• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modelling and fabrication of wide temperature range Al0.24Ga0.76As/GaAs Hall magnetic sensors

    2022-03-24 02:40:10HuaFanHuichaoYueJiangminMaoTingPengSimingZuoQuanyuanFengQiWeiandHadiHeidari
    Journal of Semiconductors 2022年3期

    Hua Fan, Huichao Yue, Jiangmin Mao, Ting Peng, Siming Zuo, Quanyuan Feng,Qi Wei, and Hadi Heidari

    1State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China,Chengdu 610054, China

    2Chengdu HiWafer Semiconductor Co., Ltd., Chengdu 610225, China

    3James Watt School of Engineering, University of Glasgow, G12 8QQ, Glasgow, UK

    4Southwest Jiaotong University, Chengdu 611756, China

    5Department of Precision Instrument, Tsinghua University, Beijing 100084, China 6Institute of Electronic and Information Engineering of UESTC in Guangdong, University of Electronic Science and Technology of China,Dongguan 523878, China

    Abstract: Silicon Hall-effect sensors have been widely used in industry and research fields due to their straightforward fabrication process and CMOS compatibility. However, as their material property limitations, technicians usually implement complex CMOS circuits to improve the sensors’ performance including temperature drift and offset compensation for fitting tough situation, but it is no doubt that it increases the design complexity and the sensor area. Gallium arsenide (GaAs) is a superior material of Hall-effect device because of its large mobility and stable temperature characteristics. Concerning there is no specified modelling of GaAs Hall-effect device, this paper investigated its modelling by using finite element method (FEM) software Silvaco TCAD? to help and guide GaAs Hall-effect device fabrication. The modeled sensor has been fabricated and its experimental results are in agreement with the simulation results. Comparing to our previous silicon Hall-effect sensor, the GaAs Hall-effect sensor demonstrates potential and reliable benchmark for the future Hall magnetic sensor developments.

    Key words: Hall-effect sensors; GaAs Hall sensor; GaAs semiconductor device

    1.Introduction

    Hall-effect sensors have dominated most markets of magnetic sensors over the past several decades because of their high performance, small physical size and low cost. Their various applications such as electronic compass, position detecting, current sensing, and contactless switching have made them the most popular type of magnetic devices. This is even truer since silicon Hall sensors are easily integrated on complementary metal oxide technology (CMOS) wafers with the readout electronics[1?4]. Generally, the Hall sensors enjoy wide detection range from 10μT to 20 T, high spatial resolution smaller than 1μm, and a wide band-width from DC to over 1 MHz[5]. However, with the increased use of Hall-effect sensors both in industry and research fields, studying higher performance materials and fabrication process for Hall-effect sensors becomes super important.

    We have previously demonstrated a high-performance Hall sensor in CMOS technology with its integrated readout circuit[2]. According to our experience on CMOS hall sensors, the mobility is a critical material parameter of Hall-effect device,because large mobility Hall-effect device always means large sensitivity and low power consumption. Table 1 shows the electron mobility and energy gap of four common materials of Hall-effect devices and gallium nitride (GaN) studied recently for Hall-effect devices[6,7]. In mobility, Si < GaN < GaAs

    Table 1. Comparison of five materials of Hall-effect devices.

    Fig. 1. (Color online) GaAs Hall-effect sensor layers structures.

    In addition, other benefits of GaAs based Hall sensors include: (a) a high Hall constant about 6250 cm3/C with an electron concentration of 1015cm?3; (b) a high thermal conductivity about 0.81 W/(cm·K), utilizing an advantage of the heat released in the epitaxial layer; (c) almost any custom shape can be achieved in photolithographic nanofabrication process; (e)an excellent temperature stability due to the 1.4 eV energy gap of GaAs at 300 K; (d) a high resistivity about 105Ω?cm;and (e) an ultra-thin thickness without changing desired properties of the bulk materials.

    Considering there is no specified modelling of GaAs Halleffect device, in this paper, a constant voltage bias modelling of GaAs Hall-effect device is presented by using commercial finite element method (FEM) software Silvaco TCAD?to guide and further study the GaAs Hall-effect sensor. The device has been fabricated, and its experimental results of sensitivity performance and temperature performance are compared with simulation results. The important thing is that this model can also be used for the simulation of Hall sensors made of materials such as Si, Ga and InSb. In the design process, we can choose different types of materials, and we can also choose the corresponding electron mobility according to different manufacturing processes.

    The layer structure of our Hall magnetic sensor is shown in Fig. 1. The 300 nm N+GaAs with 1017cm?3uniform Si doping is the active layer to induce Hall output, and it is also used to form ohmic-contact with metal wire. AlGaAs has a larger band gap than GaAs, which can form a barrier to prevent the migration of electrons. The 20 nm Al0.24Ga0.76As is used as the barrier layer to make electron be restricted in N+GaAs space. Periodic Al0.24Ga0.76As and GaAs form a superlattice structure which is used as a buffer layer and to produce periodic barriers for further preventing current flowing away from the substrate. The bottom layer is the GaAs substrate which is to provide mechanical strength and grow high quality GaAs epilayer.

