• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficacy of probiotics on the modulation of gut microbiota in the treatment of diabetic nephropathy

    2022-03-23 01:38:12NozomiNagaseYukaIkedaAiTsujiYasukoKitagishiSatoruMatsuda
    World Journal of Diabetes 2022年3期

    lNTRODUCTlON

    Diabetic nephropathy(DN)is a chronic disorder occurring in nearly 40% of patients with diabetes[1].DN is an important cause of end-stage renal disease and a micro-vascular complication of diabetes mellitus(DM)[2,3].Some dietary factors might be involved in the increase in renal failure in association with DM,showing that the number of patients with DN and/or DM has been increasing in Asian countries because of westernization of dietary lifestyle[2,3].Pathogenesis of DN may be multifactorial and complex.Early DN has no noticeable clinical symptoms,however,hyperglycemia may be a significant risk factor for DN and/or DM[4].Sustained elevated blood glucose could lead to changes in the downstream transcription factors and/or gene expression in kidney glomerular cells[5].Kidney fibrosis and albu-minuria are key pathological processes of the advanced stage of DN[6],but oxidative stress and/or inflammation may also be important mechanisms for the pathogenesis of DN[7].In general,oxidative stress and inflammatory responses are almost not distinct,because one reaction would intensify the other pathogenesis.Both DM and chronic kidney disease(CKD)may have a common pathophysiological mechanism within a chronic inflammatory state and/or oxidative stresses[8].Among them,high levels of reactive oxygen species(ROS)could induce inflammatory cytokines in the kidney[9],which might accelerate the development of DN.Inflammation of the kidneys can lead to proteinuria and/or persistent hypertension,which can proceed to renal failure.Hence,successful treatment of the microcirculation in patients with DN has become a superior strategy for the prevention of DN.This reasonable treatment should be discovered immediately.Recently,it has been shown that pathogenesis of DN is associated with certain gut microbiota[10].The importance of probiotics is widely recognized in various diseases.Besides,studies have shown that crosstalk between host and microbiota might be relevant pathologically in patients with DN[11].For example,alterations in the gut microbiota are associated with the development of proteinuria[12],and type 2 DM[13].Changes to the gut microbiota have also been reported in DM and DN[14].The gut microbiota might well communicate with the kidneys,and the collapse of this relationship might result in the development of renal dysfunction.Accordingly,the gut microbiota could be an important defense against the pathogenesis of kidney disease.Dietary lifestyles have radically changed over the last century in developed countries,and are characterized by reduced dietary fiber and/or increased high-fat consumption[15].Hence,the changes could be linked to alteration of gut microbiota[16].Abnormal intestinal metabolites and disruption of the intestinal barrier owing to the gut dysbiosis might facilitate harmful substances produced in the gut entering the circulatory system[17].These situations allow us to hypothesize that dietary changes could lead to a microbiome that modifies positively the threshold and/or the speed of developing DN and/or DM.

    GUT-KlDNEY AXlS lN THE PATHOGENESlS OF DN

    Although the significance of the gut microbiota has yet to be completely determined,it is obvious that an intricate symbiotic relationship might exist between host and microbe.In addition,the interaction has recently attracted interest in the study of the pathogenesis of various disorders.The human body holds numerous bacterial and/or microbial cells;the majority of which exist in the gut[18].The microbiota is a complex community of more than 100 trillion cells in healthy human intestines[19].The normal gut microbiota could protect the kidney,whereas gut dysbiosis of the microbiota could facilitate kidney disorders[20].Furthermore,alterations in the microbiota are gradually being linked to the development of various other diseases such as inflammatory bowel disease,cancer,psychiatric disorder,and cardiovascular disease[21].The gut-kidney axis could additionally affect metabolic and/or immune pathways in addition to the related diseases[22].The gut-kidney axis is largely mediated by metabolites produced by the gut microbiota,which might regulate physiological function of several organs including the brain,pancreas,adrenal glands,kidneys,

    (Figure 1).For example,components of the immune system might have a key role with cytokines in communication between the gut and kidneys[23].Furthermore,crosstalk between the metabolic and immune pathways has a significant role in keeping a good balance in the kidneys[23].Intestinal responses to inflammation and/or infections are intricate.If microbiota-immune pathways overstimulate tolerance to some inflammation,greater inflammation may accelerate progression of renal disease and/or its complications.Accordingly,gut dysbiosis has frequently been associated with progression of many kidney diseases[24].In addition,accumulation of uremic toxins,which are derived from dietary metabolism in the gut and/or liver,has distinct effects on the kidneys.For example,the increase in urea increases its influx into the bowel lumen from epithelial cells,where it is hydrolyzed by gut microbiota urease to ammonia[25].Subsequently,ammonia byproducts may increase the bowel pH,leading to the severe mucosal damage[26].Accumulation of the uremic toxins in combination with inflammation may also increase the risk of renal disease[27].Therefore,key factors in kidney disease are function of the gut microbiota and/or the action of gut dysbiosis.Inflammatory bowel disease and DM are indeed multifactorial diseases,and both are chronic diseases associated with increased risk of various diseases including cardiovascular disease,which indicates that the gut is associated with host physiological functions[28].Interestingly,the prevalence of inflammatory bowel disease in adults with type 1 DM is higher compared to that of nondiabetic controls[29].It is plausible that the gut-kidney axis might be involved in the pathogenesis of inflammatory bowel disease and DM.Similarly,the gut microbiota may be involved in the damage of other organs,hence targeting the gut microbiota could represent a future therapeutic approach in various diseases.However,the potential impact of gastrointestinal-related disorders on the development and/or progression of DN remains to be elucidated.

    LEVELS OF SHORT-CHAlN FATTY AClDS,ROS,AND D-AMlNO AClDS MAY BE lNVOLVED lN THE DEVELOPMENT OF DN

    Diabetic model mice fed with a high-fiber-diet are less likely to develop DN compared with diabetic control mice fed with a no-fiber diet[30].High-fiber diet might decrease the expression of genes encoding inflammatory cytokines related to DN[30].In general,fibers positively improve the dysbiosis of microbiota with promoting the production of short chain fatty acids(SCFAs)(including butyrate,acetate and propionate)in gut microbiota[31],which might also increase the production/release of cytokines and/or chemokines[32].In addition,SCFAs are able to inhibit intestinal inflammation and/or oxidative stress[33].Major SCFAs(acetate,propionate and butyrate)are derived through glycolysis of glucose to pyruvate or acetyl-CoA.The SCFAs regularly induce glucagon-like peptide 1 secretion through stimulation of a G-protein-coupled receptor(GPCR)[34].Gut microbiota in older people may weaken SCFA production[35].Those SCFAs have various effects on endocrine cells in gut

    the GPCRs such as G-protein-coupled receptor(GPR)43 or GPR109A[36].SCFA-treated diabetic mice have been shown to be protected from nephropathy,suggesting that SCFAs protect renal cells from injury by oxidative stress in DN[37]

    It has been shown that butyrate,one of the SCFAs produced by gut microbiota,plays a protective role in DN,which contributes in various physiological processes predominantly by inhibiting histone deacetylases(HDACs)[38].In addition,providing sodium butyrate has been shown to protect renal cells from oxidative damage and/or apoptosis in type 2 DN mice[39].Consistently,sodium butyrate has inhibited high-glucose-induced apoptosis of tubular epithelial cells in normal kidneys[40].Sodium butyrate also lowers plasma glucose and nuclear factor-B expression in the kidneys and attenuates kidney injury[41].In experimental mice,suppression of HDACs by sodium butyrate may explain the decrease in apoptosis in the kidneys[42].HDACs can regulate cell proliferation,migration and apoptosis,which are organized by a family of enzymes important for chromatin remodeling,keeping a dynamic balance with histone acetyltransferases in expression of several genes[43].Valproate,an HDAC inhibitor,has also been shown to decrease renal injury and/or renal fibrosis[44].

    The signaling pathways triggered by hyperglycemia appear to have a pivotal role in diabetic complications due to the production of ROS and/or additional oxidative stress,which finally leads to apoptotic cell death in various tissues[45].ROS includes superoxide anions,hydroxyl free radicals,and hydrogen peroxide[46].The mitochon-drial electron transport chain is considered a major endogenous source of ROS[47].Production of excess ROS leads to increased membrane permeability and serious cellular damage[48].Such overproduction of ROS links to the pathological condition of altered metabolic pathways in the kidneys and disturbed renal function known as nephropathy[49].Once ATP synthesis is dysregulated in this hyperglycemic situation,it can result in excess production of ROS,which leads to kidney failure[50].Furthermore,high glucose exposure with excessive ROS can lead to renal podocyte apoptosis in experimental DN[51].Antioxidants including ubiquinone(also termed coenzyme Q10),ascorbic acid,and resveratrol have been tested in animal models of kidney diseases with some evidence of therapeutic benefits[52].Epidemiological studies have also found an association between high levels of ROS and risk of DN[53].Therefore,downregulation of ROS and/or oxidative stress might have a crucial role in regulating diabetic complications.Besides,ROS have been revealed to function as second messengers in several signal transduction pathways[54,55].

