• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-elevation Adaptation of Motion Visual Display Modifications in the Toad-Headed Agamid Lizards (Phrynocephalus)

    2022-03-26 03:25:58QiaohanHUYusongLINXiaQIUJinzhongFUandYinQI
    Asian Herpetological Research 2022年1期

    Qiaohan HU ,Yusong LIN ,Xia QIU ,Jinzhong FU,3 and Yin QI*

    1 Chengdu Institute of Biology,Chinese Academy of Sciences,Chengdu 610041,China

    2 University of Chinese Academy of Sciences,Beijing 101400,China

    3 Departments of Integrative Biology,University of Guelph,Guelph,Ontario N1G 2W1,Canada

    Abstract Understanding the process of adaptation is a key mission in modern evolutionary biology.Animals living at high elevations face challenges in energy metabolism due to several environmental constraints (e.g.,oxygen supply,food availability,and movement time).Animal behavioral processes are intimately related to energy metabolism,and therefore,behavioral modifications are expected to be an important mechanism for high-elevation adaptation.We tested this behavioral adaptation hypothesis using variations of motion visual displays in toad-headed agamid lizards of the genus Phrynocephalus.We predicted that complexity of visual motion displays would decrease with the increase of elevation,because motion visual displays are energetically costly.Displays of 12 Phrynocephalus species were collected with elevations ranging from sea level to 4600 m.We quantified display complexity using the number of display components,display duration,pathways of display components,as well as display speed for each species.Association between display complexity and elevation was analyzed using the phylogenetic generalized least squares (PGLS) model.We found that both the number of display components and the average value of tail coil speed were negatively correlated with elevation,suggesting that toad-headed lizards living at high-elevation areas reduced their display complexity to cope with the environmental constraints.Our research provides direct evidence for high-elevation adaptation from a behavioral aspect and illustrates the potential impacts of environment heterogeneity on motion visual display diversification.

    Keywords high-elevation adaptation,lizard,motion visual display,Phrynocephalus,signal complexity

    1.Introduction

    Understanding the process of adaptation is one key mission in modern evolutionary biology and high-elevation adaptation provides a fertile research ground (Cheviron and Brumfield,2012;Storz,2021;Sunet al.,2018;Yanget al.,2012).Environmental constraints at high elevations,including low oxygen partial pressure,low ambient temperature,strong ultraviolet radiation,and great daily and seasonal fluctuations,pose serious challenges to most animals,particularly for ectotherms who are more sensitive to environmental changes (Haoet al.,2019).Nevertheless,many species inhabit highelevation environments (Myerset al.,2000),and they often cope with these challenges by either suppressing total metabolism and oxygen demand,or increasing oxygen delivery efficiency and energy conversion (Liet al.,2018;Ramirezet al.,2007;Storzet al.,2010;Zhaoet al.,2020).Animal behavioral processes have an intimate relationship with energy metabolism (Biro and Stamps,2010;Kotiahoet al.,1998;Mowles,2014;Roset al.,2006;Suet al.,2020),and animals at high-elevation areas likely adjust their behavior to adapt the environment by either constraining the activity intensity or shortening the activity time (Wuet al.,2018;Zhuet al.,2020).For example,Anolislizards spent less time for activity and chose more open habitats with boulders for thermoregulation at high elevations (Mu?oz and Losos,2017).Compared with physiological and genetic adaptation (Beall,2007;Quet al.,2021;Yanget al.,2014;Yanget al.,2016),behavioral adaptation at high-elevation environment has rarely been examined.

    As a ritual behavior,social displays transmit specific information during animal communication (Laidre and Johnstone,2013).They play an important role in courtship,intra-sexual competition as well as territory defense,and their functions depend largely on complexity (Ordet al.,2001;Patricelli,2016;Petrieet al.,1991;Wuet al.,2018).A diversity of organisms rely heavily on communication with a variety of different modalities (e.g.,motion visual displays,olfactory,vocal;Endler,1992;Laidre and Johnstone,2013;Nelson and Jackson,2007).Physical movement-based motion visual displays are common in lizards’ communication (Bianet al.,2019;Fleishman and Pallus 2010;Rosenthal,2007),and their complexity varies greatly among closely-related species due to different selection pressures (Nadhurouet al.,2016;Ord and Martins 2006).These motion visual display signals are energetically costly and complex displays often stimulate anaerobic metabolism (Bennettet al.,1981;Biro and Stamps,2010;Clark,2012;Roset al.,2006;Wuet al.,2018;Zhu,2020;Zhuet al.,2021).For example,compared with resting and moving,male wolf spiders (Hygrolycosa rubrofasciata) increase their metabolic rate 22 times during drumming behavior (Kotiahoet al.,1998).However,long anaerobic metabolism produces high concentrations of acid,which can affect blood and muscle pH,disrupt enzyme function and oxygen transport (Bennett,1978).For highelevation dwellers,we would expect them to reduce their motion visual display complexity to cope with the challenging environment and to avoid adverse impact from anaerobic metabolism.

