付孟,李艷
綜 述
家馬的起源歷史與品種馴化特征
付孟,李艷
省部共建云南生物資源保護(hù)與利用國家重點(diǎn)實(shí)驗(yàn)室,云南大學(xué)生命科學(xué)學(xué)院,昆明 650091
在家犬()、牛()、豬()、綿羊()、山羊()等家養(yǎng)動物之后,家馬()才被人類成功馴化。雖然馴化歷史很短,但其對人類社會文明發(fā)展變革的影響卻最大。家馬出色的負(fù)重移動能力使人類社會由固定的農(nóng)耕模式向移動分享模式過渡,使歷史發(fā)展進(jìn)入了快車道,因此其起源馴化歷史一直備受關(guān)注。然而由于家馬直系同源野生種早已滅絕,加之現(xiàn)代品種化培育引起遺傳多樣性驟減,使得相關(guān)研究長期爭議不斷。隨著測序技術(shù)的不斷發(fā)展和古代樣品的逐步豐富,目前對家馬起源馴化過程、群體遺傳結(jié)構(gòu)等方面的研究越來越深入。本文從核基因、mtDNA、Y染色體、古DNA等不同層面綜述了家馬起源與馴化歷史方面的研究進(jìn)展,從品種分化狀況、群體演化特征等方面討論了現(xiàn)代家馬品種的群體遺傳結(jié)構(gòu),最后總結(jié)了馬匹毛色、速度、體型等重要表型性狀的遺傳基礎(chǔ),以期為今后家馬的起源馴化研究、種質(zhì)資源保護(hù)與開發(fā)、品種優(yōu)化方向、現(xiàn)代馬業(yè)發(fā)展等方面提供參考。
家馬;馴化;起源;表型性狀
家馬屬于脊椎動物亞門(Vertebrata)、哺乳綱(Mammalia)、奇蹄目(Perissodactyla)、馬科(Equidae)、馬屬()、馬()。據(jù)聯(lián)合國糧食及農(nóng)業(yè)組織(Food and Agriculture Organization,F(xiàn)AO)統(tǒng)計(jì),截止到2021年,世界上現(xiàn)存有696個(gè)家馬品種(Source: DAD-IS accessed, http://www.fao.org/dad- is/risk-status-of-animal-genetic-resources/en/)。
馬屬動物的祖先大約在5500萬年前出現(xiàn),并且經(jīng)過持續(xù)的進(jìn)化形成現(xiàn)今的馬、驢()和斑馬()等,統(tǒng)稱馬屬動物[1]。馬作為家畜中的重要一員,起初以食物來源的形式為人類提供肉及奶,后逐漸演變成為人類最主要的交通工具及勞動力,可以騎乘、挽車、載重、耕種,是推動人類文明發(fā)展的重要載體,在人類社會發(fā)展史上發(fā)揮了其他家養(yǎng)動物無法比擬的作用。家馬出色的遷移速度和運(yùn)載能力滿足了人類活動不斷擴(kuò)張的需要,使人類社會由固定的農(nóng)耕生活方式向更頻繁的遷徙、貿(mào)易生活方式過渡,促進(jìn)了經(jīng)濟(jì)繁榮,加速了社會變革和民族交融,使歷史發(fā)展進(jìn)入了快車道。因此,闡明家馬的起源馴化歷史,不僅有助于合理保護(hù)和科學(xué)利用家畜遺傳資源,還將加深理解和認(rèn)識早期人類社會的文明進(jìn)程,為動物流行性疾病的擴(kuò)散及預(yù)防等提供重要的科學(xué)線索。
現(xiàn)代馬業(yè)的蓬勃興起與迅猛發(fā)展,更對深入認(rèn)識家馬的種質(zhì)資源及性狀進(jìn)化遺傳基礎(chǔ)提出了迫切需求。因此,隨著基因組測序技術(shù)的發(fā)展,不同品種家馬的遺傳特征成為了研究的熱點(diǎn)。本文綜述了家馬起源馴化歷史、品種遺傳結(jié)構(gòu)、性狀遺傳基礎(chǔ)等方面的研究進(jìn)展,以期為家馬的馴化研究提供參考。
動物考古學(xué)家通過對古代樣本的骨骼、牙齒、組織進(jìn)行測量,分析樣本的年齡、性別來判斷動物骨骼的相關(guān)起源與馴化問題。通過對馬掌骨的測量分析,以及韁繩和馬奶加工工具等物品的考古發(fā)現(xiàn),科學(xué)家們證實(shí)5500年前在中亞博泰(Botai)地區(qū)的野馬已被成功馴化為家馬[2],但是這些Botai家馬并不是現(xiàn)代家馬的祖先(它們的后代反野數(shù)千年后形成了現(xiàn)在的普氏野馬()[3])。然而由于骨骼形態(tài)在不同發(fā)育時(shí)期差異較大,且馴化初期個(gè)體與野生個(gè)體間差異較小,加之個(gè)體本身存在的差異,導(dǎo)致依靠骨骼等形態(tài)特征得到的結(jié)論可能有較大的誤差。馬匹考古遺骸的保存和收集,提供了僅次于人類的涵蓋多個(gè)時(shí)間尺度的最大古代基因組數(shù)據(jù),開啟了在種群規(guī)模上分析古代基因組特征的大門[4]。古代基因組數(shù)據(jù)能夠提供直接且有力的證據(jù),但可能因古代樣本數(shù)量稀有,使得家馬馴化過程背后的遺傳機(jī)制研究不夠充分[5~8]。分子遺傳學(xué)家通過現(xiàn)代分子技術(shù),結(jié)合古代基因組數(shù)據(jù),探討了家馬和普氏野馬之間的關(guān)系,揭示了包括起源時(shí)間、馴化中心、規(guī)模、馬匹品種之間的關(guān)系和多樣性在內(nèi)的家馬起源馴化歷史等相關(guān)問題,加深了對家馬馴化過程、相關(guān)性狀變化遺傳機(jī)制的了解[9~12]。
利用核基因分析系統(tǒng)發(fā)育關(guān)系的研究工作開始較早。1995年,馬和驢的促黃體激素(luteinizing hormone,LH)β-亞基被克隆出來,二者的同源度非常高(相似度:核苷酸為97%;氨基酸為93%),證實(shí)馬和驢存在較近的親緣關(guān)系[13]。2003年,通過PCR擴(kuò)增和單向測序,獲得了家馬、普氏野馬、驢、斑馬的β2-微球蛋白序列,經(jīng)對比發(fā)現(xiàn),馬屬動物在核苷酸水平和氨基酸水平存在較高的同源性(核苷酸>98%,氨基酸為95%)[14]。2009年,Wade等[15]率先完成了第一個(gè)家馬基因組的組裝,揭示馬染色體與人類染色體的共線性保守程度達(dá)53%。馬DNA雜交微陣列芯片技術(shù)也隨之飛速發(fā)展,第一張家馬DNA芯片于2012年由多個(gè)發(fā)達(dá)國家的研究機(jī)構(gòu)共同研發(fā),該芯片上有超過5萬多個(gè)單核苷酸多態(tài)性(single nucleotide polymorphism, SNP)位點(diǎn),可以快速實(shí)現(xiàn)大規(guī)模個(gè)體的遺傳差異研究[16]。隨后馬芯片檢測的SNP數(shù)量快速擴(kuò)展到了670K,并完成了包括24個(gè)品種在內(nèi)的153匹馬的全基因組關(guān)聯(lián)研究[17]。與此同時(shí),奎特馬(Quarter horse)基因組也順利組裝完成,并通過重測序技術(shù)獲得了大量群體基因組數(shù)據(jù),篩選得到310萬個(gè)SNP和282個(gè)拷貝數(shù)變異(copy number variation, CNV),揭示了家馬基因組在感覺、免疫等方面的遺傳變異[18]。除了遺傳變異研究外,Warmuth等[19]通過模型分析橫跨歐亞大陸的300多匹家馬常染色體微衛(wèi)星分子標(biāo)記,從核基因角度提出馬匹的馴化可能始于歐亞大草原西部,野生群體在此過程中有遺傳貢獻(xiàn)。