    Studies have shown the clinical significance of D-amino acids in several kidney diseases[56].For example,the combination of blood level and urinary dynamics of D-serine effectively separates CKD from non-CKD[57].D-amino acids in body fluids are also a promising early detection marker for kidney disease[58].However,excess D-serine can cause kidney damage in rats[59].In this case,it has been shown that D-serine administration can initiate extensive necrosis in renal proximal tubules[59].In contrast,administration of D-alanine does not induce kidney injury[60].Furthermore,protective effects of low-dose D-serine have likely been shown to suppress renal damage,which may promote the hypoxia-mediated proliferation of tubular epithelial cells[61].In addition,D-cysteine administration can also protect the kidneys from ischemia-reperfusion injury,which might be useful to treat various renal diseases[62].D-aspartate plays a role during development and neurogenesis[63].D-aspartate treatment might produce favorable effects during demyelination and remyelination in the nervous system[64].Furthermore,the ovary-inducing activity of D-tryptophan is more effective than that of L-tryptophan[65].These data suggest that D-amino acids have both beneficial and harmful effects on tissue development and/or tissue-protection(Figure 2).

    This lasted until they reached the avenue of orange trees, where were statues holding flaming torches, and when they got nearer to the palace they saw that it was illuminated from the roof to the ground, and music sounded softly from the courtyard

    GUT MlCROBlOTA COULD CONTRlBUTE TO HEALTHY KlDNEYS

    But, unfortunately, while I was still with her she became seriously ill, and though she presently recovered, her beauty is entirely11 gone, so that she hates the very sight of herself, and is in despair

    This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers.It is distributed in accordance with the Creative Commons Attribution NonCommercial(CC BYNC 4.0)license,which permits others to distribute,remix,adapt,build upon this work non-commercially,and license their derivative works on different terms,provided the original work is properly cited and the use is noncommercial.See:https://creativecommons.org/Licenses/by-nc/4.0/

    There are rooms and halls in it, but we do not enter them, weremain in the kitchen, where it is warm and light, clean and tidy; thecopper utensils13 are shining, the table as if polished with beeswax;the sink looks like a freshly scoured14 meatboard

    The authors declare that they have no competing financial interests.

    CONCLUSlON

    When everything was tight closed the little hare turned to Big Lion and said Now! and Big Lion bounded out of the ditch and tore the other animals in pieces

    Carbohydrates are metabolized by gut bacteria into monosaccharides and oligosaccharides,and they could be fermented into SCFAs.As shown above,SCFAs are one of the primary end products of gut fermentation that have considerable effects on host physiology.SCFAs can act as signaling molecules between the gut microbiota and host,and may have a protective effect on the renal function of patients with CKD.In particular,butyrate improves the intestinal barrier and reduces lipopolysaccharide influx into the blood,which could attenuate progression of DN[66].We provide here a perspective of gutkidney axis applied in search of renal disease management associated with the gut microbiome,which may theoretically be beneficial for future treatment of DN.Diet is known to be an essential regulator of gut microbiomes[67].Many studies have confirmed the association between nutrition and the human microbiome in maintaining human health,suggesting significant roles of bacterial metabolites in both health and disease[68].Trillions of bacteria present in the intestinal and colon lumina constitute the human gut microbiota[69].Dietary intake could control microbiota whose fermentation may produce various metabolites including SCFAs[70].The metabolites might additionally regulate the growth of pathogens by competing for of nutrients.For example,parenteral nutrition has been associated with a change in the microbiota,altering SCFA production,and inducing gut mucosal atrophy[71].The SCFAs made by the healthy gut microbiota have anti-inflammatory properties,including proliferation of regulatory T cells[72,73].In addition,a significant role for regulatory T cells has been revealed in type 2 diabetes for protection against DN[74].In addition,SCFAs have favorable effects on β cells,potentiating glucose-stimulated insulin release and/or maintaining β-cell mass through inhibiting apoptosis[75].Furthermore,propionate,has been shown to prevent adipogenic differentiation of specific stem cells[76].

    Japan

    New therapies for DN are emerging.One method that may affect the gut microbiota composition is fecal microbiota transplantation(FMT)(Figure 3).The beneficial effects of the transplantation are dependent on the host responses,however,which may provide a potential treatment strategy for type 2 diabetes[93].In particular,transplantation of

    (

    )could restore the intestinal structure,which might be used as a potential therapeutic approach against inflammation as well as diabetes[94-96].Furthermore,

    may serve as a diagnostic and therapeutic biomarker for the use of FMT[97].The potential role of the gut microbiota has been hypothesized to modulate renal function in experimental DN murine models[98].Through FMT,the role of the gut microbiota and its SCFA production have been verified in the treatment of DN.Therefore,administration of prebiotics and/or probiotics should individually be tailor-made to prevent and/or cure chronic diseases such as DN.For example,acetate produced by certain gut microbiota reprogramming has been shown to contribute to the tubulointerstitial injury of DN,suggesting that gut microbiota might be a new strategy for DN treatment[99].Furthermore,FMT from healthy donors considerably attenuates glomerular injury with podocyte improvement in diabetic rats[100].

    FOOTNOTES

    Each author has participated sufficiently in the work of drafting the article and/or revising the article for important rational content;all authors give final approval of the version to be submitted.

    Finally,the gut microbiota have the largest genetic capacity to metabolize D-amino acids that are utilized as nutrients to support bacterial growth to regulate spore germination[86].Therefore,one possible source of D-amino acids in mammals may be their gut microbiota.In general,many bacterial species encode racemases that convert L-amino acids to D-amino acids[87].For example,D-alanine production is associated with a relative abundance of bacterial species with racemases such as those of

    and

    in the gut microbiota[88].Different bacterial species may produce distinct profiles of D-amino acids[89].Higher D-amino acids levels have been related to the gut microbial mass[90].Oral intake of a peptide containing specific D-amino acids may reverse the diabetes-associated pathological alterations in the kidneys[91](Figure 2).Noteworthy differences in the microbiota composition have been discovered in patients with kidney disease compared with healthy controls[92].Consequently,treatment options for DN should include dietary therapy affecting the gut microbiota.Therapeutic interventions would nevertheless represent a potential target of the microbiota for prevention and/or treatment of DN.

    Many studies have emphasized the relationship between the gut microbiota and oxidative stress[77].In general,ROS production has a defense mechanism that could elicit cytotoxicity against several pathogens then reduce the burden of infection[78].Redox signaling is also found in response to microbial signals

    the gut epithelial NADPH oxidase 1[79].Therefore,microbial ROS might rigorously control signaling processes for appropriate immunity and/or the gut barrier[80].Numerous bacterial species of the microbiota can reduce mitochondrial ROS production[81].For example,microbial products can upregulate the activity of superoxide dismutase,which results in reduced ROS levels and then decreased cellular apoptosis[82].In addition,microbial excess ROS might disturb other important pathways of host cells,suggesting that ROS-mediated signaling can regulate various cellular processes in order to keep the host healthy[83].Epithelial cells may also exhibit increased ROS production in response to several harmful bacteria[84].In the gut,epithelial appropriate ROS production in response to the gut bacteria may play a signaling role in the host[85].It is likely that there are many ROS-sensitive important enzymes that could be affected by alterations in the gut redox conditions.

    The above-mentioned topics are only just being explored in preclinical research,suggesting that further studies are required.Owing to a lack of treatments,DN has been a public health concern.Although it is untimely to draw definitive conclusions about the clinical usefulness of microbiota-based treatment strategies for DN,modulation of gut microbiota is an exciting frontier in kidney research.It is clear that intensive evaluation of preclinical studies is necessary to find further insights.In addition,long-term studies are also necessary to clarify the detailed effects of probiotic treatment in the management of DN.A healthy lifestyle with a balanced familiar diet is now one of the main recommendations.