    Quantifying display complexity can be difficult,and three methods are often used.The number of distinct displays or components in displaying repertoire is the most classical measurement,and has been widely used in assessment of display complexity inAnolislizards (Decourcy and Jenssen,1994;Greenberg and MacLean,1978;Jenssen,1978;Ord and Martins,2006;).For example,Martinset al.(2004) used the number of head-bobbing displays as an indicator of signal complexity.With advancement of the information theory,a systembased method has recently been used,in which the sequence variation among display components in succession was used as an indicator of display complexity (Fischeret al.,2017;Ord and Martins,2006;Shannon and Weaver,1949).The higher the variation,the higher the signal complexity and the more information it may transmit (Peckreet al.,2019).Furthermore,variations within display components (e.g.,speed,duration) have also been used as indicators of signal complexity (Freeberget al.,2012;Hammerschmidt and Fischer,2008;Vehrencamp,2000).

    The toad-headed agamid lizards (genusPhrynocephalus) provide an excellent model system to explore the display behavior adaptation to high-elevation environments.These lizards are widely distributed in a large elevational range from sea level to 4 600 m and display a variety of motion visual signals.For example,both males and females ofP.vlangalii,a high-elevation species,use tail coil and tail lash in territory defense and courtship,and the speed of tail display likely encodes levels of individual threat (Qiet al.,2011;Qiuet al.,2018).Several lowlandPhrynocephalusspecies show more complex displays besides tail coil and tail lash,such as limbs flapping and body turning (Lin,2020).In addition,the athletic ability ofP.vlangaliidepends largely on elevation,and individuals from high altitudes have relatively weak locomotor performance compared with low-elevation individuals (Wuet al.,2018a).Furthermore,our recent studies have shown that speed of tail display inP.vlangaliiis mainly regulated by anaerobic metabolism,and fast display speed is associated with high blood lactate concentration (Zhuet al.,2020;Zhuet al.,2021).

    In this study,we explore the relationship between highelevation adaptation and complexity of motion visual display in the genusPhrynocephalus.We collected display data from 12 species and quantified the display complexity using the motion visual signal digitization method (Hedrick,2008;Peterset al.,2016).The association between display complexity and elevation was analyzed using the phylogenetic generalized least squares (PGLS) model.We predict that complexity of motion visual displays would decrease with elevation,because motion visual displays are energetically costly and total metabolism is constrained at high elevations.

    2.Materials and methods

    2.1.Species and study sitesWe collected motion visual display data from 12Phrynocephalusspecies in the Gobi Desert of northwestern China and the Qinghai-Tibetan Plateau (Figure 1).Lizards in different social context produce different signal,and all displays in this study were under a male-male social context,i.e.,male residents competing with male intruders.Habitats for each species are similar and mostly arid,varied from rock substrate to sand dunes,with sparse and low vegetation.Elevation of study sites varied from 604 m (P.alpherakii) to 4 550 m (P.erythrurus).For two widespread species,P.axillarisandP.versicolor,we examined two populations and their elevations were averaged between the populations.The study site and sampling information is presented in Table 1.

    Table 1 Study site and sample size information of the 12 Phrynocephalus species examined in this study.

    Table 2 Sixteen visual display components of the 12 Phrynocephalus species examined in this study.

    Figure 1 Map of study sites and the image of 12 Phrynocephalus species examined in this study.1.P.mystaceus,elevation 604 m.2.P.alpherakii,elevation 604 m.3.P.helioscopus,elevation 637 m.4.P.forsythii,elevation 894 m.5a.P.axillaris,elevation 894 m.5b.P.axillaris,elevation 1 150 m.6a.P.versicolor,elevation 870 m.6b.P.versicolor,elevation 1 872 m.7.P.przewalskii,elevation 1 393 m.8.P.putjatai,elevation 2 303 m.9.P.guinanensis,elevation 3 019 m.10.P.vlangalii,elevation 3 457 m.11.P.erythrurus,elevation 4 550 m.12.P.theobaldi,elevation 3 670 m.

    2.2.Display signal data collectionWe first located and sexed target lizards using binoculars.Once a target was selected,one investigator (QH) set up a video camera (Sony HDR PJ670) at approximately three meters away from the target.After a five minute acclimation period,a second investigator (XQ) introduced an intruder lizard toward the target from four meters away.The intruder was tied with a 30-centimeter-long dental floss around the waist and was tethered with a 4-meter fishing rod,which allowed the lizard to move freely.At the same time,the first investigator started the camera and filmed the motion visual displays of the target lizard.We would end the trial if there was a potential conflict escalation or target did not show displays within two minutes.Immediately after filming,we captured the target lizards and measured their body temperature.To alleviate the effect of individual physiological condition on display complexity,we confined our display trials only during 11 am to 4 pm in sunny days when lizards are most active.To avoid impacts from potential previous social interactions and individual body size,a size-matched intruder collected from a different population was used for each target.After each trial,a ping-pong ball was placed at the exact location of the target and was filmed to serve as a scale in subsequent display digitization.