線粒體能夠提供母系遺傳的直接證據(jù)。mtDNA插入核基因組會產(chǎn)生線粒體假基因(numts),即線粒體起源的核序列。馬參考基因組中鑒定出82個(gè)numts片段,表明該物種可能處于快速進(jìn)化的階段[20]。為探究家馬馴化的地點(diǎn)和時(shí)間,2002年Jansen等[21]分析了25個(gè)品種318匹家馬的線粒體D-loop環(huán),將93個(gè)不同的單倍型劃分為17個(gè)系統(tǒng)發(fā)育類群,提示家馬由歐亞大陸的多個(gè)野馬種群馴化而來。Achilli等[22]分析了亞洲、歐洲、中東和美洲的83個(gè)現(xiàn)代馬的mtDNA,劃分了18個(gè)(A-R)主要的單倍群,表明現(xiàn)代家馬具有豐富的mtDNA遺傳度。McGahern等[23]利用AMOVA分析了118匹東方馬群體mtDNA的系統(tǒng)地理格局,發(fā)現(xiàn)F單倍群的地理關(guān)聯(lián)性非常顯著,是歐亞大陸東部家馬群體的主要地理分布類型,這是第一次在馬mtDNA序列中檢測到明顯的地理分布格局。此后,Lei等[24]對來自中國各地的182匹現(xiàn)代馬247 bp線粒體D-loop序列進(jìn)行多樣性分析,發(fā)現(xiàn)可以劃分為7個(gè)(A-G)單倍群,提示中國家馬具有復(fù)雜的起源馴化過程。
Y染色體遵循父系遺傳,是追溯父系遺傳歷史的最佳分子標(biāo)記。然而迄今為止,馬Y染色體測序工作還未完全完成。通過RDA分析(representational difference analysis)以及BAC(bacterial artificial chromosome)文庫篩選,2004年首次確認(rèn)了6個(gè)Y染色體微衛(wèi)星標(biāo)記[25],由此開始了對馬Y染色體變異特征的探究。隨著高通量測序技術(shù)的興起,2013年利用重測序數(shù)據(jù)定位了Y染色體的SNP分子標(biāo)記,發(fā)現(xiàn)絕大部分現(xiàn)代馬都來自6個(gè)單倍型,屬于單系起源[26]。通過從頭組裝家馬雄性特異性區(qū)域(male- specific region, MSY),并掃描21個(gè)主要的歐美品種52匹馬的單倍型,進(jìn)一步提示這些現(xiàn)代品種的父系遺傳信息單系起源于近東地區(qū)[12]。然而上述研究主要關(guān)注的是現(xiàn)代品種馬,對本地土著馬匹Y染色體的研究揭示了更復(fù)雜的馴化歷史:Ling等[27]通過在中國地區(qū)573個(gè)雄性個(gè)體中掃描上述6個(gè)Y染色體特異微衛(wèi)星標(biāo)記,發(fā)現(xiàn)中國家馬至少存在兩個(gè)父系起源;另外在日本的馬群中也發(fā)現(xiàn)了豐富的馬Y染色體位點(diǎn)突變,揭示了馬Y染色體具有一定的遺傳多樣性,這是對應(yīng)于線粒體豐富遺傳多樣性的又一補(bǔ)充[28]。
2011年,Orlando等[5]對一塊來自更新世的馬骨進(jìn)行研究,研發(fā)了“單分子DNA測序”(true single- molecule sequencing, tSMS)技術(shù),由此開啟了利用二代測序技術(shù)研究家馬古代基因組的篇章。2013年,Orlando等[6]獲取了一個(gè)非常古老基因組—一塊來自于中更新世早期大約距今56~78萬年前的馬骨骼,該研究使得古基因組學(xué)的時(shí)間框架極大地向前推進(jìn),使人們得以重新審視家馬起源與馴化的相關(guān)問題。例如通過獲取4.3萬年前晚更新世馬的DNA序列,發(fā)現(xiàn)馬屬動物共同祖先可追溯至400~450萬年前,普氏野馬和家馬約在3.8~7.2萬年前分化,普氏野馬可能是最后幸存的野馬種群。2014年,Schuber等[7]獲取了俄羅斯Taymyr兩匹來自晚更新世的古馬基因組數(shù)據(jù),結(jié)果表明現(xiàn)代家馬可能起源于歐亞大陸的古代種群。2017年,Cantalapiedra等[8]分析138匹新近紀(jì)–第四紀(jì)的古馬,通過最小二乘(phylogenetic generalized least squares,PGLS)回歸檢驗(yàn),發(fā)現(xiàn)中新世馬群體輻射擴(kuò)散與氣候變化相關(guān),揭示了生態(tài)極限對動植物的影響。2018年,Gaunitz等[3]通過42個(gè)古馬基因組梳理了普氏野馬和家馬的系統(tǒng)發(fā)育關(guān)系,發(fā)現(xiàn)普氏野馬是博泰(Botai)馬的后代,現(xiàn)存家馬僅有2.7%的Botai馬血統(tǒng),表明現(xiàn)代馬群的擴(kuò)張可能與大規(guī)?;蚪M轉(zhuǎn)換有關(guān),這一現(xiàn)象同青銅器時(shí)代人口不斷擴(kuò)張相吻合。2019年,F(xiàn)ages等[4]從278個(gè)馬遺骸中提取了DNA,其中大多跨越近6000年,研究證實(shí)伊比利亞和西伯利亞滅絕家馬世系的存在。2021年,Librado等[29]分析了生活在公元前5萬年到公元前200年間的273匹古代馬基因組,發(fā)現(xiàn)盡管歐亞大陸曾經(jīng)分布有遺傳背景完全不同的馬群,但在公元前2200到公元前2000年間發(fā)生了巨大變化:一支生活在北高加索地區(qū)大草原的群體,憑借溫順和更強(qiáng)壯脊椎骨兩個(gè)優(yōu)勢,快速取代了從大西洋到蒙古草原上的所有野馬種群,成為現(xiàn)代家馬的祖先。
馬匹主要根據(jù)其外部形態(tài)特征(體型、體重、毛色、頭、額寬、眼、耳、鼻、蹄、頸、胸、腹等)、育用性能指標(biāo)(繁殖生育、負(fù)載能力、挽曳能力等)、生理指標(biāo)(體溫指標(biāo)、呼吸特征、血液等)特征進(jìn)行區(qū)分[30]。現(xiàn)有的家馬品種主要包括身材矮小的品種(小馬品種)、體型與體重較大的選育馬品種、一些稀有品種和缺乏管理的地方品種等。部分品種(例如純血馬、阿拉伯馬)經(jīng)過幾百年的人工選擇,也有在最近培育出來的現(xiàn)代馬品種,如奎特馬、花馬和田納西走馬。不同品種由于表型用途、起源地點(diǎn)、擴(kuò)散歷史及培育歷史等方面的不同,可以通過芯片掃描群體的遺傳特征,將其清晰地區(qū)分[16]。Kader等[30]通過掃描816匹現(xiàn)代家馬個(gè)體基因組,發(fā)現(xiàn)最主要的差異(主成分1)來源于品種形成過程中是否有阿拉伯馬血統(tǒng)的參與,次要差異(主成分2)則來源于品種的肩高差異。而具有相似表型性狀特征的不同品種,也可以通過芯片掃描受選擇的一致位點(diǎn),推測其表型特性的遺傳基礎(chǔ)[31]。即便是分化歷史非常短的品種,例如萊茵德國挽馬(Rhenish German Draught horse)、東德亞群梅克倫堡馬(East German subpopu-lations Mecklenburg horse)和撒克遜圖林加冷血馬(Saxon Thuringa Coldblood horse),也可以通過少量的微衛(wèi)星分子標(biāo)記進(jìn)行遺傳劃分和鑒定[9]。
不同品種遺傳結(jié)構(gòu)的差異不僅能清晰地辨別品種來源,還能反映地理分布格局、馴化歷史和品種特征。例如地理分布格局相近的東亞品種雅庫特馬(Yakutian horse)、蒙古馬(Mongolian horse)和濟(jì)州島馬(Jeju Island horse)親緣關(guān)系較近;分布在斯堪的納維亞地區(qū)的冰島馬(Icelandic horse)、設(shè)得蘭馬(Shetland horse)和挪威馬(Norwegian Fjord horse)也因地域接近而關(guān)系緊密[32]。中國的地方家馬品種同樣表現(xiàn)出典型的地理分布格局:根據(jù)微衛(wèi)星分子標(biāo)記可以聚類為五大類群[33],分別對應(yīng)蒙古高原、新疆、東北地區(qū)、西南山地、黃河上游流域–青藏高原腹地等地域特征[34]。培育過程中均有阿拉伯馬(Arabian horse)參與的花馬(Paint horse)、奎特馬(Quarter horse)、瑞士溫血馬(Swiss Warmblood horse)、漢諾威馬(Hanoverian horse)、瑪雷曼納馬(Marem-mano horse)、法國走步馬(French Trotter horse)和純血馬(Thoroughbred horse)等具有較近的遺傳距離[32]。在品種特征方面,具有重型馬特征的夏爾馬(Shire horse)、克萊茲代爾馬(Clydesdale horse)與佩爾什馬(Percheron horse)、比利時(shí)馬(Belgian horse)表現(xiàn)出較近的親緣關(guān)系[32]。