    2.Hall-effect modelling

    The Hall-effect sensor is based on the physical effect produced by a current-carrying semiconductor in a magnetic field. Its output voltage is directly proportional to the magnetic field strength. Currently, the cross-shaped model is widely employed as an optimum geometry to achieve the highest sensitivity and lowest offset[2]. In addition, such symmetric geometry can dramatically decrease the mismatch resulting from the fabrication process[11]. In our model, a conventional constant voltage bias Hall sensor is adopted, which can reduce the design complexity of bias circuit[7]. A constant voltage supply (Vbias) is utilized to bias the Hall-effect sensor and then an output voltage (Vhall) as a result of an external magnetic field is measured at terminals. The Hall voltage with a voltage biasing can be expressed as[11]

    whereμHdenotes the Hall mobility of majority carriers,WandLrepresent the width and length of the sensor respectively,Bis the external magnetic field vertical to the device surface,GHis the geometrical correction factor of Hall voltages.GHis usually determined by the actual sensor structure and the shape of the contact pole, and the value range is 0

    whereθHdenotes the Hall angle. Reducing the width-tolength ratioW/Lof the Hall device can improve the device geometrical correction factor, which will also improve the sensor performance. However, as the width of the Hall device increases, the area of the sensor increases accordingly. Therefore, it is necessary to compromise the aspect ratio of the device within an appropriate range. For a cross-type horizontal Hall sensor,GHvalue can usually reach approximately 1. In addition, the absolute sensor sensitivity can be defined from the Eq. (3). The sensitivity depending on the voltage output quantity can be given by[12]:

    which represents the capability of the sensor to convert the magnetic field into a Hall voltage. For eliminating the influence of bias voltage on device sensitivity, the relative sensitivity is finally defined as the Eq. (4) dividing by the bias voltage, shown below[12]:

    Fig. 2. (Color online) (a) Fully symmetrical cross-shaped Hall element.(b) The Hall voltage of the fully symmetrical cross Hall element changes with the shape.

    Fig. 3. (Color online) (a) Narrow cross-shaped Hall element. (b) The Hall voltage of the narrow cross Hall element varies with the width of the output port.

    whereμminandμmaxrepresent the mobility saturation at the highest and lowest doping concentrate respectively,N0denotes the doping concentrate at which mobility reduces to half ofμmaxvalue,Ndenotes the concentration of ionized donors.TLdenotes the lattice temperature.α, β, γ, δare adjustment parameters[14].

    In Caughey-Thomas mobility model of Silvaco,μmin= 500 cm2/(V·s),μmax= 8600 cm2/(V·s),α= 0,β= –2.1,γ= –1.182,δ=0.394,N0= 6 × 1016cm–3. In Ref. [14],μmin= 500 cm2/(V·s),μmax=9400 cm2/(V·s),α= 0,β=?2.1,γ=?1.182,δ= 0.394,N0= 6 ×1016cm–3, meaning they use the Hall mobility and assumeμ~μH.

    3.Simulation and experimental results

    Fig. 4. (Color online) GaAs Hall-effect sensor built in Silvaco TCAD.

    COMSOL Multiphysics is a multiphysics simulation software based on finite element analysis methods, which can simulate and analyze actual engineering problems involved in many fields including electromagnetics, structural mechanics,acoustics, fluid mechanics, and thermals. Because the COMSOL finite element simulation software has a parameter scanning function, COMSOL is used to explore the geometric factors of the Hall element. The shape of the fully symmetrical cross Hall element is shown in Fig. 2(a). The input and output ports have the same lengthLand widthW. When studying this structure, the ratio ofWandhis more commonly used instead of lengthLand widthWas the abscissa of the coordinate axis. The simulation result is shown in Fig. 2(b). At the beginning, the Hall voltage increases withW/h. WhenW/his about 3, the sensitivity of the fully symmetrical crossshaped Hall disk is the greatest. WhenW/his greater than 3,the Hall voltage tends to decrease. The narrow cross-shaped Hall element studied in this paper is shown in Fig. 3(a), which is similar in shape to a fully symmetrical cross-shaped Hall plate, but the output interface is narrower. Because the width and length of the output port have a small effect on the input resistance, it has a small effect on the static operating point of the Hall element. Therefore, this paper studies the influence of the changes in the widthW’and lengthL’of the output port of the narrow cross-shaped Hall element on the Hall voltage. Based on the fully symmetrical cross-shaped Hall plate when theW/his about 3 and the Hall voltage output is the maximum. Take the fully symmetrical cross-shaped Hall element at the maximumW/hof 3 Hall voltage output as the reference. By changing the width of the output port of the reference Hall element, the Hall voltage of the narrow cross Hall element in Fig. 3(b) varies with the width of the output port. It can be concluded that the smaller the output port, the greater the Hall voltage. WhenW’/W= 0.5, that is, when the output port is half of the input port, the Hall voltage output growth tends to slow down asW’/Wdecreases.

    Numerical simulation of the Hall-effect sensor is performed using Silvaco TCAD?. Previous simulations of Hall sensors are summarized in Ref. [15]. Fig. 4 shows our proposed structure of the Hall-effect sensor. The color legend indicates the surface potential distribution by applying a magnetic field of 100 mT. The model geometry of the Hall sensor has been simulated without any mismatch. The ground and supply voltage are added to cathode and anode of Hall-effect sensor.