    He was struck with astonishment69 at the sight of the chariot, and was gazing at it, when the Enchanter strode up to him, exclaiming: Shake hands, Cloverleaf, old fellow! Don t you know me? No, I can t say I do, replied the King, somewhat embarrassed

    Nozomi Nagase 0000-0003-3665-5714;Yuka Ikeda 0000-0003-4805-1758;Ai Tsuji 0000-0003-1619-7592;Yasuko Kitagishi 0000-0002-6906-7444;Satoru Matsuda 0000-0003-4274-5345.

    Wang JJ

    Kerr C

    Wang JJ

    1 Du X,Liu J,Xue Y,Kong X,Lv C,Li Z,Huang Y,Wang B.Alteration of gut microbial profile in patients with diabetic nephropathy.

    2021;73:71-84[PMID:33905112 DOI:10.1007/s12020-021-02721-1]

    2 van den Berg E,Hospers FA,Navis G,Engberink MF,Brink EJ,Geleijnse JM,van Baak MA,Gans RO,Bakker SJ.Dietary acid load and rapid progression to end-stage renal disease of diabetic nephropathy in Westernized South Asian people.

    2011;24:11-17[PMID:20872351 DOI:10.5301/jn.2010.5711]

    3 Alicic RZ,Johnson EJ,Tuttle KR.Inflammatory Mechanisms as New Biomarkers and Therapeutic Targets for Diabetic Kidney Disease.

    2018;25:181-191[PMID:29580582 DOI:10.1053/j.ackd.2017.12.002]

    4 Vergès B.Cardiovascular disease in type 1 diabetes:A review of epidemiological data and underlying mechanisms.

    2020;46:442-449[PMID:32998054 DOI:10.1016/j.diabet.2020.09.001]

    5 Nordquist L,Friederich-Persson M,Fasching A,Liss P,Shoji K,Nangaku M,Hansell P,Palm F.Activation of hypoxiainducible factors prevents diabetic nephropathy.

    2015;26:328-338[PMID:25183809 DOI:10.1681/ASN.2013090990]

    6 Christou GA,Kiortsis DN.The role of adiponectin in renal physiology and development of albuminuria.

    2014;221:R49-R61[PMID:24464020 DOI:10.1530/JOE-13-0578]

    7 Navarro-González JF,Mora-Fernández C,Muros de Fuentes M,García-Pérez J.Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy.

    2011;7:327-340[PMID:21537349 DOI:10.1038/nrneph.2011.51]

    8 Tanase DM,Gosav EM,Neculae E,Costea CF,Ciocoiu M,Hurjui LL,Tarniceriu CC,Maranduca MA,Lacatusu CM,Floria M,Serban IL.Role of Gut Microbiota on Onset and Progression of Microvascular Complications of Type 2 Diabetes(T2DM).

    2020;12[PMID:33276482 DOI:10.3390/nu12123719]

    9 Justin Rucker A,Crowley SD.The role of macrophages in hypertension and its complications.

    2017;469:419-430[PMID:28251313 DOI:10.1007/s00424-017-1950-x]

    10 Tesch GH.Diabetic nephropathy - is this an immune disorder?

    2017;131:2183-2199[PMID:28760771 DOI:10.1042/CS20160636]

    11 Fernandes R,Viana SD,Nunes S,Reis F.Diabetic gut microbiota dysbiosis as an inflammaging and immunosenescence condition that fosters progression of retinopathy and nephropathy.

    2019;1865:1876-1897[PMID:30287404 DOI:10.1016/j.bbadis.2018.09.032]

    12 Yoshifuji A,Wakino S,Irie J,Tajima T,Hasegawa K,Kanda T,Tokuyama H,Hayashi K,Itoh H.Gut Lactobacillus protects against the progression of renal damage by modulating the gut environment in rats.

    2016;31:401-412[PMID:26487672 DOI:10.1093/ndt/gfv353]

    13 Wen L,Duffy A.Factors Influencing the Gut Microbiota,Inflammation,and Type 2 Diabetes.

    2017;147:1468S-1475S[PMID:28615382 DOI:10.3945/jn.116.240754]

    14 Yang J,Dong H,Wang Y,Jiang Y,Zhang W,Lu Y,Chen Y,Chen L.Cordyceps cicadae polysaccharides ameliorated renal interstitial fibrosis in diabetic nephropathy rats by repressing inflammation and modulating gut microbiota dysbiosis.

    2020;163:442-456[PMID:32592781 DOI:10.1016/j.ijbiomac.2020.06.153]

    15 Maslowski KM,Mackay CR.Diet,gut microbiota and immune responses.

    2011;12:5-9[PMID:21169997 DOI:10.1038/ni0111-5]

    16 Andoh A,Kuzuoka H,Tsujikawa T,Nakamura S,Hirai F,Suzuki Y,Matsui T,Fujiyama Y,Matsumoto T.Multicenter analysis of fecal microbiota profiles in Japanese patients with Crohn's disease.

    2012;47:1298-1307[PMID:22576027 DOI:10.1007/s00535-012-0605-0]

    17 Yang G,Wei J,Liu P,Zhang Q,Tian Y,Hou G,Meng L,Xin Y,Jiang X.Role of the gut microbiota in type 2 diabetes and related diseases.

    2021;117:154712[PMID:33497712 DOI:10.1016/j.metabol.2021.154712]

    18 Sender R,Fuchs S,Milo R.Revised Estimates for the Number of Human and Bacteria Cells in the Body.

    2016;14:e1002533[PMID:27541692 DOI:10.1371/journal.pbio.1002533]

    19 De Sordi L,Khanna V,Debarbieux L.The Gut Microbiota Facilitates Drifts in the Genetic Diversity and Infectivity of Bacterial Viruses.

    2017;22:801-808.e3[PMID:29174401 DOI:10.1016/j.chom.2017.10.010]

    20 Mahmoodpoor F,Rahbar Saadat Y,Barzegari A,Ardalan M,Zununi Vahed S.The impact of gut microbiota on kidney function and pathogenesis.

    2017;93:412-419[PMID:28654798 DOI:10.1016/j.biopha.2017.06.066]

    21 Li DY,Tang WHW.Contributory Role of Gut Microbiota and Their Metabolites Toward Cardiovascular Complications in Chronic Kidney Disease.

    2018;38:193-205[PMID:29602401 DOI:10.1016/j.semnephrol.2018.01.008]

    22 Evenepoel P,Poesen R,Meijers B.The gut-kidney axis.

    2017;32:2005-2014[PMID:27848096 DOI:10.1007/s00467-016-3527-x]

    23 Yang T,Richards EM,Pepine CJ,Raizada MK.The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease.

    2018;14:442-456[PMID:29760448 DOI:10.1038/s41581-018-0018-2]

    24 Afsar B,Vaziri ND,Aslan G,Tarim K,Kanbay M.Gut hormones and gut microbiota:implications for kidney function and hypertension.

    2016;10:954-961[PMID:27865823 DOI:10.1016/j.jash.2016.10.007]

    25 Vaziri ND,Yuan J,Khazaeli M,Masuda Y,Ichii H,Liu S.Oral activated charcoal adsorbent(AST-120)ameliorates chronic kidney disease-induced intestinal epithelial barrier disruption.

    2013;37:518-525[PMID:23689670 DOI:10.1159/000351171]

    26 Figura N.Helicobacter pylori factors involved in the development of gastroduodenal mucosal damage and ulceration.

    1997;25 Suppl 1:S149-S163[PMID:9479642 DOI:10.1097/00004836-199700001-00025]

    27 Wu PH,Lin YT,Chiu YW,Baldanzi G,Huang JC,Liang SS,Lee SC,Chen SC,Hsu YL,Kuo MC,Hwang SJ.The relationship of indoxyl sulfate and p-cresyl sulfate with target cardiovascular proteins in hemodialysis patients.

    2021;11:3786[PMID:33589722 DOI:10.1038/s41598-021-83383-x]

    28 Torkamani A,Topol EJ,Schork NJ.Pathway analysis of seven common diseases assessed by genome-wide association.

    2008;92:265-272[PMID:18722519 DOI:10.1016/j.ygeno.2008.07.011]

    29 Lu S,Gong J,Tan Y,Liu D.Epidemiologic Association between Inflammatory Bowel Diseases and Type 1 Diabetes Mellitus:a Meta-Analysis.

    2020;29:407-413[PMID:32919423 DOI:10.15403/jgld-798]

    30 Li YJ,Chen X,Kwan TK,Loh YW,Singer J,Liu Y,Ma J,Tan J,Macia L,Mackay CR,Chadban SJ,Wu H.Dietary Fiber Protects against Diabetic Nephropathy through Short-Chain Fatty Acid-Mediated Activation of G Protein-Coupled Receptors GPR43 and GPR109A.