2.2.1 群體歷史特征
家馬的群體遺傳特征在過去的幾千年里發(fā)生了巨大的改變?;?4個(gè)品種的59匹家馬和1匹普氏野馬的線粒體全基因組,Lippold等[35]認(rèn)為家馬的種群數(shù)量在6000~8000年前出現(xiàn)了顯著的擴(kuò)張,并延續(xù)至今。然而基于古代馬、普氏野馬和現(xiàn)代品種的核基因組研究卻認(rèn)為,雖然在馴化過程中,家馬相比于野馬普遍出現(xiàn)了遺傳多樣度的下降及近交系數(shù)的升高[36],但在過去的數(shù)千年里,家馬的遺傳多樣度并沒有太大變化,直到近200年才急劇下降[4]。而Y染色體遺傳多樣度的降低發(fā)生得更早,大概始于2000年以前,文藝復(fù)興后特定種馬品系的雄性偏好選擇逐漸增強(qiáng),導(dǎo)致Y染色體多樣性下降了3.8~ 10.0倍[4,12],雜合度也隨著多樣度的降低而降低[4]。雖然品種馬的近交系數(shù)普遍較高,例如純血馬、標(biāo)準(zhǔn)種馬(Standardbred horse)等,但那些最近或正在進(jìn)行混合的品種,如奎特馬、漢諾威馬、瑞士溫血馬等,仍表現(xiàn)出中等偏下水平的近交系數(shù)[16]。
值得注意的是,無論是歐洲家馬還是亞洲家馬,其遺傳組成一直在動態(tài)更替:公元前2200~公元前2000年,一支生活在北高加索地區(qū)大草原的群體,憑借溫順和更強(qiáng)壯脊椎骨兩個(gè)優(yōu)勢,快速取代了從大西洋到蒙古草原上的所有野馬種群,成為現(xiàn)代家馬的祖先[29]。2000年后,在公元7~9世紀(jì)阿拉伯帝國擴(kuò)張的鼎盛時(shí)期,波斯地區(qū)的家馬擴(kuò)散到歐洲大陸南部并影響了歐洲品種的遺傳構(gòu)成;在相近的時(shí)間段內(nèi),哈薩克斯坦地區(qū)的家馬也逐漸取代了古代西伯利亞和匈奴地區(qū)家馬的遺傳貢獻(xiàn),成為中亞及蒙古地區(qū)家馬的主要遺傳構(gòu)成[4]。
2.2.2 馴化代價(jià)
近期快速的多樣度和雜合度的下降,表明家馬群體在過去的幾百年間經(jīng)歷了嚴(yán)重的瓶頸效應(yīng)。在這個(gè)過程中,由于自然選擇壓力放松,人工選擇壓力增大,加之搭乘效應(yīng)和建群者效應(yīng)等諸多因素的共同影響,積累了大量的突變,其中就包含了很多有害突變,馴化代價(jià)隨之產(chǎn)生[4,36]。家馬在馴化過程中,許多性狀如馬匹體型、運(yùn)動能力、馬匹毛色等均發(fā)生了較大改變,遺傳負(fù)荷相比于古代野馬有顯著增加[36],在近200年出現(xiàn)了快速積累[3,4]。在19世紀(jì)的普氏野馬樣本中,也觀察到與古代家馬、馴化的Botai馬相當(dāng)?shù)倪z傳負(fù)荷水平[3],進(jìn)一步佐證了普氏野馬來源于已被馴化的馬。隨著普氏野馬在20世紀(jì)中葉經(jīng)歷了野外滅絕[37]、種群數(shù)量驟減、嚴(yán)重的瓶頸效應(yīng)使得現(xiàn)代普氏野馬的遺傳負(fù)荷普遍高于現(xiàn)代家馬的平均程度[3,37]。馴化代價(jià)在其他馴化物種中也有報(bào)道,例如狗()[38]、水稻()[39]、西紅柿()[40]等。家馬在品種化培育過程中,遺傳負(fù)荷進(jìn)一步加劇,導(dǎo)致馬匹品種選育的負(fù)面效應(yīng)不斷加大。例如在挽馬品種中,奎特馬患遺傳性肌肉疾病的概率 較高,就是由于發(fā)生變異所引起的[41];一些擁有柔和毛色的馬匹易患可致死的神經(jīng)障礙疾病,則是由于毛色淡化致死因子()的隱形純合導(dǎo)致[42]。
家馬的毛色在馴化過程中表現(xiàn)出驚人的變化,從騮毛(bay)、褐騮毛(seal brown)野生型表型,發(fā)展出基本顏色如栗色和黑色,以及淡化(如奶油和銀色)、斑點(diǎn)圖案(如豹復(fù)合體)等多種表型[43,44]。基礎(chǔ)毛色由兩個(gè)主效基因和相互作用影響黑色素細(xì)胞功能產(chǎn)生[45,46],另外還有4個(gè)主效基因[47]、[48]、[49]和[50]影響常見的淡化毛色。此外,還有大量基因被證實(shí)與白斑及褪色表型性狀有關(guān)[51]。
家馬的步態(tài)和速度在馴化過程中也發(fā)生改變。多樣的步態(tài)形式可以提高馬匹運(yùn)動速度、增加騎手的舒適感。因此,馬匹品種的步態(tài)由步行(walk)、小跑(trot)、疾馳(gaiped)等自然步態(tài)逐漸衍生出交替步態(tài)(側(cè)步、四拍慢步、斜線慢步等)[52]。通過不同步態(tài)冰島馬的基因組關(guān)聯(lián)分析,發(fā)現(xiàn)基因中單堿基突變導(dǎo)致的提前終止子影響了馬的步態(tài)和節(jié)奏[53],該基因?qū)Σ綉B(tài)的影響在其他步態(tài)馬品種中也得到驗(yàn)證[52]。Hill等[54]在純血馬中發(fā)現(xiàn)基因與馬匹運(yùn)動速度顯著相關(guān)。基因型的不同對馬匹運(yùn)動能力也有著較大的影響,如基因純合子在短距離快跑和長距離賽跑中表現(xiàn)較好,而雜合子在中長跑中表現(xiàn)較好[55]。漢諾威溫血馬中參與肌肉結(jié)構(gòu)、發(fā)育和新陳代謝等功能的基因如和,與馬匹跳躍表演能力顯著相關(guān)[56]。基因中的錯(cuò)義突變使藏馬能夠很好地適應(yīng)高海拔缺氧的極端環(huán)境,保障了藏馬在缺氧環(huán)境下運(yùn)動的血液循環(huán)、氧氣運(yùn)輸和消耗[57]。此外,F(xiàn)ages等[4]還證實(shí)運(yùn)動能力基因和在過去的600~1100年內(nèi)等位基因頻率上升,表明馬的運(yùn)動模式受到人類的強(qiáng)烈選擇。
馬匹體型相關(guān)遺傳基礎(chǔ)研究同樣采用全基因關(guān)聯(lián)掃描法,篩選與馬匹體型有密切關(guān)系的位點(diǎn)(圖1)。Makvandi-Nejad等[58]通過掃描17個(gè)品種馬發(fā)現(xiàn)僅僅和這4個(gè)位點(diǎn)基因就可以解釋83%的體型變異。不過,不同的品種也可能受不同變異類型的影響從而形成各自的體型特征。例如Orr等[59]在弗里斯矮馬(Friesian dwarf)中通過對34,429個(gè)SNP進(jìn)行基因組關(guān)聯(lián),發(fā)現(xiàn)了一個(gè)矮化基因;通過比較群體基因組學(xué)分析則發(fā)現(xiàn)德保矮馬(Debao pony)的小體型與基因[60]和[30]有關(guān);而與體型大小相關(guān)的明星基因僅在弗朗什–蒙塔涅斯馬(Franches- Montagnes, FM)中出現(xiàn)特異的基因型變化[31]。在家馬中,體型性狀往往由少數(shù)基因發(fā)揮主效作用,這與其他家養(yǎng)動物的體型差異遺傳基礎(chǔ)相似[61],卻有別于控制人類身高的多基因微效機(jī)制[62]。與家馬體型相關(guān)的候選基因往往也在其他物種中控制體型變化,例如和與家犬體型有關(guān)[61,63],/位點(diǎn)則影響牛的體型[64],這提示不同物種間存在廣泛的趨同進(jìn)化。另外,相同基因的不同變異也可能影響家馬不同性狀的進(jìn)化。例如基因影響dun毛色性狀的同時(shí)[50],也影響中國德保矮馬的矮小體型[30]。