    Fig. 5. (Color online) (a) The 2D vertical cut-plane of Hall-effect sensor. GaAs layer (bottle green) is the doping layer and AlxGa1?xAs/GaAs (green)is the channel layer. (b) Electrons distribution of 2DEG GaAs Hall-effect sensor in 1D when a 5 V supply voltage is added. (c) Simulated output voltage of AlxGa1?xAs/GaAs Hall sensor.

    Fig. 6. (Color online) Fabricated AlxGa1?xAs/GaAs Hall sensor microphotograph.

    Fig. 7. (Color online) (a) Simulated sensitivity of the voltage-mode Hall sensor. (b) Dependence of temperature on output voltage. (c) Simulated offset with different misalignment of output contacts.

    The 2D and 1D electrons distribution of vertical cutplane are demonstrated in Figs. 5(a) and 5 (b). Although Al0.24Ga0.76As is just below the N+doping epilayer, it almost has no carrier because of its larger energy gap barrier which stops carriers in GaAs flowing to AlxGa1–xAs. So the electrons are inside the potential well. Electrons are restricted in the thin N+GaAs channel, which forms the two-dimensional electron gas (2DEG) structure confined in the potential well near AlxGa1–xAs/GaAs interface. The final output voltage of the Hall sensor is demonstrated in Fig. 5(c). The value ofy-axis represents the Hall voltage. It is noted that the output is linearly increased by changing the magnetic field from 0 to 100 mT.The voltage response is very linear, and the maximum output voltage of 0.25 V is obtained. The sensitivity of the Hall effect device is 0.51 V/(V·T) .

    Fig. 6 illustrates the microphotograph of the Hall-effect sensor. The red line cross-shape represents the active region of dthe evice, but the effective region of the device doesn’t include pads in white color, and its maximum width and length are 110 and 90μm, respectively. The sensor manufacture is compatible with pHEMT processing technology[9]. There are 4 main steps in its manufacture. Firstly, isolating the device through implant Boron. Secondly, Au/Pt/Ti metals are grown on N+GaAs epilayer, which is used to form Ohmic contact—a classic contact for avoiding forming nonlinearI–Vrelationship between the metal and the semiconductor. Thirdly, Si3N4is deposited on the wafer surface and etched in the pad to protect the device. Finally, a metal wire is grown for its connection to circuits.

    During the experiment, electromagnet Helmholtz coil is used inducing magnetic field. Hall-effect sensor is put in the center of Helmholtz coil for obtaining a relatively constant magnetic field, and there has no consideration for shielding geomagnetic, because it induces the Hall voltage less than 0.1 mV. Guassmeter HT208 (0.1μT resolution) from Hengtong Inc. is used to measure the induced magnetic fields from the coils. In terms of temperature performance, temperature chamber CST842T from Hhtesting Inc. is used to generate temperature from?75 to 200 °C, providing a constant temperature environment. The measured sensitivity at room temperature is shown in Fig. 7(a). The average is 0.28 V/(V·T),which is in the same order of magnitude as the simulation result, but it still has large mismatch, so the model resolution should be improved, which will be further discussed.

    Fig. 8. (Color online) Combining 2 types of epilayer structure and 2 physical models, 4 simulation results are presented. Experiment results are added for comparison with (a, b) magnetic field and (c, d) temperature (50 mT).

    Moreover, the temperature dependence of the final output voltages is shown in Fig. 7(b), with the temperature ranging from?40 to 150 °C at 50 mT vertical magnetic field. The highest measured value of the Hall voltage isVH= 72.5 mV at?40 °C. In addition, it is clearly noticed that the output signal slightly drops as the temperature increases. It is worth mentioning that the increasing temperature brings about the raise of carrier scattering, which leads the decrease of carrier mobility of Hall sensor. Therefore, the higher the temperature, the smaller the carrier mobility, which results in the lower Hall output voltage.

    Finally, Fig. 7(c) performs the offset with different misalignment of output contacts from?300 to 300 nm to find the lowest offset. The measurement is at room temperature and the external applied magnetic field is zero. Ideally, non-misalignment of output contacts will obtain zero output voltage.However, non-ideal factors of piezoelectric effect and discontinuity of material will result in an asymmetry of the device property and then generate offset voltage. It can be alleviated by misaligning output contacts. The offset is equal to 5 mV when the misalignment is 0. When there is 100 nm mismatch, the device approximately has the lowest zero offset.Subsequently, a standard CMOS-based analogue front-end circuit comprises of an operational amplifier and a low-pass filter could achieve on-chip noise and offset suppression.

