Transl Med, 2021, 11(9):e545.
[48] Liu S, Huang M, Chen Z, et al. FTO promotes cell proliferation and migration in esophageal squamous cell carcinoma through up-regulation of MMP13[J]. Exp Cell Res, 2020, 389(1):111894.
[49] Cui Y, Zhang C, Ma S, et al. RNA m6A demethylase FTO-mediated epigenetic up-regulation of LINC00022 promotes tumorigenesis in esophageal squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2021, 40(1):294.
[50] Xue J, Xiao P, Yu X, et al. A positive feedback loop between AlkB homolog 5 and miR-193a-3p promotes growth and metastasis in esophageal squamous cell carcinoma[J]. Hum Cell, 2021, 34(2):502-514.
[51] Guo H, Wang B, Xu K, et al. m6A reader HNRNPA2B1 promotes esophageal cancer progression via up-regulation of ACLY and ACC1[J]. Front Oncol, 2020, 10:553045.
[52] 張哲明, 吳艷, 卞濤. RNA m6A修飾在肺部疾病中的研究進(jìn)展[J]. 中國病理生理雜志, 2021, 37(9):1719-1723.
Zhang ZM, Wu Y, Bian T. Progress in role of RNA m6A modification in lung diseases[J]. Chin J Pathophysiol, 2021, 37(9):1719-1723.
[53] Liu J, Ren D, Du Z, et al. m6A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression[J]. Biochem Biophys Res Commun, 2018, 502(4):456-464.
[54] Sun S, Han Q, Liang M, et al. Downregulation of m6A reader YTHDC2 promotes tumor progression and predicts poor prognosis in non-small cell lung cancer[J]. Thorac Cancer, 2020, 11(11):3269-3279.
[55] Xu P, Hu K, Zhang P, et al. Hypoxia-mediated YTHDF2 overexpression promotes lung squamous cell carcinoma progression by activation of the mTOR/AKT axis[J]. Cancer Cell Int, 2022, 22(1):13.
[56] Zhou R, Gao Y, Lv D, et al. METTL3 mediated m6A modification plays an oncogenic role in cutaneous squamous cell carcinoma by regulating ΔNp63[J]. Biochem Biophys Res Commun, 2019, 515(2):310-317.
[57] Zhou S, Bai ZL, Xia D, et al. FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting β-catenin through mRNA demethylation[J]. Mol Carcinog, 2018, 57(5):590-597.
[58] Pan J, Xu L, Pan H. Development and validation of an m6A RNA methylation regulator-based signature for prognostic prediction in cervical squamous cell carcinoma[J]. Front Oncol, 2020, 10:1444.
[59] Su R, Dong L, Li C, et al. R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling[J]. Cell, 2018, 172(1/2):90-105.
[60] Gao Y, Ouyang X, Zuo L, et al. R-2HG downregulates ERα to inhibit cholangiocarcinoma via the FTO/m6A-methylated ERα/miR16-5p/YAP1 signal pathway[J]. Mol Ther Oncolytics, 2021, 23:65-81.
Progress in role of m6A modification in squamous cell carcinoma
YAN Qin-yu, LIU Tong, REN Yi-yi, GE Yi-ling, LIANG Ge-yu△
(,,,,210009,)
As one of the most widespread RNA modifications in eukaryotes,6-methyladenosine (m6A) modification regulates target gene expression by affecting RNA splicing, stability, localization, translation and decay, which plays an important role in post-transcriptional regulation. Dysregulation of m6A modification is involved in the development of squamous cell cancers of the head and neck, oral cavity, and esophagus, affecting tumor proliferation, invasion, migration and correlating with their prognosis and drug resistance. This study summarizes the biological functions and molecular mechanisms of m6A modification in the development of squamous cell carcinoma from a new perspective of RNA methylation regulation, aiming to provide scientific basis for early diagnosis, prognosis and targeted therapy of squamous cell carcinoma.
6-methyladenosine modification; Post-transcriptional regulation; Squamous cell carcinoma
R730.2; Q354
A
10.3969/j.issn.1000-4718.2022.03.020
1000-4718(2022)03-0543-10
2022-01-12
2022-02-22
[基金項(xiàng)目]國家自然科學(xué)基金(科研縱向)資助項(xiàng)目(No. 81972998)。
Tel: 13851720165; E-mail: lianggeyu@163.com
(責(zé)任編輯:盧萍,羅森)