圖1 影響家馬體高的相關(guān)候選基因
體高指由肩隆最高點(diǎn)到地面的距離。體型差異與、/、和等4個(gè)基因座相關(guān)的品種有:阿克哈–塔克馬(Akhal-teke horse)、美國迷你馬(America Miniature horse)、安達(dá)盧西亞馬(Andalusian horse)、阿拉伯馬(Arabian horse)、阿登納斯馬(Ardennais horse)、比利時(shí)馬(Belgian horse)、布拉班特馬(Braban horse)、里海馬(Caspian horse)、克萊茲代爾馬(Clydesdale horse)、埃克斯穆爾馬(Exmoor horse)、法拉貝拉馬(Falabella horse)、費(fèi)爾矮馬(Fell pony)、芬蘭馬(Finnish horse)、弗朗什–蒙塔涅斯馬(Franches-Montagne horse)、法國快步馬(French Trotter horse)、荷蘭馬(Friesian horse)、漢諾威馬(Hanoverian horse)、冰島馬(Icelandic horse)、巴西馬(Mangalarga Paulista horse)、新福里斯特小型馬(New Forest pony)、北方瑞典馬(North Swedish horse)、挪威峽灣馬(Norwegian Fjord horse)、花馬(Paint horse)、佩爾什馬(Percheron horse)、秘魯馬(Peruvian Paso horse)、波多黎各小馬(Puerto Rican Paso pony horse)、夸特馬(Quarter horse)、(Saddlebred horse)、設(shè)德蘭矮馬(Shetland pony)、希爾馬(Shire horse)、標(biāo)準(zhǔn)馬(Standardbred horse)、薩??税R(Suffolk punck horse)、瑞士溫血馬(Swiss warmblood horse)、田納西走馬(Tennessee walking horse)、純血馬(Thoroughbred horse)、圖瓦馬(Tuva horse)、威爾士山地小型馬(Welsh mountain pony horse)、威爾小馬(Welsh pony horse)等。根據(jù)參考文獻(xiàn)[30, 31, 58~60]繪制。
對馬的品種分類,一般采用的方法包括生物學(xué)分類法、畜牧學(xué)分類法和冷熱血統(tǒng)分類法等[65](表1)。生物學(xué)分類將馬匹分為草原種、沙漠種、山地種和森林種;畜牧學(xué)分類按馬匹的具體用途分為挽用型、乘用型和兼用型;冷熱血統(tǒng)分類按選育程度和氣質(zhì)類型分為冷血統(tǒng)、熱血統(tǒng)和溫血統(tǒng)。按不同的分類方法,可對馬匹進(jìn)行劃分。針對常見受歡迎馬匹品種分別介紹了14種現(xiàn)代馬匹的別稱、體型、毛色、地理起源、外形主要特點(diǎn)、分布范圍,具體內(nèi)容見表2。
表1 馬的品種分類方法
選自甘肅農(nóng)業(yè)大學(xué)主編的《養(yǎng)馬學(xué)》教材[65]。
表2 現(xiàn)代馬主要品種介紹
續(xù)表
盡管關(guān)于家馬起源與進(jìn)化方面的研究已經(jīng)有了一定的進(jìn)展,進(jìn)化關(guān)系和馴化背景、遷徙路線等方面的過程越來越清晰,但具體的起源時(shí)間和地址(如相比現(xiàn)在發(fā)現(xiàn),是否存在不同或者更多的起源地址)等還沒有確切的答案。對家馬遺傳結(jié)構(gòu)的解析,有助于篩選更多與馬匹毛色、運(yùn)動、體型相關(guān)基因,指導(dǎo)家馬品種的性狀改良與優(yōu)化,促進(jìn)現(xiàn)代馬業(yè)的發(fā)展。在當(dāng)今社會,許多家馬品種瀕危,通過比較不同時(shí)間、空間尺度下的家馬基因組,有助于人們在相關(guān)保護(hù)生物學(xué)領(lǐng)域采取更多的措施和手段保護(hù)馬匹種質(zhì)資源。
隨著測序技術(shù)和考古技術(shù)的發(fā)展,有望在家馬馴化溯源方面獲得突破性進(jìn)展。作為世界上馬匹存欄數(shù)最多的國家,我國很有必要加強(qiáng)對中國地方家馬品種基因組,特別是古代樣品基因組的研究工作,填補(bǔ)中國家馬起源歷史研究方面的空白,為解析世界家馬的起源歷史提供重要的線索和翔實(shí)的證據(jù)。同時(shí),在許多地方家馬種質(zhì)資源衰退的大環(huán)境下,通過對地方家馬品種基因組的研究,結(jié)合不同時(shí)間、空間尺度下的群體遺傳結(jié)構(gòu)比較,將會大力推進(jìn)地方特色種質(zhì)資源DNA指紋圖譜的構(gòu)建、調(diào)控特色表型性狀分子標(biāo)記的挖掘鑒定和積極推動地方種質(zhì)資源的保護(hù)及特色性狀的改良優(yōu)化,為采取更豐富靈活的科學(xué)措施和手段提供客觀的科學(xué)依據(jù),對保障我國生物戰(zhàn)略資源安全具有重要意義。
[1] Wang YX, eds. A Complete Checklist of Mammal Species and Subspecies in China— A Taxonomic and Geographic Reference. Beijing: China Forestry Publishing House, 2003.
王應(yīng)祥著. 中國哺乳動物種和亞種分類名錄與分布大全. 北京: 中國林業(yè)出版社, 2003.
[2] Outram AK, Stear NA, Bendrey R, Olsen S, Kasparov A, Zaibert V, Thorpe N, Evershed RP. The earliest horse harnessing and milking., 2009, 323(5919): 1332– 1335.
[3] Gaunitz C, Fages A, Hangh?j K, Albrechtsen A, Khan N, Schubert M, Seguin-Orlando A, Owens IJ, Felkel S, Bignon-Lau O, de Barros Damgaard P, Mittnik A, Mohaseb AF, Davoudi H, Alquraishi S, Alfarhan AH, Al-Rasheid KAS, Crubézy E, Benecke N, Olsen S, Brown D, Anthony D, Massy K, Pitulko V, Kasparov A, Brem G, Hofreiter M, Mukhtarova G, Baimukhanov N, L?ugas L, Onar V, Stockhammer PW, Krause J, Boldgiv B, Undrakhbold S, Erdenebaatar D, Lepetz S, Mashkour M, Ludwig A, Wallner B, Merz V, Merz I, Zaibert V, Willerslev E, Librado P, Outram AK, Orlando L. Ancient genomes revisit the ancestry of domestic and Przewalski's horses., 2018, 360(6384): 111–114.