    2020;31:1267-1281[PMID:32358041 DOI:10.1681/ASN.2019101029]

    31 Bai Y,Li Y,Marion T,Tong Y,Zaiss MM,Tang Z,Zhang Q,Liu Y,Luo Y.Resistant starch intake alleviates collageninduced arthritis in mice by modulating gut microbiota and promoting concomitant propionate production.

    2021;116:102564[PMID:33203617 DOI:10.1016/j.jaut.2020.102564]

    32 Rutting S,Xenaki D,Malouf M,Horvat JC,Wood LG,Hansbro PM,Oliver BG.Short-chain fatty acids increase TNFαinduced inflammation in primary human lung mesenchymal cells through the activation of p38 MAPK.

    2019;316:L157-L174[PMID:30407866 DOI:10.1152/ajplung.00306.2018]

    33 Huang W,Guo HL,Deng X,Zhu TT,Xiong JF,Xu YH,Xu Y.Short-Chain Fatty Acids Inhibit Oxidative Stress and Inflammation in Mesangial Cells Induced by High Glucose and Lipopolysaccharide.

    2017;125:98-105[PMID:28049222 DOI:10.1055/s-0042-121493]

    34 Zhou D,Chen YW,Zhao ZH,Yang RX,Xin FZ,Liu XL,Pan Q,Zhou H,Fan JG.Sodium butyrate reduces high-fat dietinduced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression.

    2018;50:1-12[PMID:30510243 DOI:10.1038/s12276-018-0183-1]

    35 Rampelli S,Candela M,Turroni S,Biagi E,Collino S,Franceschi C,O'Toole PW,Brigidi P.Functional metagenomic profiling of intestinal microbiome in extreme ageing.

    2013;5:902-912[PMID:24334635 DOI:10.18632/aging.100623]

    36 Moniri NH,Farah Q.Short-chain free-fatty acid G protein-coupled receptors in colon cancer.

    2021;186:114483[PMID:33631190 DOI:10.1016/j.bcp.2021.114483]

    37 Andrade-Oliveira V,Amano MT,Correa-Costa M,Castoldi A,Felizardo RJ,de Almeida DC,Bassi EJ,Moraes-Vieira PM,Hiyane MI,Rodas AC,Peron JP,Aguiar CF,Reis MA,Ribeiro WR,Valduga CJ,Curi R,Vinolo MA,Ferreira CM,Camara NO.Gut Bacteria Products Prevent AKI Induced by Ischemia-Reperfusion.

    2015;26:1877-1888[PMID:25589612 DOI:10.1681/ASN.2014030288]

    38 Felizardo RJF,de Almeida DC,Pereira RL,Watanabe IKM,Doimo NTS,Ribeiro WR,Cenedeze MA,Hiyane MI,Amano MT,Braga TT,Ferreira CM,Parmigiani RB,Andrade-Oliveira V,Volpini RA,Vinolo MAR,Mari?o E,Robert R,Mackay CR,Camara NOS.Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic- and GPR109a-mediated mechanisms.

    2019;33:11894-11908[PMID:31366236 DOI:10.1096/fj.201901080R]

    39 Dong W,Jia Y,Liu X,Zhang H,Li T,Huang W,Chen X,Wang F,Sun W,Wu H.Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly

    inhibition of HDAC.

    2017;232:71-83[PMID:27799462 DOI:10.1530/JOE-16-0322]

    40 Du Y,Tang G,Yuan W.Suppression of HDAC2 by sodium butyrate alleviates apoptosis of kidney cells in db/db mice and HGinduced NRK52E cells.

    2020;45:210-222[PMID:31746362 DOI:10.3892/ijmm.2019.4397]

    41 Khan S,Jena G.Sodium butyrate,a HDAC inhibitor ameliorates eNOS,iNOS and TGF-β1-induced fibrogenesis,apoptosis and DNA damage in the kidney of juvenile diabetic rats.

    2014;73:127-139[PMID:25158305 DOI:10.1016/j.fct.2014.08.010]

    42 Kim SW,Hooker JM,Otto N,Win K,Muench L,Shea C,Carter P,King P,Reid AE,Volkow ND,Fowler JS.Wholebody pharmacokinetics of HDAC inhibitor drugs,butyric acid,valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET.

    2013;40:912-918[PMID:23906667 DOI:10.1016/j.nucmedbio.2013.06.007]

    43 Choudhary C,Kumar C,Gnad F,Nielsen ML,Rehman M,Walther TC,Olsen JV,Mann M.Lysine acetylation targets protein complexes and co-regulates major cellular functions.

    2009;325:834-840[PMID:19608861 DOI:10.1126/science.1175371]

    44 Khan S,Jena G,Tikoo K.Sodium valproate ameliorates diabetes-induced fibrosis and renal damage by the inhibition of histone deacetylases in diabetic rat.

    2015;98:230-239[PMID:25576297 DOI:10.1016/j.yexmp.2015.01.003]

    45 Sávio-Silva C,Soinski-Sousa PE,Simplício-Filho A,Bastos RMC,Beyerstedt S,Rangel éB.Therapeutic Potential of Mesenchymal Stem Cells in a Pre-Clinical Model of Diabetic Kidney Disease and Obesity.

    2021;22[PMID:33557007 DOI:10.3390/ijms22041546]

    46 Ahmad R,Ahsan H.Singlet oxygen species and systemic lupus erythematosus:a brief review.

    2019;40:343-349[PMID:31116079 DOI:10.1080/15321819.2019.1616555]

    47 Auger C,Vinaik R,Appanna VD,Jeschke MG.Beyond mitochondria:Alternative energy-producing pathways from all strata of life.

    2021;118:154733[PMID:33631145 DOI:10.1016/j.metabol.2021.154733]

    48 Bonora M,Patergnani S,Ramaccini D,Morciano G,Pedriali G,Kahsay AE,Bouhamida E,Giorgi C,Wieckowski MR,Pinton P.Physiopathology of the Permeability Transition Pore:Molecular Mechanisms in Human Pathology.

    2020;10[PMID:32635556 DOI:10.3390/biom10070998]

    49 Jha JC,Banal C,Chow BS,Cooper ME,Jandeleit-Dahm K.Diabetes and Kidney Disease:Role of Oxidative Stress.

    2016;25:657-684[PMID:26906673 DOI:10.1089/ars.2016.6664]

    50 Badal SS,Danesh FR.New insights into molecular mechanisms of diabetic kidney disease.

    2014;63:S63-S83[PMID:24461730 DOI:10.1053/j.ajkd.2013.10.047]

    51 Susztak K,Raff AC,Schiffer M,B?ttinger EP.Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy.

    2006;55:225-233[PMID:16380497]

    52 Huang SS,Ding DF,Chen S,Dong CL,Ye XL,Yuan YG,Feng YM,You N,Xu JR,Miao H,You Q,Lu X,Lu YB.Resveratrol protects podocytes against apoptosis

    stimulation of autophagy in a mouse model of diabetic nephropathy.

    2017;7:45692[PMID:28374806 DOI:10.1038/srep45692]

    53 Khan SR.Is oxidative stress,a link between nephrolithiasis and obesity,hypertension,diabetes,chronic kidney disease,metabolic syndrome?

    2012;40:95-112[PMID:22213019 DOI:10.1007/s00240-011-0448-9]

    54 Chiarugi P,Buricchi F.Protein tyrosine phosphorylation and reversible oxidation:two cross-talking posttranslation modifications.

    2007;9:1-24[PMID:17115885 DOI:10.1089/ars.2007.9.1]

    55 Linnane AW,Kios M,Vitetta L.Healthy aging:regulation of the metabolome by cellular redox modulation and prooxidant signaling systems:the essential roles of superoxide anion and hydrogen peroxide.

    2007;8:445-467[PMID:17415678 DOI:10.1007/s10522-007-9096-4]

    56 Kaimori JY,Maehara K,Hayashi-Takanaka Y,Harada A,Fukuda M,Yamamoto S,Ichimaru N,Umehara T,Yokoyama S,Matsuda R,Ikura T,Nagao K,Obuse C,Nozaki N,Takahara S,Takao T,Ohkawa Y,Kimura H,Isaka Y.Histone H4 lysine 20 acetylation is associated with gene repression in human cells.

    2016;6:24318[PMID:27064113 DOI:10.1038/srep24318]

    57 Hesaka A,Sakai S,Hamase K,Ikeda T,Matsui R,Mita M,Horio M,Isaka Y,Kimura T.

    -Serine reflects kidney function and diseases.