    If only using the Shockley-Read-Hall Recombination model, a common model in semiconductor, it can obtain 0.44 V/(V·T) sensitivity, which leads to large error compared with 0.28 V/(V·T) in experimental results. Aiming at narrowing the difference between the simulation and experimental results,models need to be improved. Considering the Eq. (5), carrier mobilityμmust be corrected. It is higher in previous simulation work. Carrier mobility is always related with the temperature and the doping concentrate, so analytic physical model is used to correct the device modelling. The quantity relationship of analytic physical model is defined in 6, whereμ1, μ2,α, β, γ, δ, N0are constant parameters related to material property and they can be obtained in the datasheet.TLandNare lattice temperature and carrier concentration, respectively,which are related to the user defined doping concentration and temperature. On the other hand, the simulation model of Hall device is specified into 3 sub-models according to its epilayers. Single GaAs layer simulation, GaAs and AlxGa1?xAs two-layer simulation, and all epilayers simulation are built for studying the model pithily, effectively and accurately.

    Table 2. The comparison of simulation results and experimental results at 300 K.

    Figs. 8(a) and 8(b) show the new simulation results of Hall outputs. In order to explore the difference between GaAs Hall sensor and Al0.24Ga0.76As/GaAs Hall sensors, we further conducted some tests on individual GaAs Hall devices to explore the influence of Al0.24Ga0.76As layer on the sensor. The experimental results are also added for comparison. The two different epilayer simulations show slight differences. That means only GaAs channel layer needs to be considered, which can effectively reduce the simulation complexity and time. It also shows AlxGa1?xAs is a suitable barrier material to form 2DEG.After considering analytic physical model, the simulation results are highly in consistent with the experimental results.The simulated sensitivity is also 0.28 V/(V·T). Furthermore, simulation results are shown in Fig. 8(b), which are in consistent with the experimental results after using analytic physical mode.

    Table 2 summaries and compares simulation results using the Caughey-Thomas model with different parameters and our experimental results at 300 K. Regarding the mobility and Hall mobility, Refs. [16, 13] are relatively low. We used the Caughey-Thomas mobility model provided inRef. [13] and got a voltage sensitivity of 0.24 V/(V·T). We used another Caughey-Thomas mobility model provided by Dr Hadi Heidari in Ref. [16] and got a voltage sensitivity of 0.26 V/(V·T). If only using the common model in semiconductor, it can obtain 0.44 V/(V·T) sensitivity, but it leads to large error compared with 0.28 V/(V·T) in experimental results. It can be seen that we have obtained more accurate sensitivity after we have corrected the mobility model.

    Table 3. The comparison of different types of Hall-effect devices.

    Table 3 summaries specifications of our fabricated Al0.24Ga0.76As/GaAs Hall-effect sensor and compares with other works in terms of the sensitivity, offset, and input/output resistances. From the experimental results of our developed Hall sensor, four times higher sensitivity has been achieved compared to the state-of-the-art Hall sensors based on Si[15]and GaN[7]. It operates at the highest absolute sensitivity of 1.38 V/T. Also, it achieves a relatively low offset compared with the GaAs Hall-effect device in Ref. [18].

    The simulation results are highly consistent with the experimental output.μmin= 500 cm2/(V·s),μmax= 8600 cm2/(V·s),α= 0,β=?2.1,γ=?1.182,δ= 0.394,N0= 6 × 1016cm–3are adopted for fitting the experimental data.

    4.Conclusions

    We have developed a GaAs based Hall sensor and its constant voltage-bias modelling. We used the COMSOL multiphysics simulation tool to study the influence of geometry on the Hall voltage. It is found that the sensitivity of the fully symmetrical Hall element is optimal whenW/his equal to 3. Studies have found that the sensitivity of the narrow cross is better than that of a fully symmetrical Hall element, and it is optimal when the length of the long contact port is twice the length of the short contact port. The cross-shaped Hall sensor has been simulated using Silvaco TCAD?to investigate the sensitivity and temperature performance. Simulation results are highly in consistent with the experimental results. The high sensitivity of 0.28 V/(V·T) is obtained from the experiment with a low offset of 5 mV. A high absolute sensitivity of 1.38 V/T is achieved at 5 V bias voltage. Moreover, the temperature dependence of the Hall sensor is investigated for the maximum Hall voltage of 72.5 mV and the sensitivity of 0.275 V/(V·T) at ?40 °C. The future work will focus on the design and implementation of a whole Hall microsystem with readout circuits using standard CMOS technology.

    Acknowledgements

    The work of Hua Fan was supported by the National Natural Science Foundation of China (NSFC) under Grant 61771111, supported by Sichuan Provincial Science and Technology Important Projects under Grant 22ZDYF2805, supported by the Open Foundation of the State Key Laboratory of Electronic Thin Films and Integrated Devices under Grant KFJJ202006, and supported by Intelligent Terminal Key Laboratory of Sichuan Province under Grant SCITLAB-1001.

    The work of Quanyuan Feng was supported by Major Project of the National Natural Science Foundation of China under Grant 62090012.