    2.3.Display complexity measurementWe measured display complexity for each species using five parameters:the number of display components,display duration,number of pathways among different components,as well as tail coil and tail lash speed (Ord and Martins,2006;Shannon,1948).The component was defined as specific and repeatable display posture (Ramos and Peters,2017).Some components were shared by several species and others were species-specific,and therefore,the number of components represented an important aspect of display complexity (Freeberget al.,2012;Miller and Osmanski,2009;Vehrencamp,2000).The display duration was defined as the average time sustained by a species-typical display (Hammerschmidt and Fischer,2008;McComb and Semple,2005).For each species,the display sequence was mostly fixed,but individuals sometimes omitted some components under specific social context (Fischeret al.,2017).To establish the species-typical display sequence,we analyzed the motion visual display bout by bout and determined the starting and terminating component respectively for each species.We then calculated the transition probability (probability of one component followed by the other) between different components,and the display sequence was described as the sequence with the highest transition probability among components.The number of pathways between different components was determined using the number of different transition probability.The average speed of tail coil and tail lash were quantified following the methods outlined by Hedrick (2008) and Peterset al.(2016).Briefly,we extracted video footages of tail displays using the program iskysoft (iSkysoft Technology Corp.) and tracked the movement of tail tips in Matlab 2016b (MathWorks Inc.,Natick,MA,USA).The position of the tail tip was located in successive frames to generatex-ycoordinate data over time for each display.Thex-ycoordinates were then converted to millimeter using the ping-pang ball in the image as a scale (Peterset al.,2016;Wuet al.,2018).The Euclidean distance between successive digitized position points provided a vector of speed measurements for the whole sequence.We averaged these across the display sequence to determine the average speed.To reflect the potential difference between components,we calculated the speed for tail coil and tail lash respectively.To account for the effect of orientation of lizard relative to the camera,we categorized each display as either facing towards/away from the camera or at right angles to the camera,and calculated the display speed from different orientation respectively (Bianet al.,2016).

    2.4.Data analysisTo examine the association between display complexity and elevation,we tested the relationships of the number of display components,display duration,number of pathways among different components,tail coil speed,and tail lash speed against elevation.To account for the phylogenetic non-independent effect,we used the phylogenetic generalized least-squares (PGLS) model in package“caper”(Ormeet al.,2013).Elevation was treated as the predictor variable,while number of components,display duration,number of pathways among different components,tail coil speed,and tail lash speed were treated as the response variable,respectively.A phylogenetic tree of the 12 study species (Figure 2) was constructed and modified from Solovyevaet al.(2018).We only used the display speed from facing towards/away from the camera to avoid the effect of orientation of lizards.

    Figure 2 A phylogenetic tree of the 12 Phrynocephalus species examined in this study (modified from Solovyeva et al.,2018),along with schematic diagrams of the component network graph and display components for each species.

    To test the phylogenetic effect on display complexity,we also estimated Pagel’sλfor the number of display components,display duration,number of component connections,tail coil speed,and tail lash speed.Pagel’sλwas estimated using the“phytools”package (Lynch,1991;Pagel,1999;Revell,2012),which ranges from 0 to 1,with“0”meaning weak phylogenetic effect and“1”meaning strong phylogenetic effect (Freckletonet al.,2015).Previous studies suggested that Pagel’sλis an effective measurement and typically performs better than other commonly used metrics for discriminating between more complex models of trait evolution (Münkemülleret al.,2012).All statistical analysis were conducted in R 3.6.2 (R Development Core Team,2019).

    2.5.Ethical approvalAll applicable international,national,and institutional laws and guidelines for the care and use of animals were strictly followed.All activities were under permission from local conservation authorities and animal handling followed the approved protocols (protocol number 2017005,Chengdu Institute of Biology).

    3.Results

    3.1.Signal repertoire and species-typical sequenceWe analyzed a total of 261 display bouts from 131 individuals of 12 species.Among all those displays,16 different components were defined,including tail lashing (TL),tail coiling (TC),“8”tail lashing (8),standing up (SU),push-up (PU),leaning (LE),tail lashing with four limbs flapping (T+F),and several others.Table 2 presents a complete list of all components and their definitions.Among them,the first three types (TL,TC,and 8) were basic components,and they might give rise to other components.For example,tail lashing (TL) might appear as tail lashing at a low place (LTL),tail raising with waggling (HTW),tail raising with lashing (LU),or tail falling with lashing (LTD).Tail coiling (TC) might appear as tail coiling intermittently (IC) or tail coiling at a low place (LTC),while“8”tail lashing (8) might appear as“8”tail lashing with high coiling (S8U) or“8”tail lashing with low coiling (L8) (Table S1).

    Most species possess their own display repertoire and have a species-typical sequence.We provide a detailed description in Table S2.The index of display complexity,including number of components,display duration,number of pathways,average values for tail coil and tail lash speed are presented in Table 3.

    3.2.Correlation between display complexity and elevationWe found significant and strong phylogenetic signal in display duration (λ=0.9918,P=0.0090) and number of display components (λ=0.6000,P=0.0266).The average speed of tail lash had a largeλbut a marginally significantP(λ=0.9711,P=0.0906),which we interpreted as having less strong phylogenetic signal.The average speed of tail coil had a largeλbut insignificantPvalue (λ=0.8356,P=0.9393),which could be due to the small number of species.The number of pathways among display components had a smallλand an insignificantPvalue (λ=0.1872,P=0.4771),suggesting minimum phylogenetic signal for this trait (Figure S1).

    For the association between display complexity and elevation,the number of display components (β=-0.0007,P=0.0063,λ=0) and average tail coil speed (β=-0.0026,P=0.0459,λ=1) were negatively correlated with altitudes (Figure 3,Table 4).We found no association of the display duration (β=-0.0016,P=0.1985,λ=1),the number of pathways (β=-0.0008,P=0.2596,λ=0),the tail lash speed (β=-0.0071,P=0.1849,λ=1) with altitudes (Table 4).