[4] Fages A, Hangh?j K, Khan N, Gaunitz C, Seguin-Orlando A, Leonardi M, McCrory Constantz C, Gamba C, Al-Rasheid KAS, Albizuri S, Alfarhan AH, Allentoft M, Alquraishi S, Anthony D, Baimukhanov N, Barrett JH, Bayarsaikhan J, Benecke N, Bernáldez-Sánchez E, Berrocal-Rangel L, Biglari F, Boessenkool S, Boldgiv B, Brem G, Brown D, Burger J, Crubézy E, Daugnora L, Davoudi H, de Barros Damgaard P, de Los ángeles de Chorro Y de Villa-Ceballos M, Deschler-Erb S, Detry C, Dill N, do Mar Oom M, Dohr A, Ellingv?g S, Erdenebaatar D, Fathi H, Felkel S, Fernández-Rodríguez C, García-Vi?as E, Germonpré M, Granado JD, Hallsson JH, Hemmer H, Hofreiter M, Kasparov A, Khasanov M, Khazaeli R, Kosintsev P, Kristiansen K, Kubatbek T, Kuderna L, Kuznetsov P, Laleh H, Leonard JA, Lhuillier J, von Lettow-Vorbeck CL, Logvin A, L?ugas L, Ludwig A, Luis C, Arruda AM, Marques-Bonet T, Matoso Silva R, Merz V, Mijiddorj E, Miller BK, Monchalov O, Mohaseb FA, Morales A, Nieto-Espinet A, Nistelberger H, Onar V, Pálsdóttir AH, Pitulko V, Pitskhelauri K, Pruvost M, Rajic Sikanjic P, Rapan Pape?a A, Roslyakova N, Sardari A, Sauer E, Schafberg R, Scheu A, Schibler J, Schlumbaum A, Serrand N, Serres-Armero A, Shapiro B, Sheikhi Seno S, Shevnina I, Shidrang S, Southon J, Star B, Sykes N, Taheri K, Taylor W, Teegen WR, Trbojevi? Vuki?evi? T, Trixl S, Tumen D, Undrakhbold S, Usmanova E, Vahdati A, Valenzuela-Lamas S, Viegas C, Wallner B, Weinstock J, Zaibert V, Clavel B, Lepetz S, Mashkour M, Helgason A, Stefánsson K, Barrey E, Willerslev E, Outram AK, Librado P, Orlando L. Tracking five millennia of horse management with extensive ancient genome time series., 2019, 177(6): 1419–1435.e31.
[5] Orlando L, Ginolhac A, Raghavan M, Vilstrup J, Rasmussen M, Magnussen K, Steinmann KE, Kapranov P, Thompson JF, Zazula G, Froese D, Moltke I, Shapiro B, Hofreiter M, Al-Rasheid KAS, Gilbert MTP, Willerslev E. True single-molecule DNA sequencing of a pleistocene horse bone., 2011, 21(10): 1705–1719.
[6] Orlando L, Ginolhac A, Zhang GJ, Froese D, Albrechtsen A, Stiller M, Schubert M, Cappellini E, Petersen B, Moltke I, Johnson PLF, Fumagalli M, Vilstrup JT, Raghavan M, Korneliussen T, Malaspinas AS, Vogt J, Szklarczyk D, Kelstrup CD, Vinther J, Dolocan A, Stenderup J, Velazquez AMV, Cahill J, Rasmussen M, Wang XL, Min JM, Zazula GD, Seguin-Orlando A, Mortensen C, Magnussen K, Thompson JF, Weinstock J, Gregersen K, R?ed KH, Eisenmann V, Rubin CJ, Miller DC, Antczak DF, Bertelsen MF, Brunak S, Al-Rasheid KAS, Ryder O, Andersson L, Mundy J, Krogh A, Gilbert MTP, Kj?r K, Sicheritz-Ponten T, Jensen LJ, Olsen JV, Hofreiter M, Nielsen R, Shapiro B, Wang J, Willerslev E. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse., 2013, 499(7456): 74–78.
[7] Schubert M, Jónsson H, Chang D, Der Sarkissian C, Ermini L, Ginolhac A, Albrechtsen A, Dupanloup I, Foucal A, Petersen B, Fumagalli M, Raghavan M, Seguin-Orlando A, Korneliussen TS, Velazquez AMV, Stenderup J, Hoover CA, Rubin CJ, Alfarhan AH, Alquraishi SA, Al-Rasheid KAS, MacHugh DE, Kalbfleisch T, MacLeod JN, Rubin EM, Sicheritz-Ponten T, Andersson L, Hofreiter M, Marques-Bonet T, Gilbert MTP, Nielsen R, Excoffier L, Willerslev E, Shapiro B, Orlando L. Prehistoric genomes reveal the genetic foundation and cost of horse domestication., 2014, 111(52): E5661–5669.
[8] Cantalapiedra JL, Prado JL, Fernández MH, Alberdi MT. Decoupled ecomorphological evolution and diversification in Neogene-Quaternary horses., 2017, 355(6325): 627–630.
[9] Aberle KS, Hamann H, Dr?gemüller C, Distl O. Genetic diversity in German draught horse breeds compared with a group of primitive, riding and wild horses by means of microsatellite DNA markers., 2004, 35(4): 270–277.
[10] Aranguren-Méndez J, Jordana J, Gomez M. Genetic diversity in Spanish donkey breeds using microsatellite DNA markers., 2001, 33(4): 433–442.
[11] Kusliy MA, Vorobieva NV, Tishkin AA, Makunin AI, Druzhkova AS, Trifonov VA, Iderkhangai T-O, Graphodatsky AS. Traces of Late Bronze and Early Iron Age Mongolian horse mitochondrial lineages in modern populations., 2021, 12(3): 412.
[12] Wallner B, Palmieri N, Vogl C, Rigler D, Bozlak E, Druml T, Jagannathan V, Leeb T, Fries R, Tetens J, Thaller G, Metzger J, Distl O, Lindgren G, Rubin CJ, Andersson L, Schaefer R, McCue M, Neuditschko M, Rieder S, Schl?tterer C, Brem G. Y chromosome uncovers the recent oriental origin of modern stallions., 2017, 27(13): 2029–2035.e5.
[13] Chopineau M, Stewart F, Allen WR. Cloning and analysis of the cDNA encoding the horse and donkey luteinizing hormone beta-subunits., 1995, 160(2): 253–256.
[14] Tallmadge RL, Lear TL, Johnson AK, Guérin G, Millon LV, Carpenter SL, Antczak DF. Characterization of the beta2-microglobulin gene of the horse., 2003, 54(10): 725–733.
[15] Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bailey E, Bellone RR, Bl?cker H, Distl O, Edgar RC, Garber M, Leeb T, Mauceli E, MacLeod JN, Penedo MCT, Raison JM, Sharpe T, Vogel J, Andersson L, Antczak DF, Biagi T, Binns MM, Chowdhary BP, Coleman SJ, Della Valle G, Fryc S, Guérin G, Hasegawa T, Hill EW, Jurka J, Kiialainen A, Lindgren G, Liu J, Magnani E, Mickelson JR, Murray J, Nergadze SG, Onofrio R, Pedroni S, Piras MF, Raudsepp T, Rocchi M, R?ed KH, Ryder OA, Searle S, Skow L, Swinburne JE, Syv?nen AC, Tozaki T, Valberg SJ, Vaudin M, White JR, Zody MC, Broad Institute Genome Sequencing Platform, Broad Institute Whole Genome Assembly Team, Lander ES, Lindblad-Toh K. Genome sequence, comparative analysis, and population genetics of the domestic horse., 2009, 326(5954): 865–867.
[16] McCue ME, Bannasch DL, Petersen JL, Gurr J, Bailey E, Binns MM, Distl O, Guérin G, Hasegawa T, Hill EW, Leeb T, Lindgren G, Penedo MCT, R?ed KH, Ryder OA, Swinburne JE, Tozaki T, Valberg SJ, Vaudin M, Lindblad-Toh K, Wade CM, Mickelson JR. A high density SNP array for the domestic horse and extant Perissodactyla: utility for association mapping, genetic diversity, and phylogeny studies., 2012, 8(1): e1002451.
[17] Schaefer RJ, Schubert M, Bailey E, Bannasch DL, Barrey E, Bar-Gal GK, Brem G, Brooks SA, Distl O, Fries R, Finno CJ, Gerber V, Haase B, Jagannathan V, Kalbfleisch T, Leeb T, Lindgren G, Lopes MS, Mach N, da Camara Machado A, MacLeod JN, McCoy A, Metzger J, Penedo C, Polani S, Rieder S, Tammen I, Tetens J, Thaller G, Verini-Supplizi A, Wade CM, Wallner B, Orlando L, Mickelson JR, McCue ME. Developing a 670k genotyping array to tag ~2M SNPs across 24 horse breeds., 2017, 18(1): 565.
[18] Doan R, Cohen ND, Sawyer J, Ghaffari N, Johnson CD, Dindot SV. Whole-genome sequencing and genetic variant analysis of a Quarter horse mare., 2012, 13: 78.
[19] Warmuth V, Eriksson A, Bower MA, Barker G, Barrett E, Hanks BK, Li SC, Lomitashvili D, Ochir-Goryaeva M, Sizonov GV, Soyonov V, Manica A. Reconstructing the origin and spread of horse domestication in the Eurasian steppe., 2012, 109(21): 8202– 8206.