    久久久国产精品麻豆| 女性被躁到高潮视频| 国产一级毛片在线| 亚洲精品一二三| 熟女电影av网| 亚洲欧美精品专区久久| 啦啦啦在线观看免费高清www| 王馨瑶露胸无遮挡在线观看| 另类精品久久| 色5月婷婷丁香| 22中文网久久字幕| 成人特级av手机在线观看| 日韩免费高清中文字幕av| 成年av动漫网址| 国产成人freesex在线| 伊人亚洲综合成人网| 女人精品久久久久毛片| 国语对白做爰xxxⅹ性视频网站| 日本黄色片子视频| 欧美激情国产日韩精品一区| 一级,二级,三级黄色视频| 精品午夜福利在线看| 卡戴珊不雅视频在线播放| 热re99久久精品国产66热6| 国产在线男女| 男人舔奶头视频| 久久久国产一区二区| 春色校园在线视频观看| 十八禁高潮呻吟视频 | 亚洲精品国产av成人精品| 免费黄网站久久成人精品| 精品少妇黑人巨大在线播放| 日本与韩国留学比较| 欧美另类一区| 三级国产精品片| 久久久欧美国产精品| 22中文网久久字幕| 亚洲国产精品一区三区| 国产精品久久久久久久久免| 亚洲在久久综合| 亚洲精品久久久久久婷婷小说| 2018国产大陆天天弄谢| 欧美xxxx性猛交bbbb| 美女中出高潮动态图| 肉色欧美久久久久久久蜜桃| 我的女老师完整版在线观看| 午夜老司机福利剧场| 亚洲av在线观看美女高潮| 亚洲中文av在线| av免费观看日本| 人人澡人人妻人| 国产精品一二三区在线看| a级一级毛片免费在线观看| 人妻夜夜爽99麻豆av| 国产精品人妻久久久影院| 午夜福利影视在线免费观看| 新久久久久国产一级毛片| 亚洲经典国产精华液单| 十分钟在线观看高清视频www | 欧美+日韩+精品| 一区二区三区精品91| 成人18禁高潮啪啪吃奶动态图 | 18禁动态无遮挡网站| 亚洲久久久国产精品| 国产精品成人在线| 日本av手机在线免费观看| 妹子高潮喷水视频| 性高湖久久久久久久久免费观看| 视频区图区小说| 91久久精品国产一区二区成人| 欧美日韩亚洲高清精品| 黄色配什么色好看| 国产成人免费观看mmmm| 五月天丁香电影| 男人添女人高潮全过程视频| 交换朋友夫妻互换小说| 亚洲欧洲日产国产| 曰老女人黄片| 国产在线一区二区三区精| 99久久精品一区二区三区| 大陆偷拍与自拍| 天天操日日干夜夜撸| 又粗又硬又长又爽又黄的视频| 成年人午夜在线观看视频| 九九爱精品视频在线观看| 五月开心婷婷网| 亚洲欧洲国产日韩| 亚洲av免费高清在线观看| 国产免费又黄又爽又色| 这个男人来自地球电影免费观看 | 狂野欧美白嫩少妇大欣赏| av视频免费观看在线观看| 天天躁夜夜躁狠狠久久av| 激情五月婷婷亚洲| 久热久热在线精品观看| 欧美日韩综合久久久久久| 美女国产视频在线观看| 亚洲人与动物交配视频| 免费看光身美女| 26uuu在线亚洲综合色| 午夜福利视频精品| 日韩精品免费视频一区二区三区 | 中文字幕久久专区| 只有这里有精品99| 国产精品久久久久久av不卡| videos熟女内射| 日本-黄色视频高清免费观看| xxx大片免费视频| 欧美精品亚洲一区二区| 麻豆成人av视频| 国产一区二区在线观看日韩| 午夜福利影视在线免费观看| 在线观看免费视频网站a站| freevideosex欧美| 毛片一级片免费看久久久久| 久久久久久久久久久丰满| 欧美日韩综合久久久久久| 我的女老师完整版在线观看| 男人爽女人下面视频在线观看| 久久婷婷青草| 欧美日韩在线观看h| 亚洲欧美日韩卡通动漫| 久久久久久久亚洲中文字幕| 久久热精品热| 免费观看性生交大片5| 国产深夜福利视频在线观看| 欧美xxⅹ黑人| 久久久久人妻精品一区果冻| 亚洲精品456在线播放app| 免费大片黄手机在线观看| 日本wwww免费看| 一区二区三区乱码不卡18| 在线观看一区二区三区激情| 久久99一区二区三区| 夫妻午夜视频| 国产欧美日韩一区二区三区在线 | 亚洲综合色惰| 国产日韩欧美视频二区| 内射极品少妇av片p| 如日韩欧美国产精品一区二区三区 | 草草在线视频免费看| 美女cb高潮喷水在线观看| 午夜免费观看性视频| 免费人妻精品一区二区三区视频| 91精品国产国语对白视频| av黄色大香蕉| 国产成人精品无人区| 国产高清国产精品国产三级| 亚洲国产成人一精品久久久| 国产成人精品久久久久久| 国产男人的电影天堂91| 免费看日本二区| 亚洲经典国产精华液单| 免费久久久久久久精品成人欧美视频 | 国产精品成人在线| 国产亚洲精品久久久com| 另类亚洲欧美激情| 国产一区二区三区av在线| 亚洲成人手机| 少妇被粗大的猛进出69影院 | 人人妻人人爽人人添夜夜欢视频 | 麻豆精品久久久久久蜜桃| av有码第一页| av又黄又爽大尺度在线免费看| 亚洲精品成人av观看孕妇| 免费大片黄手机在线观看| 久久久久视频综合| 欧美成人精品欧美一级黄| 欧美最新免费一区二区三区| a级毛片免费高清观看在线播放| 女的被弄到高潮叫床怎么办| 免费观看av网站的网址| 色视频在线一区二区三区| av线在线观看网站| 最新的欧美精品一区二区| 国产免费视频播放在线视频| av黄色大香蕉| 国产亚洲5aaaaa淫片| 久久韩国三级中文字幕| 国产成人午夜福利电影在线观看| 一区二区av电影网| 韩国av在线不卡| 大香蕉久久网| 精品午夜福利在线看| 久久精品久久久久久久性| 亚洲成色77777| 国产精品免费大片| av黄色大香蕉| 精华霜和精华液先用哪个| 国产亚洲精品久久久com| 日韩在线高清观看一区二区三区| 亚洲怡红院男人天堂| 亚洲综合精品二区| 欧美日本中文国产一区发布| 亚洲精品色激情综合| 在线观看www视频免费| 夫妻性生交免费视频一级片| 在线观看国产h片| 亚洲美女搞黄在线观看| 男的添女的下面高潮视频| 久久6这里有精品| 午夜影院在线不卡| 国产一区二区三区av在线| 国产精品久久久久成人av| 国产成人一区二区在线| 日韩av免费高清视频| 国产精品伦人一区二区| 91久久精品电影网| 国产在视频线精品| 国产在线免费精品| 有码 亚洲区| 国产爽快片一区二区三区| 国产免费福利视频在线观看| 91在线精品国自产拍蜜月| 99热这里只有是精品50| freevideosex欧美| 校园人妻丝袜中文字幕| 久久婷婷青草| 久久99精品国语久久久| 免费大片18禁| 黄色欧美视频在线观看| 草草在线视频免费看| 午夜激情福利司机影院| av福利片在线观看| 黄色怎么调成土黄色| 99热这里只有是精品50| 观看av在线不卡| 亚洲欧美清纯卡通| 精品酒店卫生间| 国产男女内射视频| 免费黄频网站在线观看国产| 69精品国产乱码久久久| 国产中年淑女户外野战色| 大陆偷拍与自拍| 亚洲情色 制服丝袜| 免费黄频网站在线观看国产| 婷婷色综合大香蕉| 色视频www国产| 亚洲第一区二区三区不卡| 久久99热这里只频精品6学生| 男人添女人高潮全过程视频| 精品一区二区免费观看| 免费看av在线观看网站| 男人舔奶头视频| 亚洲综合精品二区| 伊人久久精品亚洲午夜| 亚洲国产精品一区三区| 成人午夜精彩视频在线观看| 亚洲精品乱久久久久久| 久久精品国产鲁丝片午夜精品| 2022亚洲国产成人精品| 国产片特级美女逼逼视频| 91精品一卡2卡3卡4卡| 成人国产av品久久久| 极品少妇高潮喷水抽搐| 久久精品久久久久久噜噜老黄| 国产黄色视频一区二区在线观看| 插逼视频在线观看| 国产免费视频播放在线视频| 色5月婷婷丁香| 大片电影免费在线观看免费| 国产日韩欧美亚洲二区| 日本wwww免费看| 久久午夜综合久久蜜桃| 中文字幕久久专区| 我的女老师完整版在线观看| 狠狠精品人妻久久久久久综合| 亚洲av中文av极速乱| 性色avwww在线观看| 色5月婷婷丁香| 啦啦啦在线观看免费高清www| 内地一区二区视频在线| 汤姆久久久久久久影院中文字幕| 一本一本综合久久| 国产有黄有色有爽视频| 亚洲婷婷狠狠爱综合网| 国产成人一区二区在线| 成人18禁高潮啪啪吃奶动态图 | 精品一品国产午夜福利视频| 精品久久久久久电影网| 亚洲精品456在线播放app| 肉色欧美久久久久久久蜜桃| 亚洲高清免费不卡视频| 精品酒店卫生间| 99九九线精品视频在线观看视频| 日韩欧美一区视频在线观看 | 国产av一区二区精品久久| 日韩大片免费观看网站| 乱人伦中国视频| 亚洲熟女精品中文字幕| 少妇熟女欧美另类| 男人舔奶头视频| 在现免费观看毛片| 全区人妻精品视频| 观看美女的网站| 免费人成在线观看视频色| 亚洲伊人久久精品综合| 在线观看www视频免费| 美女大奶头黄色视频| 男男h啪啪无遮挡| 国产精品国产av在线观看| 18禁裸乳无遮挡动漫免费视频| 国产精品蜜桃在线观看| 五月伊人婷婷丁香| 亚洲国产精品成人久久小说| 日本黄大片高清| 亚洲成人手机| 亚洲av二区三区四区| 久久99热这里只频精品6学生| 久久久欧美国产精品| 