    Table 3 Number of display components,average display duration (s),number of pathways among different components,and average values (cm/s) for tail coil speed and tail lash speed for each Phrynocephalus species.

    Table 4 The association between display complexity and elevation across 12 Phrynocephalus species.The display complexity was measured using number of display components,display duration,and number of pathways.Significant predictors are marked in bold.

    4.Discussion

    Our results clearly demonstrated thatPhrynocephalusspecies at high-elevation areas have modified their motion visual display signals.First,species at high elevations appear to have fewer display components in general (Figures 2-3).The negative correlation between elevation and the number of display components is clear and significant.Of all the highelevation species,P.guinanensishas the fewest components,but it is not the highest species.This species has an obvious colorful belly and trunk side for both male and female individuals,which most other species do not have.We postulate that the presence of colorful belly may compensate for the reduction of display components.P.forsythiipresents another interesting case.It is a part of the high-elevation clade but currently has a primary lowland distribution.It has a large number of display components similar to other lowland species.Its phylogenetic position suggests that it originated from a high-elevation ancestor and turned to lowland secondarily (Figure 2).Its large number of display components further supports the association between reduction in display component and high-elevation environment.Second,species at high elevations appear to have slower tail coil speed.Two other parameters,the display duration and tail lash speed,are also lower at high elevations,although the differences are not statistically significant.We suggest these modifications represent adaptations to highelevation environments of these lizards.Other behavioral modifications were also reported in lizards.For example,the horned lizards (Phrynosoma hernandesi) adjust their basking duration to cope with low temperature challenges when transplanted to high-elevation areas (Refsnideret al.,2018),andAnolislizards chose more open habitats with boulders forthermoregulation at high elevations (Mu?oz and Losos,2017).

    Figure 3 A:Correlation between number of display components and elevation (R2=0.4961,P=0.0063).B:Correlation between average tail coil speed and elevation (R2=0.2760,P=0.0459).

    The reduced visual display complexity at high elevations inPhr ynocephaluslizards is likely caused by metabolic capacity constraints.Many ectothermic species living in harsh high-elevation areas have reduced metabolic capacity (e.g.,reducing oxygen consumption and metabolic rate) due to environmental constraints (Tanet al.,2021).For example,the lactate dehydrogenase (LDH) activity,an indicator of anaerobic metabolism,is lower inP.erythrurus(elevation 5 300 m) than inP.przewalskii(elevation from 1 000 to 1 500 m) (Tanget al.,2013).Furthermore,recent research showed that the intensity of tail displays inP.vlangalii(altitude from 2 000 to 4 500 m) was primarily regulated by anaerobic metabolism (Zhuet al.,2021).Therefore,reduction in their number display components and speed of display by the high-elevationPhrynocephalusspecies is most likely response to their low anaerobic metabolic capacity.

    Alternatively,energy constraints on the nervous system at high-elevation environments may also contribute to the simplification of visual displays.The central nervous system regulates the movement of skeletal muscles in most vertebrates (Akinrodoye and Lui,2021;Kingsburyet al.,2019),and as accurate and complex communication signals,the tail displays ofPhrynocephalusmust be closely controlled by the brain.Nevertheless,the function of brain depends largely on continuous supply of blood sugar and oxygen (Erecińska and Silver,2001;Olesen,1986).High-altitude hypoxia undoubtedly imposes various constraints on brain functions and oxygen conditions during development can affect lizards’ cognition as well (Sunet al.,2014),which may lead to reduced display complexity.This has been partially evidenced by recent works on the Asiatic Toad (Bufo gargarizans) that individuals at highelevation areas have reduced brain sizes and limited movement capacity (Maiet al.,2017;Yaoet al.,2020).Future research on relationships between brain size and display complexity,as well as detection of the critical functional brain regions associated with display manipulation is needed.

    One confounding issue with the observed motion visual display simplification in high-elevationPhrynocephalusspecies is social complexity.According to the social complexity hypothesis (SCH),animals living in complex groups likely encounter more social interactions,and may evolve complex communication signals to cope with social conflict and maintain social coalitions (Freeberg,2006;Freeberget al.,2012).Our field observations show thatPhrynocephalusspeciesat high-elevation areas are more territorial (e.g.,stay near burrow and defend territory intensively) compared with species in lowland;based on SCH,we would expect that high-elevation species possess more complex signals.This is the opposite of our results in this study.We assumed that this is likely a compensation way for the effect of display simplification,species from high-elevation area likely increase their territoriality and avoid unnecessary social conflict.Potential associations among social complexity,territorial defense,and display complexity remain to be explored and tested.

    5.Conclusion

    Lizards of the genusPhrynocephalususe complex and speciesspecific motion visual displays during social communication.Species living in high-elevation areas reduce their display complexity,particularly the number of display components and tail coil speed.This is likely associated with limited metabolic capacity and brain function.The genusPhrynocephalusprovides an excellent system for studying high-elevation adaptation,and more research should be conducted on this group.

    AcknowledgmentsThis work was supported by grants from the National Natural Science Foundation of China (grant numbers:31872233,31572273) to Y.QI.

    Statement of authorshipY.QI and J.Z.FU conceived and finalized the manuscript,Q.H.HU finished data analysis and prepared the draft,Y.S.LIN and X.QIU contributed to display collection and digitization.All authors read and approved the final version of the manuscript.