[20] Nergadze SG, Lupotto M, Pellanda P, Santagostino M, Vitelli V, Giulotto E. Mitochondrial DNA insertions in the nuclear horse genome., 2010, 41 Suppl 2: 176–185.
[21] Jansen T, Forster P, Levine MA, Oelke H, Hurles M, Renfrew C, Weber J, Olek K. Mitochondrial DNA and the origins of the domestic horse., 2002, 99(16): 10905–10910.
[22] Achilli A, Olivieri A, Soares P, Lancioni H, Hooshiar Kashani B, Perego UA, Nergadze SG, Carossa V, Santagostino M, Capomaccio S, Felicetti M, Al-Achkar W, Penedo MCT, Verini-Supplizi A, Houshmand M, Woodward SR, Semino O, Silvestrelli M, Giulotto E, Pereira L, Bandelt HJ, Torroni A. Mitochondrial genomes from modern horses reveal the major haplogroups that underwent domestication., 2012, 109(7): 2449–2454.
[23] McGahern A, Bower MAM, Edwards CJ, Brophy PO, Sulimova G, Zakharov I, Vizuete-Forster M, Levine M, Li S, MacHugh DE, Hill EW. Evidence for biogeographic patterning of mitochondrial DNA sequences in Eastern horse populations., 2006, 37(5): 494–497.
[24] Lei CZ, Su R, Bower MA, Edwards CJ, Wang XB, Weining S, Liu L, Xie WM, Li F, Liu RY, Zhang YS, Zhang CM, Chen H. Multiple maternal origins of native modern and ancient horse populations in China., 2009, 40(6): 933–944.
[25] Wallner B, Piumi F, Brem G, Müller M, Achmann R. Isolation of Y chromosome-specific microsatellites in the horse and cross-species amplification in the genus Equus., 2004, 95(2): 158–164.
[26] Wallner B, Vogl C, Shukla P, Burgstaller JP, Druml T, Brem G. Identification of genetic variation on the horse y chromosome and the tracing of male founder lineages in modern breeds., 2013, 8(4): e60015.
[27] Ling YH, Ma YH, Guan WJ, Cheng YJ, Wang YP, Han JL, Jin DP, Mang L, Mahmut H. Identification of Y chromosome genetic variations in Chinese indigenous horse breeds., 2010, 101(5): 639–643.
[28] Kakoi H, Kikuchi M, Tozaki T, Hirota KI, Nagata SI, Hobo S, Takasu M. Distribution of Y chromosomal haplotypes in Japanese native horse populations., 2018, 29(2): 39–42.
[29] Librado P, Khan N, Fages A, Kusliy MA, Suchan T, Tonasso-Calvière L, Schiavinato S, Alioglu D, Fromentier A, Perdereau A, Aury JM, Gaunitz C, Chauvey L, Seguin-Orlando A, Der Sarkissian C, Southon J, Shapiro B, Tishkin AA, Kovalev AA, Alquraishi S, Alfarhan AH, Al-Rasheid KAS, Seregély T, Klassen L, Iversen R, Bignon-Lau O, Bodu P, Olive M, Castel JC, Boudadi- Maligne M, Alvarez N, Germonpré M, Moskal-Del Hoyo M, Wilczyński J, Pospu?a S, Lasota-Ku? A, Tunia K, Nowak M, Rannam?e E, Saarma U, Boeskorov G, Lōugas L, Kysely R, Pe?ke L, B?l??escu A, Dumitra?cu V, Dobrescu R, Gerber D, Kiss V, Szécsényi-Nagy A, Mende BG, Gallina Z, Somogyi K, Kulcsár G, Gál E, Bendrey R, Allentoft ME, Sirbu G, Dergachev V, Shephard H, Tomadini N, Grouard S, Kasparov A, Basilyan AE, Anisimov MA, Nikolskiy PA, Pavlova EY, Pitulko V, Brem G, Wallner B, Schwall C, Keller M, Kitagawa K, Bessudnov AN, Bessudnov A, Taylor W, Magail J, Gantulga JO, Bayarsaikhan J, Erdenebaatar D, Tabaldiev K, Mijiddorj E, Boldgiv B, Tsagaan T, Pruvost M, Olsen S, Makarewicz CA, Lamas SV, Canadell SA, Espinet AN, Iborra MP, Garrido JL, González ER, Celestino S, Olària C, Arsuaga JL, Kotova N, Pryor A, Crabtree P, Zhumatayev R, Toleubaev A, Morgunova NL, Kuznetsova T, Lordkipanize D, Marzullo M, Prato O, Gianni GB, Tecchiati U, Clavel B, Lepetz S, Davoudi H, Mashkour M, Berezina NY, Stockhammer PW, Krause J, Haak W, Morales-Mu?iz A, Benecke N, Hofreiter M, Ludwig A, Graphodatsky AS, Peters J, Kiryushin KY, Iderkhangai TO, Bokovenko NA, Vasiliev SK, Seregin NN, Chugunov KV, Plasteeva NA, Baryshnikov GF, Petrova E, Sablin M, Ananyevskaya E, Logvin A, Shevnina I, Logvin V, Kalieva S, Loman V, Kukushkin I, Merz I, Merz V, Sakenov S, Varfolomeyev V, Usmanova E, Zaibert V, Arbuckle B, Belinskiy AB, Kalmykov A, Reinhold S, Hansen S, Yudin AI, Vybornov AA, Epimakhov A, Berezina NS, Roslyakova N, Kosintsev PA, Kuznetsov PF, Anthony D, Kroonen GJ, Kristiansen K, Wincker P, Outram A, Orlando L. The origins and spread of domestic horses from the Western Eurasian steppes., 2021, 598(7882): 634–640.
[30] Kader A, Li Y, Dong KZ, Irwin DM, Zhao QJ, He XH, Liu JF, Pu YB, Gorkhali NA, Liu XX, Jiang L, Li XC, Guan WJ, Zhang YP, Wu DD, Ma YH. Population variation reveals independent selection toward small body size in Chinese Debao pony., 2015, 8(1): 42–50.
[31] Petersen JL, Mickelson JR, Rendahl AK, Valberg SJ, Andersson LS, Axelsson J, Bailey E, Bannasch D, Binns MM, Borges AS, Brama P, da Camara Machado A, Capomaccio S, Cappelli K, Cothran EG, Distl O, Fox-Clipsham L, Graves KT, Guérin G, Haase B, Hasegawa T, Hemmann K, Hill EW, Leeb T, Lindgren G, Lohi H, Lopes MS, McGivney BA, Mikko S, Orr N, Penedo MCT, Piercy RJ, Raekallio M, Rieder S, R?ed KH, Swinburne J, Tozaki T, Vaudin M, Wade CM, McCue ME. Genome-wide analysis reveals selection for important traits in domestic horse breeds., 2013, 9(1): e1003211.
[32] Petersen JL, Mickelson JR, Cothran EG, Andersson LS, Axelsson J, Bailey E, Bannasch D, Binns MM, Borges AS, Brama P, da Camara Machado A, Distl O, Felicetti M, Fox-Clipsham L, Graves KT, Guérin G, Haase B, Hasegawa T, Hemmann K, Hill EW, Leeb T, Lindgren G, Lohi H, Lopes MS, McGivney BA, Mikko S, Orr N, Penedo MCT, Piercy RJ, Raekallio M, Rieder S, R?ed KH, Silvestrelli M, Swinburne J, Tozaki T, Vaudin M, Wade CM, McCue ME. Genetic diversity in the modern horse illustrated from genome-wide SNP data., 2013, 8(1): e54997.
[33] Ling YH, Ma YH, Guan WJ, Cheng YJ, Wang YP, Han JL, Mang L, Zhao QJ, He XH, Pu YB, Fu BL. Evaluation of the genetic diversity and population structure of Chinese indigenous horse breeds using 27 microsatellite markers., 2011, 42(1): 56–65.
[34] China National Commission of Resources, eds. Animal Genetic Resources in China. Horses, Donkeys and Camels. Beijing: China Agriculture Press, 2011.
國家畜禽遺傳資源委員會組編. 中國畜禽遺傳資源志·馬驢駝志. 北京: 中國農(nóng)業(yè)出版社, 2011.
[35] Lippold S, Matzke NJ, Reissmann M, Hofreiter M. Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication., 2011, 11: 328.