    2019;9:5104[PMID:30911057 DOI:10.1038/s41598-019-41608-0]

    58 Kimura T,Hamase K,Miyoshi Y,Yamamoto R,Yasuda K,Mita M,Rakugi H,Hayashi T,Isaka Y.Chiral amino acid metabolomics for novel biomarker screening in the prognosis of chronic kidney disease.

    2016;6:26137[PMID:27188851 DOI:10.1038/srep26137]

    59 Ganote CE,Peterson DR,Carone FA.The nature of D-serine--induced nephrotoxicity.

    1974;77:269-282[PMID:4447130]

    60 Maekawa M,Okamura T,Kasai N,Hori Y,Summer KH,Konno R.D-amino-acid oxidase is involved in D-serineinduced nephrotoxicity.

    2005;18:1678-1682[PMID:16300376 DOI:10.1021/tx0500326]

    61 Nakade Y,Iwata Y,Furuichi K,Mita M,Hamase K,Konno R,Miyake T,Sakai N,Kitajima S,Toyama T,Shinozaki Y,Sagara A,Miyagawa T,Hara A,Shimizu M,Kamikawa Y,Sato K,Oshima M,Yoneda-Nakagawa S,Yamamura Y,Kaneko S,Miyamoto T,Katane M,Homma H,Morita H,Suda W,Hattori M,Wada T.Gut microbiota-derived D-serine protects against acute kidney injury.

    2018;3[PMID:30333299 DOI:10.1172/jci.insight.97957]

    62 Kimura H.The physiological role of hydrogen sulfide and beyond.

    2014;41:4-10[PMID:24491257 DOI:10.1016/j.niox.2014.01.002]

    63 van den Pol AN,Obrietan K,Cao V,Trombley PQ.Embryonic hypothalamic expression of functional glutamate receptors.

    1995;67:419-439[PMID:7545794 DOI:10.1016/0306-4522(95)96912-w]

    64 de Rosa V,Secondo A,Pannaccione A,Ciccone R,Formisano L,Guida N,Crispino R,Fico A,Polishchuk R,D'Aniello A,Annunziato L,Boscia F.D-Aspartate treatment attenuates myelin damage and stimulates myelin repair.

    2019;11[PMID:30559305 DOI:10.15252/emmm.201809278]

    65 Kobayashi K,Maezawa T,Tanaka H,Onuki H,Horiguchi Y,Hirota H,Ishida T,Horiike K,Agata Y,Aoki M,Hoshi M,Matsumoto M.The identification of D-tryptophan as a bioactive substance for postembryonic ovarian development in the planarian Dugesia ryukyuensis.

    2017;7:45175[PMID:28338057 DOI:10.1038/srep45175]

    66 Sabatino A,Regolisti G,Cosola C,Gesualdo L,Fiaccadori E.Intestinal Microbiota in Type 2 Diabetes and Chronic Kidney Disease.

    2017;17:16[PMID:28271466 DOI:10.1007/s11892-017-0841-z]

    67 Chen PB,Black AS,Sobel AL,Zhao Y,Mukherjee P,Molparia B,Moore NE,Aleman Muench GR,Wu J,Chen W,Pinto AFM,Maryanoff BE,Saghatelian A,Soroosh P,Torkamani A,Leman LJ,Ghadiri MR.Directed remodeling of the mouse gut microbiome inhibits the development of atherosclerosis.

    2020;38:1288-1297[PMID:32541956 DOI:10.1038/s41587-020-0549-5]

    68 Cotillard A,Kennedy SP,Kong LC,Prifti E,Pons N,Le Chatelier E,Almeida M,Quinquis B,Levenez F,Galleron N,Gougis S,Rizkalla S,Batto JM,Renault P;ANR MicroObes consortium,Doré J,Zucker JD,Clément K,Ehrlich SD.Dietary intervention impact on gut microbial gene richness.

    2013;500:585-588[PMID:23985875 DOI:10.1038/nature12480]

    69 Guo Y,Kitamoto S,Kamada N.Microbial adaptation to the healthy and inflamed gut environments.

    2020;12:1857505[PMID:33382358 DOI:10.1080/19490976.2020.1857505]

    70 Shanahan F,van Sinderen D,O'Toole PW,Stanton C.Feeding the microbiota:transducer of nutrient signals for the host.

    2017;66:1709-1717[PMID:28663354 DOI:10.1136/gutjnl-2017-313872]

    71 Ríos-Covián D,Ruas-Madiedo P,Margolles A,Gueimonde M,de Los Reyes-Gavilán CG,Salazar N.Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health.

    2016;7:185[PMID:26925050 DOI:10.3389/fmicb.2016.00185]

    72 Papatriantafyllou M.T cells:maintaining T cell homeostasis.

    2013;13:546-547[PMID:23868219 DOI:10.1038/nri3504]

    73 Papatriantafyllou M.Regulatory T cells:distilling regulatory T cell inducers.

    2013;13:546[PMID:24046840 DOI:10.1038/nri3506]

    74 Abouzeid S,Sherif N.Role of alteration in Treg/Th17 cells' balance in nephropathic patients with Type 2 diabetes mellitus.

    2015;7:1613-1618[PMID:26816588 DOI:10.19082/1613]

    75 Pingitore A,Chambers ES,Hill T,Maldonado IR,Liu B,Bewick G,Morrison DJ,Preston T,Wallis GA,Tedford C,Casta?era González R,Huang GC,Choudhary P,Frost G,Persaud SJ.The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro.

    2017;19:257-265[PMID:27761989 DOI:10.1111/dom.12811]

    76 Iván J,Major E,Sipos A,Kovács K,Horváth D,Tamás I,Bay P,Dombrádi V,Lontay B.The Short-Chain Fatty Acid Propionate Inhibits Adipogenic Differentiation of Human Chorion-Derived Mesenchymal Stem Cells Through the Free Fatty Acid Receptor 2.

    2017;26:1724-1733[PMID:28992793 DOI:10.1089/scd.2017.0035]

    77 Kong Y,Olejar KJ,On SLW,Chelikani V.The Potential of

    spp.for Modulating Oxidative Stress in the Gastrointestinal Tract.

    2020;9[PMID:32664392 DOI:10.3390/antiox9070610]

    78 Ghosh S,Dai C,Brown K,Rajendiran E,Makarenko S,Baker J,Ma C,Halder S,Montero M,Ionescu VA,Klegeris A,Vallance BA,Gibson DL.Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation,redox status,and ion transporter gene expression.

    2011;301:G39-G49[PMID:21454446 DOI:10.1152/ajpgi.00509.2010]

    79 Neish AS.Redox signaling mediated by the gut microbiota.

    2013;47:950-957[PMID:23937589 DOI:10.3109/10715762.2013.833331]

    80 Patel RM,Myers LS,Kurundkar AR,Maheshwari A,Nusrat A,Lin PW.Probiotic bacteria induce maturation of intestinal claudin 3 expression and barrier function.

    2012;180:626-635[PMID:22155109 DOI:10.1016/j.ajpath.2011.10.025]

    81 Lobet E,Letesson JJ,Arnould T.Mitochondria:a target for bacteria.

    2015;94:173-185[PMID:25707982 DOI:10.1016/j.bcp.2015.02.007]

    82 Liu TF,Vachharajani VT,Yoza BK,McCall CE.NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response.

    2012;287:25758-25769[PMID:22700961 DOI:10.1074/jbc.M112.362343]

    83 Belizário JE,Faintuch J,Garay-Malpartida M.Gut Microbiome Dysbiosis and Immunometabolism:New Frontiers for Treatment of Metabolic Diseases.

    2018;2018:2037838[PMID:30622429 DOI:10.1155/2018/2037838]

    84 Ha EM,Oh CT,Bae YS,Lee WJ.A direct role for dual oxidase in Drosophila gut immunity.

    2005;310:847-850[PMID:16272120 DOI:10.1126/science.1117311]

    85 Neish AS,Jones RM.Redox signaling mediates symbiosis between the gut microbiota and the intestine.

    2014;5:250-253[PMID:24637602 DOI:10.4161/gmic.27917]

    86 Cava F,Lam H,de Pedro MA,Waldor MK.Emerging knowledge of regulatory roles of D-amino acids in bacteria.

    2011;68:817-831[PMID:21161322 DOI:10.1007/s00018-010-0571-8]

    87 Radkov AD,Moe LA.Bacterial synthesis of D-amino acids.

    2014;98:5363-5374[PMID:24752840 DOI:10.1007/s00253-014-5726-3]

    88 Gilmore MS,Skaugen M,Nes I.Enterococcus faecalis cytolysin and lactocin S of Lactobacillus sake.

    1996;69:129-138[PMID:8775973 DOI:10.1007/BF00399418]

    89 Lam H,Oh DC,Cava F,Takacs CN,Clardy J,de Pedro MA,Waldor MK.D-amino acids govern stationary phase cell wall remodeling in bacteria.