    久久久久久久久中文| 成人国产综合亚洲| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩中文字幕国产精品一区二区三区| 深夜精品福利| 国产一卡二卡三卡精品| 国产成年人精品一区二区| 国产精品一区二区三区四区久久 | 国产欧美日韩一区二区三| 黄片小视频在线播放| 99在线人妻在线中文字幕| 国产黄a三级三级三级人| 久久精品影院6| 深夜精品福利| 国产精品自产拍在线观看55亚洲| or卡值多少钱| 两个人视频免费观看高清| 1024视频免费在线观看| 嫁个100分男人电影在线观看| 很黄的视频免费| 欧美中文日本在线观看视频| 亚洲国产中文字幕在线视频| 国产成+人综合+亚洲专区| 亚洲全国av大片| 黄片小视频在线播放| 视频在线观看一区二区三区| 精品日产1卡2卡| 国产伦一二天堂av在线观看| 精华霜和精华液先用哪个| 日韩视频一区二区在线观看| 在线av久久热| 又黄又爽又免费观看的视频| 久久狼人影院| 久久亚洲真实| 制服人妻中文乱码| 999久久久精品免费观看国产| 精品乱码久久久久久99久播| 制服诱惑二区| 精品国内亚洲2022精品成人| 伊人久久大香线蕉亚洲五| 变态另类丝袜制服| 中文字幕精品亚洲无线码一区 | 草草在线视频免费看| 久久精品国产亚洲av高清一级| 欧美丝袜亚洲另类 | 九色国产91popny在线| 变态另类成人亚洲欧美熟女| 免费电影在线观看免费观看| 国产成人精品无人区| 精品欧美一区二区三区在线| 免费无遮挡裸体视频| 午夜福利欧美成人| 麻豆av在线久日| 国产人伦9x9x在线观看| 999精品在线视频| 变态另类丝袜制服| 夜夜夜夜夜久久久久| 看黄色毛片网站| 好男人电影高清在线观看| 亚洲精品国产精品久久久不卡| 后天国语完整版免费观看| 人人澡人人妻人| 日本黄色视频三级网站网址| 黄色女人牲交| 18美女黄网站色大片免费观看| 国产久久久一区二区三区| 亚洲午夜精品一区,二区,三区| 18禁黄网站禁片免费观看直播| 午夜亚洲福利在线播放| 日本三级黄在线观看| 免费无遮挡裸体视频| 日韩欧美一区二区三区在线观看| 国产精品久久视频播放| 国产aⅴ精品一区二区三区波| 日本成人三级电影网站| 亚洲精品美女久久久久99蜜臀| 别揉我奶头~嗯~啊~动态视频| 日日摸夜夜添夜夜添小说| 日韩欧美 国产精品| 亚洲熟妇熟女久久| 99久久国产精品久久久| netflix在线观看网站| av天堂在线播放| 国产精品九九99| 中文字幕人妻熟女乱码| 国产成+人综合+亚洲专区| 亚洲国产毛片av蜜桃av| cao死你这个sao货| xxx96com| 日韩欧美国产一区二区入口| 免费观看人在逋| 久久精品国产99精品国产亚洲性色| 特大巨黑吊av在线直播 | 欧美乱妇无乱码| 夜夜躁狠狠躁天天躁| 老司机靠b影院| 国产欧美日韩精品亚洲av| 午夜精品久久久久久毛片777| 久久青草综合色| 此物有八面人人有两片| 一级片免费观看大全| 高清在线国产一区| 一区二区三区高清视频在线| 日本免费a在线| 婷婷丁香在线五月| 国产亚洲精品久久久久久毛片| 欧美黄色片欧美黄色片| 一级作爱视频免费观看| 在线观看舔阴道视频| 波多野结衣av一区二区av| 两个人视频免费观看高清| 高清在线国产一区| 此物有八面人人有两片| 最近最新免费中文字幕在线| 成人一区二区视频在线观看| 久久久国产欧美日韩av| 日韩大码丰满熟妇| 99热这里只有精品一区 | 老熟妇乱子伦视频在线观看| 熟女电影av网| 亚洲美女黄片视频| 在线天堂中文资源库| 国产成人精品无人区| 很黄的视频免费| 久久久久久久久免费视频了| 熟妇人妻久久中文字幕3abv| 免费在线观看影片大全网站| 美女大奶头视频| 琪琪午夜伦伦电影理论片6080| 视频在线观看一区二区三区| 99久久综合精品五月天人人| 看免费av毛片| 久热爱精品视频在线9| 欧美av亚洲av综合av国产av| 久久久水蜜桃国产精品网| 俺也久久电影网| 可以免费在线观看a视频的电影网站| 看免费av毛片| 老汉色∧v一级毛片| 亚洲精品久久成人aⅴ小说| 91成年电影在线观看| 欧美乱妇无乱码| 国产aⅴ精品一区二区三区波| 亚洲最大成人中文| 天堂√8在线中文| x7x7x7水蜜桃| 变态另类成人亚洲欧美熟女| or卡值多少钱| 男女那种视频在线观看| 亚洲中文字幕日韩| 久久中文字幕一级| 夜夜躁狠狠躁天天躁| 人人妻,人人澡人人爽秒播| 