[36] Librado P, Gamba C, Gaunitz C, Der Sarkissian C, Pruvost M, Albrechtsen A, Fages A, Khan N, Schubert M, Jagannathan V, Serres-Armero A, Kuderna LFK, Povolotskaya IS, Seguin-Orlando A, Lepetz S, Neuditschko M, Thèves C, Alquraishi S, Alfarhan AH, Al-Rasheid K, Rieder S, Samashev Z, Francfort HP, Benecke N, Hofreiter M, Ludwig A, Keyser C, Marques- Bonet T, Ludes B, Crubézy E, Leeb T, Willerslev E, Orlando L. Ancient genomic changes associated with domestication of the horse., 2017, 356(6336): 442–445.
[37] Der Sarkissian C, Ermini L, Schubert M, Yang MA, Librado P, Fumagalli M, Jónsson H, Bar-Gal GK, Albrechtsen A, Vieira FG, Petersen B, Ginolhac A, Seguin-Orlando A, Magnussen K, Fages A, Gamba C, Lorente-Galdos B, Polani S, Steiner C, Neuditschko M, Jagannathan V, Feh C, Greenblatt CL, Ludwig A, Abramson NI, Zimmermann W, Schafberg R, Tikhonov A, Sicheritz-Ponten T, Willerslev E, Marques-Bonet T, Ryder OA, McCue M, Rieder S, Leeb T, Slatkin M, Orlando L. Evolutionary genomics and conservation of the endangered Przewalski's horse., 2015, 25(19): 2577–2583.
[38] Cruz F, Vilà C, Webster MT. The legacy of domestication: accumulation of deleterious mutations in the dog genome., 2008, 25(11): 2331–2336.
[39] Lu J, Tang T, Tang H, Huang JZ, Shi SH, Wu CI. The accumulation of deleterious mutations in rice genomes: a hypothesis on the cost of domestication., 2006, 22(3): 126–131.
[40] Lin T, Zhu GT, Zhang JH, Xu XY, Yu QH, Zheng Z, Zhang ZH, Lun YY, Li S, Wang XX, Huang ZJ, Li JM, Zhang CZ, Wang TT, Zhang YY, Wang AX, Zhang YC, Lin K, Li CY, Xiong GS, Xue YB, Mazzucato A, Causse M, Fei ZJ, Giovannoni JJ, Chetelat RT, Zamir D, St?dler T, Li JF, Ye ZB, Du YC, Huang SW. Genomic analyses provide insights into the history of tomato breeding., 2014, 46(11): 1220–1226.
[41] McCue ME, Valberg SJ, Lucio M, Mickelson JR. Glycogen synthase 1 (GYS1) mutation in diverse breeds with polysaccharide storage myopathy., 2008, 22(5): 1228–1233.
[42] Bowling AT. Horse Genetics. Oxfordshire: Cab International, 1996.
[43] Rees JL. Genetics of hair and skin color., 2003, 37: 67–90.
[44] Furumura M, Sakai C, Abdel-Malek Z, Barsh GS, Hearing VJ. The interaction of agouti signal protein and melanocyte stimulating hormone to regulate melanin formation in mammals., 1996, 9(4): 191–203.
[45] Rieder S, Taourit S, Mariat D, Langlois B, Guérin G. Mutations in the agouti (ASIP), the extension (MC1R), and the brown (TYRP1) loci and their association to coat color phenotypes in horses ()., 2001, 12(6): 450–455.
[46] Bailey E, Brooks SA. Chapter4: Black, Bay and Chestnut (). In: Horse Genetics. Boston, CABI. 2013.
[47] Mariat D, Taourit S, Guérin G. A mutation in the MATP gene causes the cream coat colour in the horse., 2003, 35(1): 119–133.
[48] Cook D, Brooks S, Bellone R, Bailey E. Missense mutation in exon 2 of SLC36A1 responsible for champagne dilution in horses., 2008, 4(9): e1000195.
[49] Brunberg E, Andersson L, Cothran G, Sandberg K, Mikko S, Lindgren G. A missense mutation in PMEL17 is associated with the silver coat color in the horse., 2006, 7: 46.
[50] Imsland F, McGowan K, Rubin CJ, Henegar C, Sundstr?m E, Berglund J, Schwochow D, Gustafson U, Imsland P, Lindblad-Toh K, Lindgren G, Mikko S, Millon L, Wade C, Schubert M, Orlando L, Penedo MCT, Barsh GS, Andersson L. Regulatory mutations in TBX3 disrupt asymmetric hair pigmentation that underlies Dun camouflage color in horses., 2016, 48(2): 152–158.
[51] Zhao RY, Zhao YP, Li B, Bou G, Zhang XZ, Mongke T, Bao T, Gereliin S, Gereltuuin T, Li C, Bai DY, Dugarjaviin M. Overview of the genetic control of horse coat color patterns., 2018, 40(5): 357–368.
趙若陽, 趙一萍, 李蓓, 格日樂其木格, 張心壯, 陶克濤, 圖格琴, 旭仁其木格, 青柏, 李超,白東義, 芒來. 馬毛色遺傳機(jī)理研究進(jìn)展. 遺傳,2018, 40(5): 357–368.
[52] Promerová M, Andersson LS, Juras R, Penedo MCT, Reissmann M, Tozaki T, Bellone R, Dunner S, Ho?ín P, Imsland F, Imsland P, Mikko S, Modry D, Roed KH, Schwochow D, Vega-Pla JL, Mehrabani-Yeganeh H, Yousefi-Mashouf N, Cothran EG, Lindgren G, Andersson L. Worldwide frequency distribution of the 'Gait keeper' mutation in the DMRT3 gene., 2014, 45(2): 274–282.
[53] Andersson LS, Larhammar M, Memic F, Wootz H, Schwochow D, Rubin CJ, Patra K, Arnason T, Wellbring L, Hj?lm G, Imsland F, Petersen JL, McCue ME, Mickelson JR, Cothran G, Ahituv N, Roepstorff L, Mikko S, Vallstedt A, Lindgren G, Andersson L, Kullander K. Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice., 2012, 488(7413): 642–646.
[54] Hill EW, Gu J, McGivney BA, MacHugh DE. Targets of selection in the Thoroughbred genome contain exercise- relevant gene SNPs associated with elite racecourse performance., 2010, 41 Suppl 2: 56–63.
[55] Hill EW, Gu JJ, Eivers SS, Fonseca RG, McGivney BA, Govindarajan P, Orr N, Katz LM, MacHugh DE. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in thoroughbred horses., 2010, 5(1): e8645.
[56] Schr?der W, Klostermann A, Stock KF, Distl O. A genome-wide association study for quantitative trait loci of show-jumping in Hanoverian warmblood horses., 2012, 43(4): 392–400.
[57] Liu XX, Zhang YL, Li YF, Pan JF, Wang DD, Chen WH, Zheng ZQ, He XH, Zhao QJ, Pu YB, Guan WJ, Han JL, Orlando L, Ma YH, Jiang L. EPAS1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses., 2019, 36(11): 2591–2603.
[58] Makvandi-Nejad S, Hoffman GE, Allen JJ, Chu E, Gu E, Chandler AM, Loredo AI, Bellone RR, Mezey JG, Brooks SA, Sutter NB. Four loci explain 83% of size variation in the horse., 2012, 7(7): e39929.
[59] Orr N, Back W, Gu J, Leegwater P, Govindarajan P, Conroy J, Ducro B, Van Arendonk JAM, MacHugh DE, Ennis S, Hill EW, Brama PAJ. Genome-wide SNP association-based localization of a dwarfism gene in Friesian dwarf horses., 2010, 41 Suppl 2: 2–7.
[60] Nanaei HA, Esmailizadeh A, Mehrgardi AA, Han JL, Wu DD, Li Y, Zhang YP. Comparative population genomic analysis uncovers novel genomic footprints and genes associated with small body size in Chinese pony., 2020, 21(1): 496.
[61] Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao KY, Zhu L, Padhukasahasram B, Karlins E, Davis S, Jones PG, Quignon P, Johnson GS, Parker HG, Fretwell N, Mosher DS, Lawler DF, Satyaraj E, Nordborg M, Lark KG, Wayne RK, Ostrander EA. A single IGF1 allele is a major determinant of small size in dogs., 2007, 316(5821): 112–115.