    2009;325:1552-1555[PMID:19762646 DOI:10.1126/science.1178123]

    90 Ketting D,Wadman SK,Spaapen LJ,Van der Meer SB,Duran M.Gas chromatography method for the separation of amino acids enantiomers in plasma and urine.Application in a case of short bowel syndrome.

    1991;204:79-86[PMID:1819475 DOI:10.1016/0009-8981(91)90219-3]

    91 Chai Z,Wu T,Dai A,Huynh P,Koentgen F,Krippner G,Ren S,Cooper ME.Targeting the CDA1/CDA1BP1 Axis Retards Renal Fibrosis in Experimental Diabetic Nephropathy.

    2019;68:395-408[PMID:30425061 DOI:10.2337/db18-0712]

    92 Vaziri ND,Wong J,Pahl M,Piceno YM,Yuan J,DeSantis TZ,Ni Z,Nguyen TH,Andersen GL.Chronic kidney disease alters intestinal microbial flora.

    2013;83:308-315[PMID:22992469 DOI:10.1038/ki.2012.345]

    93 Wang H,Lu Y,Yan Y,Tian S,Zheng D,Leng D,Wang C,Jiao J,Wang Z,Bai Y.Promising Treatment for Type 2 Diabetes:Fecal Microbiota Transplantation Reverses Insulin Resistance and Impaired Islets.

    2019;9:455[PMID:32010641 DOI:10.3389/fcimb.2019.00455]

    94 Ganesan K,Chung SK,Vanamala J,Xu B.Causal Relationship between Diet-Induced Gut Microbiota Changes and Diabetes:A Novel Strategy to Transplant Faecalibacterium prausnitzii in Preventing Diabetes.

    2018;19[PMID:30467295 DOI:10.3390/ijms19123720]

    95 Xu J,Liang R,Zhang W,Tian K,Li J,Chen X,Yu T,Chen Q.Faecalibacterium prausnitzii-derived microbial antiinflammatory molecule regulates intestinal integrity in diabetes mellitus mice

    modulating tight junction protein expression.

    2020;12:224-236[PMID:31503404 DOI:10.1111/1753-0407.12986]

    96 Bj?rkqvist O,Rangel I,Serrander L,Magnusson C,Halfvarson J,Norén T,Bergman-Jungestr?m M.Faecalibacterium prausnitzii increases following fecal microbiota transplantation in recurrent Clostridioides difficile infection.

    2021;16:e0249861[PMID:33836037 DOI:10.1371/journal.pone.0249861]

    97 Chen HT,Huang HL,Xu HM,Luo QL,He J,Li YQ,Zhou YL,Nie YQ,Zhou YJ.Fecal microbiota transplantation ameliorates active ulcerative colitis.

    2020;19:2650-2660[PMID:32256746 DOI:10.3892/etm.2020.8512]

    98 Li Y,Su X,Gao Y,Lv C,Gao Z,Liu Y,Wang Y,Li S,Wang Z.The potential role of the gut microbiota in modulating renal function in experimental diabetic nephropathy murine models established in same environment.

    2020;1866:165764[PMID:32169506 DOI:10.1016/j.bbadis.2020.165764]

    99 Hu ZB,Lu J,Chen PP,Lu CC,Zhang JX,Li XQ,Yuan BY,Huang SJ,Ruan XZ,Liu BC,Ma KL.Dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy

    the disruption of cholesterol homeostasis.

    2020;10:2803-2816[PMID:32194836 DOI:10.7150/thno.40571]

    100 Lu J,Chen PP,Zhang JX,Li XQ,Wang GH,Yuan BY,Huang SJ,Liu XQ,Jiang TT,Wang MY,Liu WT,Ruan XZ,Liu BC,Ma KL.GPR43 deficiency protects against podocyte insulin resistance in diabetic nephropathy through the restoration of AMPKα activity.

    2021;11:4728-4742[PMID:33754024 DOI:10.7150/thno.56598]