欧美日韩乱码在线| 99精品在免费线老司机午夜| 国产一区在线观看成人免费| 日本一区二区免费在线视频| 香蕉久久夜色| 国产欧美日韩一区二区三| 亚洲人成电影免费在线| 黄色成人免费大全| 91成年电影在线观看| 色av中文字幕| 亚洲国产欧美日韩在线播放| 听说在线观看完整版免费高清| 精品午夜福利视频在线观看一区| 悠悠久久av| 国产亚洲精品久久久久5区| √禁漫天堂资源中文www| 国产乱人伦免费视频| 国产欧美日韩精品亚洲av| 国产精品亚洲av一区麻豆| 精品不卡国产一区二区三区| 欧美性猛交╳xxx乱大交人| 99久久综合精品五月天人人| 亚洲全国av大片| 亚洲aⅴ乱码一区二区在线播放 | 悠悠久久av| 午夜亚洲福利在线播放| 日日爽夜夜爽网站| 国产又爽黄色视频| 色精品久久人妻99蜜桃| 校园春色视频在线观看| 黄片播放在线免费| 岛国在线观看网站| 亚洲成人久久性| 哪里可以看免费的av片| 男人操女人黄网站| 中文字幕最新亚洲高清| 窝窝影院91人妻| 亚洲电影在线观看av| 免费电影在线观看免费观看| 欧美在线一区亚洲| 欧美中文日本在线观看视频| 国产1区2区3区精品| 99久久久亚洲精品蜜臀av| 久久99热这里只有精品18| 最近最新中文字幕大全免费视频| x7x7x7水蜜桃| 中文字幕高清在线视频| 国产爱豆传媒在线观看 | 亚洲av电影在线进入| 男女之事视频高清在线观看| 老司机午夜十八禁免费视频| 欧美成人免费av一区二区三区| 看黄色毛片网站| 91成人精品电影| 黑丝袜美女国产一区| 国产欧美日韩一区二区精品| 我的亚洲天堂| 午夜福利一区二区在线看| 免费在线观看黄色视频的| 在线十欧美十亚洲十日本专区| 国产蜜桃级精品一区二区三区| 一本一本综合久久| 欧美 亚洲 国产 日韩一| 国产精品一区二区三区四区久久 | 久久欧美精品欧美久久欧美| 一区二区三区精品91| 亚洲专区字幕在线| 男女床上黄色一级片免费看| 亚洲第一欧美日韩一区二区三区| 精品国产超薄肉色丝袜足j| 俄罗斯特黄特色一大片| 九色国产91popny在线| 久久性视频一级片| 成人永久免费在线观看视频| 亚洲精品色激情综合| 可以免费在线观看a视频的电影网站| 欧美日韩黄片免| 制服丝袜大香蕉在线| 久久热在线av| 国产精品久久久人人做人人爽| 免费在线观看亚洲国产| 麻豆成人av在线观看| 免费看美女性在线毛片视频| 丁香六月欧美| 国产精品,欧美在线| 免费在线观看黄色视频的| 精品福利观看| 久久久国产精品麻豆| 国内久久婷婷六月综合欲色啪| 亚洲全国av大片| 一边摸一边抽搐一进一小说| 国产av一区在线观看免费| 欧美日韩黄片免| 日韩av在线大香蕉| 在线国产一区二区在线| 两个人免费观看高清视频| 人人妻人人澡人人看| 婷婷精品国产亚洲av| 黑丝袜美女国产一区| 亚洲在线自拍视频| 久久精品夜夜夜夜夜久久蜜豆 | 午夜福利欧美成人| 天天添夜夜摸| 久久这里只有精品19| 中文字幕久久专区| 日本成人三级电影网站| 精品国产美女av久久久久小说| 国产精品日韩av在线免费观看| 欧美日韩一级在线毛片| 精品久久久久久久久久免费视频| netflix在线观看网站| 人人妻人人澡欧美一区二区| 午夜福利在线观看吧| 正在播放国产对白刺激| 亚洲熟女毛片儿| 色综合亚洲欧美另类图片| 老鸭窝网址在线观看| 国产精品永久免费网站| 夜夜看夜夜爽夜夜摸| 亚洲欧美日韩无卡精品| 亚洲黑人精品在线| www.精华液| 国产激情偷乱视频一区二区| 大型黄色视频在线免费观看| 精品久久久久久久毛片微露脸| 亚洲一区高清亚洲精品| 国产亚洲精品一区二区www| 大型黄色视频在线免费观看| а√天堂www在线а√下载| 日本三级黄在线观看| 久久婷婷成人综合色麻豆| 日韩欧美三级三区| 99精品久久久久人妻精品| 搡老熟女国产l中国老女人| 1024香蕉在线观看| 校园春色视频在线观看| 久久国产精品男人的天堂亚洲| 18禁黄网站禁片午夜丰满| 国产亚洲精品久久久久久毛片| av视频在线观看入口| 亚洲av片天天在线观看| 亚洲精品美女久久av网站| 国产单亲对白刺激| 国产精品久久久久久亚洲av鲁大| 国产色视频综合| 黄色成人免费大全| 亚洲五月天丁香| 在线十欧美十亚洲十日本专区| 日韩视频一区二区在线观看| 9191精品国产免费久久| 天天添夜夜摸| 中文资源天堂在线| 日韩三级视频一区二区三区| 午夜免费鲁丝| 老汉色av国产亚洲站长工具| 精品一区二区三区av网在线观看| 