[62] Lango AH, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, Willer CJ, Jackson AU, Vedantam S, Raychaudhuri S, Ferreira T, Wood AR, Weyant RJ, Segrè AV, Speliotes EK, Wheeler E, Soranzo N, Park JH, Yang J, Gudbjartsson D, Heard-Costa NL, Randall JC, Qi L, Vernon Smith A, M?gi R, Pastinen T, Liang LM, Heid IM, Luan JA, Thorleifsson G, Winkler TW, Goddard ME, Sin Lo K, Palmer C, Workalemahu T, Aulchenko YS, Johansson A, Zillikens MC, Feitosa MF, Esko T, Johnson T, Ketkar S, Kraft P, Mangino M, Prokopenko I, Absher D, Albrecht E, Ernst F, Glazer NL, Hayward C, Hottenga JJ, Jacobs KB, Knowles JW, Kutalik Z, Monda KL, Polasek O, Preuss M, Rayner NW, Robertson NR, Steinthorsdottir V, Tyrer JP, Voight BF, Wiklund F, Xu JF, Zhao JH, Nyholt DR, Pellikka N, Perola M, Perry JRB, Surakka I, Tammesoo ML, Altmaier EL, Amin N, Aspelund T, Bhangale T, Boucher G, Chasman DI, Chen C, Coin L, Cooper MN, Dixon AL, Gibson Q, Grundberg E, Hao K, Juhani Junttila M, Kaplan LM, Kettunen J, K?nig IR, Kwan T, Lawrence RW, Levinson DF, Lorentzon M, McKnight B, Morris AP, Müller M, Suh Ngwa J, Purcell S, Rafelt S, Salem RM, Salvi E, Sanna S, Shi JX, Sovio U, Thompson JR, Turchin MC, Vandenput L, Verlaan DJ, Vitart V, White CC, Ziegler A, Almgren P, Balmforth AJ, Campbell H, Citterio L, De Grandi A, Dominiczak A, Duan JB, Elliott P, Elosua R, Eriksson JG, Freimer NB, Geus EJC, Glorioso N, Shen HQ, Hartikainen AL, Havulinna AS, Hicks AA, Hui J, Igl W, Illig T, Jula A, Kajantie E, Kilpel?inen TO, Koiranen M, Kolcic I, Koskinen S, Kovacs P, Laitinen J, Liu JJ, Lokki ML, Marusic A, Maschio A, Meitinger T, Mulas A, Paré G, Parker AN, Peden JF, Petersmann A, Pichler I, Pietil?inen KHP, Pouta A, Ridderstr?le M, Rotter JI, Sambrook JG, Sanders AR, Schmidt CO, Sinisalo J, Smit JH, Stringham HM, Bragi Walters G, Widen E, Wild SH, Willemsen G, Zagato L, Zgaga L, Zitting P, Alavere H, Farrall M, McArdle WL, Nelis M, Peters MJ, Ripatti S, van Meurs JBJ, Aben KK, Ardlie KG, Beckmann JS, Beilby JP, Bergman RN, Bergmann S, Collins FS, Cusi D, den Heijer M, Eiriksdottir G, Gejman PV, Hall AS, Hamsten A, Huikuri HV, Iribarren C, K?h?nen M, Kaprio J, Kathiresan S, Kiemeney L, Kocher T, Launer LJ, Lehtim?ki T, Melander O, Mosley TH, Musk AW, Nieminen MS, O'Donnell CJ, Ohlsson C, Oostra B, Palmer LJ, Raitakari O, Ridker PM, Rioux JD, Rissanen A, Rivolta C, Schunkert H, Shuldiner AR, Siscovick DS, Stumvoll M, T?njes A, Tuomilehto J, van Ommen GJ, Viikari J, Heath AC, Martin NG, Montgomery GW, Province MA, Kayser M, Arnold AM, Atwood LD, Boerwinkle E, Chanock SJ, Deloukas P, Gieger C, Gr?nberg H, Hall P, Hattersley AT, Hengstenberg C, Hoffman W, Lathrop GM, Salomaa V, Schreiber S, Uda M, Waterworth D, Wright AF, Assimes TL, Barroso I, Hofman A, Mohlke KL, Boomsma DI, Caulfield MJ, Cupples LA, Erdmann J, Fox CS, Gudnason V, Gyllensten U, Harris TB, Hayes RB, Jarvelin MR, Mooser V, Munroe PB, Ouwehand WH, Penninx BW, Pramstaller PP, Quertermous T, Rudan I, Samani NJ, Spector TD, V?lzke H, Watkins H, Wilson JF, Groop LC, Haritunians T, Hu FB, Kaplan RC, Metspalu A, North KE, Schlessinger D, Wareham NJ, Hunter DJ, O'Connell JR, Strachan DP, Wichmann HE, Borecki IB, van Duijn CM, Schadt EE, Thorsteinsdottir U, Peltonen L, Uitterlinden AG, Visscher PM, Chatterjee N, Loos RJF, Boehnke M, McCarthy MI, Ingelsson E, Lindgren CM, Abecasis GR, Stefansson K, Frayling TM, Hirschhorn JN. Hundreds of variants clustered in genomic loci and biological pathways affect human height., 2010, 467(7317): 832–838.
[63] Boyko AR, Quignon P, Li L, Schoenebeck JJ, Degenhardt JD, Lohmueller KE, Zhao KY, Brisbin A, Parker HG, vonHoldt BM, Cargill M, Auton A, Reynolds A, Elkahloun AG, Castelhano M, Mosher DS, Sutter NB, Johnson GS, Novembre J, Hubisz MJ, Siepel A, Wayne RK, Bustamante CD, Ostrander EA. A simple genetic architecture underlies morphological variation in dogs., 2010, 8(8): e1000451.
[64] Flori L, Fritz S, Jaffrézic F, Boussaha M, Gut I, Heath S, Foulley JL, Gautier M. The genome response to artificial selection: a case study in dairy cattle., 2009, 4(8): e6595.
[65] Gansu Agricultural University, eds. Horse Raising. Beijing: Agriculture Press, 1981.
甘肅農(nóng)業(yè)大學(xué)主編. 養(yǎng)馬學(xué). 北京: 農(nóng)業(yè)出版社, 1981.
[66] (English) Edwards EH. Eyewitness handbooks-horse. Beijing: Chinese Friendship Press Co., 1998.
(英)愛德華茲. 貓頭鷹出版社譯. 全世界100多種馬匹的彩色圖鑒. 北京: 中國友誼出版公司, 1998.
The origin and domestication history of domestic horses and the domestication characteristics of breeds
Meng Fu, Yan Li
The horse () was domesticated thousands of years after dog, cattle, pig, sheep, and goat. Importantly, it represents the domestic animal that mostly impacted the development of human civilization. Its excellent loading and moving ability prompted the changes from fixed farming mode into mobile sharing mode. Accordingly, its domestication history deserves considerable attention. So far, many issues have long been controversial, due to the extinction of the closest wild relatives and the dramatic reduction of genetic diversity. With the continuous development of sequencing technology and the utilization of ancient samples, we got more clues to the origin and domestication process. In this review, we summarize 1) current progresses on the domestication history revealed by nuclear genes, mtDNA, Y chromosome, and ancient DNA, 2) the characteristics of population structure and diversification among modern breeds, 3) the genetic basis of important phenotypes, such as coat color, speed, and body size. The overall aim of the review is to provide in-depth insights into the studies of horse domestication, the preservation and utilization of genetic resources, the direction of breeding improvement, and the development of modern horse industry in future.
horse; domestication; origin; phenotype
2021-07-19;
2021-11-11;
2022-01-27
中國科學(xué)院先導(dǎo)A項(xiàng)目(編號:XDA2004010302),國家自然科學(xué)基金項(xiàng)目(編號:32070600)和云南省中青年學(xué)術(shù)帶頭人后備人才基金項(xiàng)目(編號:2018HB033)資助[Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA2004010302), the National Natural Science Foundation of China (No. 32070600) and the Young Academic and Technical Leader Raising Foundation of Yunnan Province (No.2018HB033)]
付孟,在讀碩士研究生,專業(yè)方向:動物學(xué)。E-mail: 2461849250@qq.com
李艷,研究員,博士生導(dǎo)師,研究方向:家養(yǎng)動物的起源與馴化。E-mail: liyan0910@ynu.edu.cn
10.16288/j.yczz.21-260
(責(zé)任編委: 施鵬)