九色成人免费人妻av| 中文在线观看免费www的网站| 国产极品粉嫩免费观看在线 | 高清在线视频一区二区三区| 少妇人妻 视频| 免费看av在线观看网站| 亚洲美女黄色视频免费看| 欧美xxxx性猛交bbbb| 久久99一区二区三区| 亚洲va在线va天堂va国产| 看免费成人av毛片| 免费观看性生交大片5| 亚洲无线观看免费| 亚洲精品国产色婷婷电影| 欧美97在线视频| 七月丁香在线播放| 丝袜喷水一区| 亚洲一级一片aⅴ在线观看| 亚洲av在线观看美女高潮| 看非洲黑人一级黄片| 国产精品久久久久久精品古装| 日韩人妻高清精品专区| 日韩亚洲欧美综合| 大话2 男鬼变身卡| 国产片特级美女逼逼视频| 欧美三级亚洲精品| 国产精品嫩草影院av在线观看| 免费av不卡在线播放| 久久6这里有精品| 人妻一区二区av| 有码 亚洲区| 精品一区二区三卡| 一级毛片 在线播放| 老熟女久久久| 九九久久精品国产亚洲av麻豆| 亚洲精品国产av蜜桃| 欧美日韩精品成人综合77777| 中文乱码字字幕精品一区二区三区| 免费av不卡在线播放| 91精品国产国语对白视频| 亚洲性久久影院| 亚洲欧洲日产国产| 久久毛片免费看一区二区三区| 啦啦啦在线观看免费高清www| tube8黄色片| 日韩不卡一区二区三区视频在线| 亚洲人成网站在线播| 看非洲黑人一级黄片| 女的被弄到高潮叫床怎么办| 国产极品粉嫩免费观看在线 | tube8黄色片| 十分钟在线观看高清视频www | 成人免费观看视频高清| 综合色丁香网| 精品少妇黑人巨大在线播放| 91在线精品国自产拍蜜月| 免费看光身美女| 最近中文字幕高清免费大全6| 亚洲国产精品999| xxx大片免费视频| 国产成人精品一,二区| 人人妻人人澡人人看| 免费黄网站久久成人精品| 免费播放大片免费观看视频在线观看| 蜜桃久久精品国产亚洲av| 国产极品粉嫩免费观看在线 | 一级爰片在线观看| 大片电影免费在线观看免费| 国产在线男女| 偷拍熟女少妇极品色| 伦精品一区二区三区| 成人18禁高潮啪啪吃奶动态图 | 国产精品一区二区在线观看99| 黄色毛片三级朝国网站 | 日韩亚洲欧美综合| 久久热精品热| 99热这里只有是精品在线观看| 国产精品国产三级专区第一集| 在线免费观看不下载黄p国产| 亚洲精品日韩在线中文字幕| 青春草国产在线视频| 欧美亚洲 丝袜 人妻 在线| 三级国产精品片| 国产精品成人在线| 欧美成人精品欧美一级黄| av福利片在线| 乱人伦中国视频| 女人精品久久久久毛片| 欧美97在线视频| 一级a做视频免费观看| 国产av一区二区精品久久| 伦理电影免费视频| 久久精品国产亚洲av涩爱| 视频中文字幕在线观看| 国产欧美亚洲国产| 亚洲国产最新在线播放| 三级国产精品欧美在线观看| 午夜激情福利司机影院| 日本色播在线视频| 久久精品国产亚洲av天美| 久久久久久久久大av| av在线老鸭窝| 国产精品三级大全| 高清视频免费观看一区二区| 一区二区三区四区激情视频| 亚洲成色77777| 亚洲精品国产av成人精品| 大话2 男鬼变身卡| 少妇熟女欧美另类| 日韩中字成人| 在线观看人妻少妇| 啦啦啦在线观看免费高清www| av专区在线播放| 狂野欧美激情性xxxx在线观看| 国产毛片在线视频| 日日爽夜夜爽网站| 中文字幕人妻丝袜制服| 国产黄色视频一区二区在线观看| 91aial.com中文字幕在线观看| 国产精品久久久久久久久免| 日本vs欧美在线观看视频 | 中国国产av一级| 国产成人一区二区在线| 亚洲成人手机| 久久99一区二区三区| 狂野欧美白嫩少妇大欣赏| av播播在线观看一区| 男人狂女人下面高潮的视频| 少妇人妻久久综合中文| 免费少妇av软件| 丰满乱子伦码专区| 人妻一区二区av| 一二三四中文在线观看免费高清| 欧美日韩一区二区视频在线观看视频在线| 老司机影院成人| 亚洲av中文av极速乱| 男人狂女人下面高潮的视频| 亚洲综合色惰| 国产探花极品一区二区| 国产免费视频播放在线视频| 日本-黄色视频高清免费观看| 黄色视频在线播放观看不卡| 日韩人妻高清精品专区| 国产一级毛片在线| 女人精品久久久久毛片| 久热这里只有精品99| 偷拍熟女少妇极品色| 国产精品一区二区三区四区免费观看| 一区二区三区乱码不卡18| 亚洲精品aⅴ在线观看| 亚洲精品第二区| 国产精品无大码| 久久精品国产亚洲av天美| av又黄又爽大尺度在线免费看| av视频免费观看在线观看| 