国产免费av片在线观看野外av| 国产成人欧美在线观看| 成人三级黄色视频| 很黄的视频免费| 日本免费一区二区三区高清不卡| 国产熟女午夜一区二区三区| 日韩中文字幕欧美一区二区| 在线观看午夜福利视频| 熟女电影av网| 日韩大码丰满熟妇| 夜夜看夜夜爽夜夜摸| 中亚洲国语对白在线视频| 日韩国内少妇激情av| 亚洲人成77777在线视频| 丁香六月欧美| 亚洲精品国产精品久久久不卡| 午夜久久久在线观看| 久久久国产欧美日韩av| 少妇的丰满在线观看| 18禁观看日本| 欧美人与性动交α欧美精品济南到| 成人特级黄色片久久久久久久| 色精品久久人妻99蜜桃| 女同久久另类99精品国产91| 视频在线观看一区二区三区| 亚洲欧美精品综合一区二区三区| 一边摸一边抽搐一进一小说| 黄网站色视频无遮挡免费观看| 99国产精品一区二区蜜桃av| 亚洲一区二区三区不卡视频| 精品乱码久久久久久99久播| 淫妇啪啪啪对白视频| 男人舔女人下体高潮全视频| 欧美中文日本在线观看视频| 一级a爱片免费观看的视频| 欧美黄色淫秽网站| 亚洲精品一区av在线观看| 精品无人区乱码1区二区| 久久久久久人人人人人| 久99久视频精品免费| 国产高清视频在线播放一区| 国产国语露脸激情在线看| 国产爱豆传媒在线观看 | 国产激情欧美一区二区| 两个人免费观看高清视频| 一区二区三区精品91| 亚洲熟女毛片儿| 十八禁人妻一区二区| 777久久人妻少妇嫩草av网站| 日韩av在线大香蕉| 亚洲五月色婷婷综合| 在线观看午夜福利视频| 在线观看www视频免费| 国产亚洲av嫩草精品影院| 精品国产超薄肉色丝袜足j| 一区二区三区精品91| 日韩中文字幕欧美一区二区| 男人操女人黄网站| 成人国产一区最新在线观看| 99热6这里只有精品| 老熟妇仑乱视频hdxx| 久久精品91无色码中文字幕| 国产午夜福利久久久久久| 高清毛片免费观看视频网站| 婷婷亚洲欧美| 欧美zozozo另类| 少妇熟女aⅴ在线视频| 亚洲av熟女| 欧美国产精品va在线观看不卡| 满18在线观看网站| 免费无遮挡裸体视频| 亚洲五月天丁香| 侵犯人妻中文字幕一二三四区| 欧美在线一区亚洲| 欧美成人午夜精品| 久9热在线精品视频| 麻豆久久精品国产亚洲av| 久久午夜亚洲精品久久| 12—13女人毛片做爰片一| 亚洲人成电影免费在线| 精品人妻1区二区| 十分钟在线观看高清视频www| 午夜福利高清视频| 午夜精品久久久久久毛片777| 久久久久久人人人人人| xxxwww97欧美| 国产成人系列免费观看| 国产精品 欧美亚洲| 午夜福利一区二区在线看| 级片在线观看| 亚洲熟妇熟女久久| 欧美日本视频| 亚洲av熟女| 精品福利观看| 国产精品久久视频播放| 亚洲精品中文字幕在线视频| 热99re8久久精品国产| 国产男靠女视频免费网站| av片东京热男人的天堂| 男人舔女人下体高潮全视频| 一本精品99久久精品77| 黄色视频不卡| 久久久久久久久中文| 久久中文字幕人妻熟女| 色婷婷久久久亚洲欧美| 中亚洲国语对白在线视频| 日韩中文字幕欧美一区二区| 日韩有码中文字幕| 女人高潮潮喷娇喘18禁视频| 熟女少妇亚洲综合色aaa.| 精品国产美女av久久久久小说| 国产在线精品亚洲第一网站| 亚洲av成人av| 麻豆一二三区av精品| videosex国产| 中文字幕精品免费在线观看视频| 亚洲一码二码三码区别大吗| 麻豆成人av在线观看| 国产色视频综合| 999精品在线视频| 可以在线观看的亚洲视频| 天天躁夜夜躁狠狠躁躁| 十八禁人妻一区二区| 757午夜福利合集在线观看| 大型黄色视频在线免费观看| 51午夜福利影视在线观看| 久久人妻av系列| 18禁黄网站禁片免费观看直播| 欧美日韩福利视频一区二区| 国产伦在线观看视频一区| 日韩欧美一区视频在线观看| 十八禁人妻一区二区| 黄色毛片三级朝国网站| avwww免费| 美女 人体艺术 gogo| 国产精品99久久99久久久不卡| 啦啦啦 在线观看视频| 99久久综合精品五月天人人| 黄色 视频免费看| 久久亚洲真实| 欧美日本视频| 岛国视频午夜一区免费看| 成年女人毛片免费观看观看9| 久久久久久九九精品二区国产 | 久久人妻福利社区极品人妻图片| 黄色毛片三级朝国网站| 国产一卡二卡三卡精品| 精品午夜福利视频在线观看一区| 日韩欧美国产一区二区入口| tocl精华| 黄色成人免费大全| 亚洲七黄色美女视频| 看片在线看免费视频| 亚洲男人天堂网一区| 久久精品国产亚洲av香蕉五月| 亚洲免费av在线视频| 97人妻精品一区二区三区麻豆 | 成人特级黄色片久久久久久久| 麻豆成人午夜福利视频| www.