    夜夜看夜夜爽夜夜摸| 国产成人av激情在线播放| av网站免费在线观看视频| 亚洲男人天堂网一区| 午夜免费成人在线视频| 国产一级毛片七仙女欲春2 | 精品国产国语对白av| 久久久精品国产亚洲av高清涩受| 免费一级毛片在线播放高清视频 | 中文字幕人妻熟女乱码| 天天添夜夜摸| 女生性感内裤真人,穿戴方法视频| 男人舔女人下体高潮全视频| 成人特级黄色片久久久久久久| 久久国产精品影院| 国产亚洲精品综合一区在线观看 | 18美女黄网站色大片免费观看| 亚洲av熟女| 日韩av在线大香蕉| 国产97色在线日韩免费| 精品高清国产在线一区| 香蕉久久夜色| 久久久国产成人免费| 亚洲午夜精品一区,二区,三区| 自拍欧美九色日韩亚洲蝌蚪91| 久久性视频一级片| 久久久国产成人精品二区| 免费在线观看日本一区| 亚洲 欧美 日韩 在线 免费| 国产一卡二卡三卡精品| 中国美女看黄片| 亚洲国产精品久久男人天堂| 亚洲av五月六月丁香网| 久久国产精品男人的天堂亚洲| 精品国产乱码久久久久久男人| 午夜精品在线福利| 九色国产91popny在线| 免费在线观看视频国产中文字幕亚洲| 91成人精品电影| 天天添夜夜摸| 99久久精品国产亚洲精品| 热re99久久国产66热| ponron亚洲| 十八禁网站免费在线| 午夜福利视频1000在线观看 | netflix在线观看网站| 欧美色欧美亚洲另类二区 | 19禁男女啪啪无遮挡网站| 两个人免费观看高清视频| 啦啦啦 在线观看视频| 制服丝袜大香蕉在线| 久久久精品欧美日韩精品| 大型av网站在线播放| 亚洲国产欧美一区二区综合| 国产成人精品无人区| 18禁美女被吸乳视频| 国产高清有码在线观看视频 | 丁香六月欧美| 国产精品一区二区精品视频观看| 999精品在线视频| 日韩精品免费视频一区二区三区| 亚洲av日韩精品久久久久久密| 欧美在线一区亚洲| 麻豆av在线久日| 免费看十八禁软件| 国产成人一区二区三区免费视频网站| 亚洲欧美日韩高清在线视频| 国产av一区在线观看免费| 国产1区2区3区精品| 亚洲欧美日韩另类电影网站| 男女午夜视频在线观看| 91麻豆精品激情在线观看国产| 亚洲av日韩精品久久久久久密| 亚洲激情在线av| 丁香欧美五月| 琪琪午夜伦伦电影理论片6080| 午夜福利视频1000在线观看 | 亚洲国产高清在线一区二区三 | 国产亚洲精品久久久久久毛片| 老熟妇仑乱视频hdxx| 精品国产美女av久久久久小说| 国产私拍福利视频在线观看| 色婷婷久久久亚洲欧美| 欧美成人午夜精品| xxx96com| 久久人妻av系列| 黄色a级毛片大全视频| 曰老女人黄片| 搡老熟女国产l中国老女人| 亚洲色图综合在线观看| 国产精品国产高清国产av| 黄色成人免费大全| 久久久久亚洲av毛片大全| 亚洲精品一区av在线观看| 午夜福利一区二区在线看| 久久久国产精品麻豆| 国产av精品麻豆| 欧美日本中文国产一区发布| 老鸭窝网址在线观看| 欧美色视频一区免费| 日韩一卡2卡3卡4卡2021年| 高清毛片免费观看视频网站| 首页视频小说图片口味搜索| 久久伊人香网站| 高清黄色对白视频在线免费看| 变态另类丝袜制服| av天堂在线播放| 1024香蕉在线观看| 十八禁网站免费在线| 国产av一区二区精品久久| 亚洲狠狠婷婷综合久久图片| 国产精华一区二区三区| 午夜老司机福利片| 免费在线观看亚洲国产| 精品国内亚洲2022精品成人| 成人永久免费在线观看视频| 激情在线观看视频在线高清| 亚洲 欧美 日韩 在线 免费| av在线播放免费不卡| 久久精品人人爽人人爽视色| 免费观看人在逋| 亚洲精华国产精华精| 国产成人一区二区三区免费视频网站| 国产成人一区二区三区免费视频网站| 日韩欧美在线二视频| 99国产精品99久久久久| 久久国产亚洲av麻豆专区| 国产亚洲精品一区二区www| 国产午夜福利久久久久久| 国产精品久久久av美女十八| 一级a爱片免费观看的视频| 老汉色av国产亚洲站长工具| 中文字幕另类日韩欧美亚洲嫩草| 久久性视频一级片| 十分钟在线观看高清视频www| 国产日韩一区二区三区精品不卡| netflix在线观看网站| 久久香蕉精品热| 国产av一区二区精品久久| 亚洲无线在线观看| 久久久久久久精品吃奶| 女警被强在线播放| 久久久久国产一级毛片高清牌| 脱女人内裤的视频| 午夜福利影视在线免费观看| 日韩国内少妇激情av| 一进一出抽搐gif免费好疼| 国产亚洲精品久久久久久毛片| 99re在线观看精品视频| 国产精品一区二区三区四区久久 | 成人免费观看视频高清| 午夜福利,免费看| 国产精品久久久久久人妻精品电影| 中文字幕另类日韩欧美亚洲嫩草| 日韩有码中文字幕| 欧美另类亚洲清纯唯美| 91精品国产国语对白视频| 久热爱精品视频在线9| av天堂在线播放| 中文字幕人妻丝袜一区二区| 午夜免费激情av| 69精品国产乱码久久久| 欧美久久黑人一区二区| 久热爱精品视频在线9| 欧美日本亚洲视频在线播放| 久久久久久大精品| 在线观看免费日韩欧美大片| 精品久久久久久成人av| 大码成人一级视频| 麻豆一二三区av精品| 国产精品免费视频内射| 日韩精品青青久久久久久| 久久狼人影院| 香蕉久久夜色| 9热在线视频观看99| 99国产极品粉嫩在线观看| 亚洲视频免费观看视频| 亚洲精品久久国产高清桃花| 美女扒开内裤让男人捅视频| 亚洲午夜理论影院| 999久久久国产精品视频| 国产精品久久久久久精品电影 | 久9热在线精品视频| www国产在线视频色| 看免费av毛片| 国产99白浆流出| 日韩 欧美 亚洲 中文字幕| 在线天堂中文资源库| 电影成人av| 人人妻人人澡人人看| 桃色一区二区三区在线观看| 成人精品一区二区免费| 国产精品电影一区二区三区| 国产亚洲精品久久久久久毛片| 欧美日韩黄片免| 国产又爽黄色视频| 国产一区二区在线av高清观看| 两个人视频免费观看高清| 亚洲人成伊人成综合网2020| 久久九九热精品免费| 97超级碰碰碰精品色视频在线观看| 天堂影院成人在线观看| 99国产精品一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 叶爱在线成人免费视频播放| 亚洲av第一区精品v没综合| 99riav亚洲国产免费| 成年女人毛片免费观看观看9| 久久久国产成人精品二区| 亚洲中文日韩欧美视频| 人人妻人人澡欧美一区二区 | 天天一区二区日本电影三级 | 亚洲人成电影观看| 制服人妻中文乱码| 黄色成人免费大全| 午夜免费成人在线视频| 国产亚洲精品第一综合不卡| 美女高潮喷水抽搐中文字幕| 久久精品aⅴ一区二区三区四区| 长腿黑丝高跟| 一个人免费在线观看的高清视频| 欧美成人一区二区免费高清观看 | 日韩欧美在线二视频| 黄片播放在线免费| 手机成人av网站| 欧美av亚洲av综合av国产av| www.999成人在线观看| 欧美色视频一区免费| 看免费av毛片| 亚洲精品国产区一区二| 亚洲欧美日韩无卡精品| 91av网站免费观看| 首页视频小说图片口味搜索| 在线十欧美十亚洲十日本专区| 国产av在哪里看| 精品国产乱码久久久久久男人| 无人区码免费观看不卡| 国产熟女xx| 国产亚洲精品第一综合不卡| 叶爱在线成人免费视频播放| a在线观看视频网站| 欧美最黄视频在线播放免费| 黄色 视频免费看| www.999成人在线观看| 亚洲熟妇中文字幕五十中出| 国内毛片毛片毛片毛片毛片| 一边摸一边抽搐一进一小说| 亚洲欧洲精品一区二区精品久久久| 窝窝影院91人妻| 久久久久久免费高清国产稀缺| 亚洲片人在线观看| 十八禁人妻一区二区| 国产片内射在线| 国产99久久九九免费精品| 99久久久亚洲精品蜜臀av| 黑人巨大精品欧美一区二区蜜桃| 午夜福利18| 叶爱在线成人免费视频播放| 日韩大码丰满熟妇| 午夜久久久在线观看| 黄色a级毛片大全视频| 日日摸夜夜添夜夜添小说| 国产精品电影一区二区三区| 久久久久国产精品人妻aⅴ院| 他把我摸到了高潮在线观看| 18禁黄网站禁片午夜丰满| 丁香六月欧美| 国产不卡一卡二| 亚洲狠狠婷婷综合久久图片| 禁无遮挡网站| 欧美最黄视频在线播放免费| 18禁观看日本| 99riav亚洲国产免费| 日韩国内少妇激情av| 女性生殖器流出的白浆| 制服人妻中文乱码| 男人舔女人下体高潮全视频| aaaaa片日本免费| 国产99白浆流出| 亚洲国产欧美一区二区综合| 香蕉久久夜色| 女生性感内裤真人,穿戴方法视频| 国产人伦9x9x在线观看| 亚洲国产毛片av蜜桃av| 国产国语露脸激情在线看| 黑人巨大精品欧美一区二区mp4| 男女之事视频高清在线观看| 一区二区三区国产精品乱码| 岛国视频午夜一区免费看| 校园春色视频在线观看| 涩涩av久久男人的天堂| 国产极品粉嫩免费观看在线| 欧美日韩黄片免| 久久精品91无色码中文字幕| 一本大道久久a久久精品| 国产亚洲欧美在线一区二区| 九色国产91popny在线| 亚洲视频免费观看视频| 无人区码免费观看不卡| 国产成人欧美| 丝袜人妻中文字幕| 精品福利观看| 精品免费久久久久久久清纯| 在线观看舔阴道视频| 深夜精品福利| 久久久久精品国产欧美久久久| 美女大奶头视频| 美女 人体艺术 gogo| 老汉色∧v一级毛片| 欧美成人一区二区免费高清观看 | 给我免费播放毛片高清在线观看| 国语自产精品视频在线第100页| 久久人妻福利社区极品人妻图片| 国产成人免费无遮挡视频| 宅男免费午夜| 国产亚洲欧美精品永久| 无遮挡黄片免费观看| 国产麻豆69| 国产欧美日韩一区二区三区在线| tocl精华| 一区二区三区激情视频| 日本 欧美在线| 国产精品乱码一区二三区的特点 | 女同久久另类99精品国产91| 大型av网站在线播放| 一本大道久久a久久精品| 国产一区二区三区在线臀色熟女| 91精品国产国语对白视频| 久久精品影院6| 人人澡人人妻人| 国产91精品成人一区二区三区| 日韩欧美在线二视频| 中文字幕人成人乱码亚洲影| 欧美丝袜亚洲另类 | aaaaa片日本免费| 人妻丰满熟妇av一区二区三区| 丝袜人妻中文字幕| 亚洲av电影不卡..