视频中文字幕在线观看| 人体艺术视频欧美日本| 51国产日韩欧美| 国产精品福利在线免费观看| 熟妇人妻不卡中文字幕| 大码成人一级视频| 国产又色又爽无遮挡免| 91久久精品国产一区二区成人| 肉色欧美久久久久久久蜜桃| 99热全是精品| 日韩不卡一区二区三区视频在线| 日韩视频在线欧美| 少妇裸体淫交视频免费看高清| 国产精品一区二区在线观看99| 色婷婷久久久亚洲欧美| 蜜臀久久99精品久久宅男| 久久久久久久国产电影| 国产亚洲91精品色在线| 久久久久久久久久成人| 亚洲va在线va天堂va国产| 日韩人妻高清精品专区| 午夜精品国产一区二区电影| 久久久久视频综合| 中国美白少妇内射xxxbb| 男男h啪啪无遮挡| 久久99一区二区三区| 韩国高清视频一区二区三区| 99热网站在线观看| 国产又色又爽无遮挡免| av卡一久久| 大话2 男鬼变身卡| 亚洲av综合色区一区| 99久久精品热视频| 国产伦精品一区二区三区四那| 在线观看美女被高潮喷水网站| 色网站视频免费| 狂野欧美激情性bbbbbb| 国内揄拍国产精品人妻在线| 成年女人在线观看亚洲视频| 久久99热这里只频精品6学生| 全区人妻精品视频| 人妻系列 视频| 国产伦精品一区二区三区视频9| 日韩电影二区| 久久99热这里只频精品6学生| 肉色欧美久久久久久久蜜桃| 国产精品一二三区在线看| 少妇人妻久久综合中文| 18+在线观看网站| 热re99久久国产66热| 成人毛片a级毛片在线播放| 啦啦啦啦在线视频资源| 女人精品久久久久毛片| 国产精品不卡视频一区二区| 午夜老司机福利剧场| 亚洲av中文av极速乱| 亚洲精品乱码久久久v下载方式| 亚洲av福利一区| 亚洲在久久综合| 国产精品久久久久成人av| 免费人妻精品一区二区三区视频| 涩涩av久久男人的天堂| 成人18禁高潮啪啪吃奶动态图 | 国产永久视频网站| 成年av动漫网址| 精品久久国产蜜桃| 人妻制服诱惑在线中文字幕| 男人爽女人下面视频在线观看| 国产熟女午夜一区二区三区 | 国产精品久久久久久久电影| 国产乱来视频区| 日日撸夜夜添| 久久av网站| 亚洲欧美清纯卡通| 国产精品无大码| 99热这里只有是精品50| 久久久久久久精品精品| 成年美女黄网站色视频大全免费 | 内射极品少妇av片p| 99久久精品国产国产毛片| 国产精品无大码| 在线观看一区二区三区激情| 亚洲精品久久午夜乱码| 成人毛片60女人毛片免费| 久久久久久久大尺度免费视频| 国产亚洲欧美精品永久| 亚洲国产日韩一区二区| 老司机影院成人| 最黄视频免费看| 美女中出高潮动态图| 日日摸夜夜添夜夜爱| 国内少妇人妻偷人精品xxx网站| 久久久久久人妻| 国国产精品蜜臀av免费| 老司机影院毛片| 国产视频内射| 免费不卡的大黄色大毛片视频在线观看| 欧美+日韩+精品| 日韩亚洲欧美综合| 最新中文字幕久久久久| 赤兔流量卡办理| 最后的刺客免费高清国语| 亚洲av国产av综合av卡| 久久久国产欧美日韩av| 亚洲精品久久午夜乱码| 亚洲av欧美aⅴ国产| 99久久人妻综合| 亚洲av电影在线观看一区二区三区| 你懂的网址亚洲精品在线观看| 一级av片app| 国产男女内射视频| .国产精品久久| 建设人人有责人人尽责人人享有的| 国产伦精品一区二区三区视频9| 亚洲欧美成人精品一区二区| 国语对白做爰xxxⅹ性视频网站| 91aial.com中文字幕在线观看| 夜夜爽夜夜爽视频| 午夜福利视频精品| 蜜臀久久99精品久久宅男| 久久久a久久爽久久v久久| 日本爱情动作片www.在线观看| 人妻夜夜爽99麻豆av| 欧美成人午夜免费资源| 青春草亚洲视频在线观看| 女性生殖器流出的白浆| 少妇人妻精品综合一区二区| 久久久久久伊人网av| 99re6热这里在线精品视频| 国产精品久久久久久精品电影小说| 国产伦精品一区二区三区视频9| 尾随美女入室| 男人爽女人下面视频在线观看| 草草在线视频免费看| 久久av网站| 亚洲国产色片| 色婷婷av一区二区三区视频| 国产毛片在线视频| 国产精品久久久久久精品电影小说| 亚洲怡红院男人天堂| 国产毛片在线视频| 久久久久精品性色| 亚洲综合色惰| 欧美日本中文国产一区发布| 97精品久久久久久久久久精品| 97超视频在线观看视频| 亚洲中文av在线| 建设人人有责人人尽责人人享有的| 啦啦啦在线观看免费高清www| 免费av不卡在线播放|