自偷自拍.com| 国产成人欧美在线观看| 久久99热这里只有精品18| 九色国产91popny在线| 久久久水蜜桃国产精品网| 午夜日韩欧美国产| 18禁美女被吸乳视频| 成年版毛片免费区| 男人的好看免费观看在线视频 | 香蕉av资源在线| 亚洲欧美日韩高清在线视频| 黄色视频,在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| 99久久无色码亚洲精品果冻| 日韩中文字幕欧美一区二区| 午夜老司机福利片| 亚洲自拍偷在线| 一卡2卡三卡四卡精品乱码亚洲| 国产一卡二卡三卡精品| 亚洲av中文字字幕乱码综合 | 国产精品一区二区精品视频观看| 丝袜人妻中文字幕| 亚洲 国产 在线| 精品一区二区三区四区五区乱码| 国产又色又爽无遮挡免费看| 老司机福利观看| 亚洲第一青青草原| 免费在线观看日本一区| 亚洲久久久国产精品| 一区二区三区国产精品乱码| 日日干狠狠操夜夜爽| 久热爱精品视频在线9| 久久久国产成人免费| 91成人精品电影| 欧美国产日韩亚洲一区| 亚洲熟妇熟女久久| 两性午夜刺激爽爽歪歪视频在线观看 | 女人高潮潮喷娇喘18禁视频| √禁漫天堂资源中文www| 国产精品二区激情视频| 精品国产国语对白av| 色播亚洲综合网| 久久久久久免费高清国产稀缺| 亚洲人成伊人成综合网2020| 国产精品香港三级国产av潘金莲| 99热这里只有精品一区 | 精品不卡国产一区二区三区| 精品一区二区三区四区五区乱码| 久久99热这里只有精品18| 亚洲av中文字字幕乱码综合 | 黄网站色视频无遮挡免费观看| 老司机午夜十八禁免费视频| 欧美午夜高清在线| 热re99久久国产66热| 日本 欧美在线| 久久精品人妻少妇| 女人被狂操c到高潮| 免费在线观看完整版高清| 亚洲av成人一区二区三| 两个人视频免费观看高清| 黄色 视频免费看| 精品午夜福利视频在线观看一区| 长腿黑丝高跟| 一本大道久久a久久精品| 午夜福利在线观看吧| 国产精品久久久久久亚洲av鲁大| 伦理电影免费视频| 国产精品精品国产色婷婷| 午夜两性在线视频| 欧美色欧美亚洲另类二区| 国产91精品成人一区二区三区| 韩国av一区二区三区四区| 嫁个100分男人电影在线观看| 国产三级在线视频| 人人澡人人妻人| 日本a在线网址| 99久久久亚洲精品蜜臀av| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品粉嫩美女一区| 国产精品一区二区精品视频观看| 99热6这里只有精品| 免费av毛片视频| 国产熟女xx| 国产色视频综合| 18禁黄网站禁片免费观看直播| 久久青草综合色| 亚洲黑人精品在线| 久久久久亚洲av毛片大全| 91大片在线观看| 午夜亚洲福利在线播放| 悠悠久久av| 国产成人啪精品午夜网站| 国产一区二区激情短视频| 婷婷亚洲欧美| 精品无人区乱码1区二区| 宅男免费午夜| av电影中文网址| 真人一进一出gif抽搐免费| 国产不卡一卡二| 一级毛片高清免费大全| 这个男人来自地球电影免费观看| 村上凉子中文字幕在线| 看免费av毛片| a级毛片在线看网站| 国产av在哪里看| 国产成人av激情在线播放| 国内毛片毛片毛片毛片毛片| 黄色 视频免费看| 欧洲精品卡2卡3卡4卡5卡区| 听说在线观看完整版免费高清| 精品一区二区三区视频在线观看免费| 亚洲成国产人片在线观看| 在线天堂中文资源库| 国产精品免费视频内射| 欧美丝袜亚洲另类 | 欧美日本视频| 一本一本综合久久| 久久精品aⅴ一区二区三区四区| 亚洲午夜理论影院| 国产av又大| 一区二区日韩欧美中文字幕| 色综合婷婷激情| 给我免费播放毛片高清在线观看| 美女免费视频网站| 波多野结衣巨乳人妻| 亚洲五月婷婷丁香| 色在线成人网| 中文字幕av电影在线播放| 丝袜人妻中文字幕| 国产又爽黄色视频| 我的亚洲天堂| 一级片免费观看大全| 午夜影院日韩av| 国产精品电影一区二区三区| 一边摸一边抽搐一进一小说| 国产在线观看jvid| 亚洲中文日韩欧美视频| 俺也久久电影网| 精品国产一区二区三区四区第35| 亚洲av片天天在线观看| 一本一本综合久久| 黄色女人牲交| 99国产精品一区二区三区| 国产熟女午夜一区二区三区| 一a级毛片在线观看| 国产成人精品久久二区二区免费| 欧美成人一区二区免费高清观看 |