在线观看| 欧美绝顶高潮抽搐喷水| 久热这里只有精品99| 久久九九热精品免费| 制服人妻中文乱码| 18禁观看日本| 国产精品一区二区三区四区久久 | 国产午夜精品久久久久久| 国产av又大| 欧美日本视频| 亚洲国产精品999在线| 1024视频免费在线观看| 国产成人av激情在线播放| 涩涩av久久男人的天堂| 久久久久久久精品吃奶| 脱女人内裤的视频| 国产精品影院久久| av福利片在线| 天天躁夜夜躁狠狠躁躁| 黄色片一级片一级黄色片| 精品电影一区二区在线| 亚洲人成电影免费在线| 午夜视频精品福利| 欧美日韩福利视频一区二区| 麻豆久久精品国产亚洲av| tocl精华| 女人被躁到高潮嗷嗷叫费观| 亚洲人成电影免费在线| 大型黄色视频在线免费观看| 精品国产一区二区久久| av中文乱码字幕在线| 国产成人一区二区三区免费视频网站| 日韩欧美国产一区二区入口| 日本撒尿小便嘘嘘汇集6| 久久久久亚洲av毛片大全| 久久久精品国产亚洲av高清涩受| 乱人伦中国视频| 麻豆国产av国片精品| 精品不卡国产一区二区三区| 夜夜爽天天搞| 免费无遮挡裸体视频| 精品国产乱码久久久久久男人| 亚洲av片天天在线观看| 亚洲中文av在线| 中文字幕久久专区| 亚洲成av片中文字幕在线观看| 久久人人爽av亚洲精品天堂| 久久精品国产清高在天天线| www.熟女人妻精品国产| 久久精品国产亚洲av香蕉五月| 国产精品亚洲av一区麻豆| 久久国产精品影院| 欧美日本亚洲视频在线播放| 麻豆成人av在线观看| 男女下面进入的视频免费午夜 | 亚洲最大成人中文| 老汉色av国产亚洲站长工具| 香蕉国产在线看| 搞女人的毛片| 国产精品免费一区二区三区在线| 无人区码免费观看不卡| 一边摸一边做爽爽视频免费| 黄色视频不卡| 女人被狂操c到高潮| 欧美国产精品va在线观看不卡| 波多野结衣av一区二区av| 免费搜索国产男女视频| 正在播放国产对白刺激| 欧美亚洲日本最大视频资源| 深夜精品福利| 精品国产一区二区久久| 免费一级毛片在线播放高清视频 | 99国产精品一区二区蜜桃av| 亚洲天堂国产精品一区在线| 黑人巨大精品欧美一区二区蜜桃| а√天堂www在线а√下载| 色综合欧美亚洲国产小说| 成人av一区二区三区在线看| videosex国产| 色综合欧美亚洲国产小说| 亚洲五月色婷婷综合| 91成年电影在线观看| 91麻豆av在线| 久久久久久人人人人人| av超薄肉色丝袜交足视频| 看片在线看免费视频| 一区二区日韩欧美中文字幕| 亚洲人成伊人成综合网2020| 九色亚洲精品在线播放| 露出奶头的视频| 中文字幕最新亚洲高清| 亚洲国产毛片av蜜桃av| 亚洲一卡2卡3卡4卡5卡精品中文| 成年版毛片免费区| 免费高清在线观看日韩| 夜夜躁狠狠躁天天躁| 91字幕亚洲| 色播亚洲综合网| 久久国产亚洲av麻豆专区| 久热这里只有精品99| 女人被狂操c到高潮| 久久久久久免费高清国产稀缺| 日本三级黄在线观看| 亚洲av美国av| 极品人妻少妇av视频| 国产成人欧美| 午夜老司机福利片| 啦啦啦免费观看视频1| 亚洲精品国产一区二区精华液| 他把我摸到了高潮在线观看| 窝窝影院91人妻| 国产精品av久久久久免费| 色婷婷久久久亚洲欧美| 国产精华一区二区三区| 国产精品影院久久| 熟女少妇亚洲综合色aaa.| 久久精品国产清高在天天线| 国产1区2区3区精品| 免费看美女性在线毛片视频| 一二三四在线观看免费中文在| 大香蕉久久成人网| 亚洲伊人色综图| 国产麻豆成人av免费视频| 一边摸一边抽搐一进一出视频| 成人永久免费在线观看视频| 天堂动漫精品| 欧美成人免费av一区二区三区| 涩涩av久久男人的天堂| 多毛熟女@视频| 亚洲精品美女久久久久99蜜臀| 9191精品国产免费久久| 一级片免费观看大全| 色哟哟哟哟哟哟| 极品人妻少妇av视频| 日韩精品免费视频一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 天天添夜夜摸| 少妇 在线观看| 99在线视频只有这里精品首页| 久久欧美精品欧美久久欧美| √禁漫天堂资源中文www| 人人妻人人爽人人添夜夜欢视频| 精品国产国语对白av| av网站免费在线观看视频| 亚洲精品中文字幕在线视频| 亚洲免费av在线视频| 久久精品国产亚洲av香蕉五月| 久久青草综合色| 制服丝袜大香蕉在线| 麻豆成人av在线观看| 亚洲人成电影免费在线| 欧美av亚洲av综合av国产av| 可以免费在线观看a视频的电影网站| 精品国产美女av久久久久小说| 中文字幕av电影在线播放| 日韩欧美免费精品| 亚洲三区欧美一区| 97超级碰碰碰精品色视频在线观看| 日韩欧美一区视频在线观看| 免费一级毛片在线播放高清视频 | 看片在线看免费视频| 最近最新中文字幕大全免费视频| 亚洲一区二区三区色噜噜| 日本撒尿小便嘘嘘汇集6| 日韩欧美一区视频在线观看| 日日摸夜夜添夜夜添小说| 国产高清有码在线观看视频 | 啦啦啦观看免费观看视频高清 | 亚洲 欧美 日韩 在线 免费| e午夜精品久久久久久久| 国产高清激情床上av| 啦啦啦观看免费观看视频高清 | 精品国产超薄肉色丝袜足j| 日本撒尿小便嘘嘘汇集6| 在线永久观看黄色视频| 色综合婷婷激情| 亚洲精华国产精华精| 天天躁夜夜躁狠狠躁躁| 欧洲精品卡2卡3卡4卡5卡区| 色综合站精品国产| 手机成人av网站| 欧美日韩一级在线毛片| 欧美在线黄色| 日日夜夜操网爽| 狠狠狠狠99中文字幕| 老汉色∧v一级毛片| 欧美中文日本在线观看视频| 99热只有精品国产| 搞女人的毛片| 好男人在线观看高清免费视频 | 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩黄片免| 国产单亲对白刺激| 99国产精品免费福利视频| av电影中文网址| 久久性视频一级片| 美女免费视频网站| 99精品在免费线老司机午夜| 国产精品久久久久久人妻精品电影| 老熟妇仑乱视频hdxx| 精品久久久久久成人av| videosex国产| 国产亚洲av高清不卡| e午夜精品久久久久久久| 久久中文看片网| 国产伦一二天堂av在线观看| 久久午夜亚洲精品久久| 99re在线观看精品视频| 黄色毛片三级朝国网站| 久久天躁狠狠躁夜夜2o2o| 日韩精品青青久久久久久| 黄色丝袜av网址大全| 大陆偷拍与自拍| 日本黄色视频三级网站网址| 女人被狂操c到高潮| 十八禁网站免费在线| 又黄又爽又免费观看的视频| 国产极品粉嫩免费观看在线| 国产免费av片在线观看野外av| netflix在线观看网站| 桃红色精品国产亚洲av| 婷婷精品国产亚洲av在线| 久久午夜综合久久蜜桃| 久久人妻熟女aⅴ| 少妇粗大呻吟视频| 国产精品 欧美亚洲| 成在线人永久免费视频| 亚洲精品在线美女| 色av中文字幕| 90打野战视频偷拍视频| 中文亚洲av片在线观看爽| 国产成人欧美在线观看| 在线天堂中文资源库| 国产精品1区2区在线观看.| 日本撒尿小便嘘嘘汇集6| 人人妻人人爽人人添夜夜欢视频| 欧美日韩瑟瑟在线播放| 无人区码免费观看不卡| 国产精品免费一区二区三区在线| 亚洲自偷自拍图片 自拍| 在线观看日韩欧美| 在线永久观看黄色视频| 国产成+人综合+亚洲专区| 欧美乱妇无乱码| 在线观看一区二区三区| 丝袜美足系列| 两性夫妻黄色片| avwww免费| 亚洲av片天天在线观看| 欧美成狂野欧美在线观看| 美女午夜性视频免费| 国产成人精品久久二区二区免费| 国产精华一区二区三区| 国产不卡一卡二| 9191精品国产免费久久| 亚洲色图 男人天堂 中文字幕| 亚洲片人在线观看| 91九色精品人成在线观看| 久久性视频一级片| 日韩精品免费视频一区二区三区| netflix在线观看网站| 精品欧美国产一区二区三| 国产高清激情床上av| 一本综合久久免费| 亚洲人成电影免费在线| 亚洲激情在线av| 少妇熟女aⅴ在线视频| 人人妻人人澡人人看| 午夜免费观看网址| 757午夜福利合集在线观看| 无人区码免费观看不卡| 亚洲av美国av| 97人妻天天添夜夜摸| 首页视频小说图片口味搜索| 美女高潮到喷水免费观看| 夜夜看夜夜爽夜夜摸| www.精华液| 制服丝袜大香蕉在线|