• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ab initio simulations of NO adsorption on hematite(0001)surface: PBE versus PBE+U*

    2022-03-19 01:37:06WUCuixiaSUNTaoFABRISStefanoDULin

    WU Cuixia,SUN Tao?,F(xiàn)ABRIS Stefano,DU Lin

    (1 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences,Beijing 100049, China;2 CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste 34136, Italy;3 Environment Research Institute, Shandong University, Qingdao 266237, Shandong, China)(Received 24 July 2020;Revised 10 August 2020)

    Abstract NOx(x=1,2)are major air-pollutants detrimental to human health and much effort has been devoted to find efficient photocatalysts capable of removing NOx from air(de-NOx).Recent experiments indicate that hematite(α-Fe2O3)is a promising de-NOx photocatalyst.However some key features of the NO adsorption on the hematite surface remain unclear, hindering further comprehension of the photocatalytic process.Here we study the adsorption of NO on the hematite(0001)surface using the PBE+U method with a dispersion correction(vdw)in the framework of density functional theory(DFT).We find the addition of a Hubbard U term in the DFT Hamiltonian strongly affects the adsorption properties, with the adsorption energy(-0.64 eV)decreased by 50% with respect to those of PBE(-1.31 eV).This decrease is attributed to two factors:(i)the U term shifts the energy of Fe 3d orbitals away from the valence band maximum, making them chemically less active;(ii)the NO molecule has an unpaired π* electron and is more sensitive to the electronic structure of the substrate.In contrast to the inclusion of U, the dispersion correction causes little change to the adsorption properties except increases the adsorption energy by about-0.18 eV.We use the Langmuir formula to calculate the thermal equilibrium coverage of NO on the hematite(0001)surface and find predictions made with the PBE+U vdw are more consistent with experiments.These results highlight the importance of strong electronic correlations in describing the hematite surface reactions, and may serve as a starting point to unravel the complete photocatalytic mechanism.

    Keywords hematite; NO; photocatalysis; Langmuir; air pollution

    NOx(x=1, 2)are major air pollutants in urban areas originated from fossil fuel combustions in vehicles and power stations[1-2].They are detrimental to human health and much effort has been devoted to remove them from air(de-NOx).Among the various de-NOxtechnologies under development, photocatalytic oxidation(PCO)is one of the most promising routines[3-4]: under sunlight, a photocatalytic substrate captures NOxin the air and transforms them into non-volatile nitrates.These nitrates can then be rinsed away and the substrate regains its photocatalytic ability.So far the most common photocatalytic de-NOxmaterial is TiO2, with TiO2-based air purification devices being deployed in several European cities[4].However due to its relatively large band-gap, TiO2can only absorb ultra-violet light, or about 4%-5% of the total sunlight energy[5-6], therefore there is a strong initiative to find more efficient catalysts.Hematite(α-Fe2O3)is considered a good alternative[7-9]to TiO2because of its narrower band-gap, high stability, non-toxicity, and low cost.Indeed, hematite-based nanostructures has recently been found[9]to exhibit outstanding de-NOxabilities, with both the NO conversion efficiency and selectivity comparable or superior than commercial TiO2catalysts.To further improve the catalytic efficiency of hematite, detailed knowledge on its PCO mechanism is essential.The adsorption of NO molecules on the hematite surface is a key step in the PCO process, however some of its main features remain unclear, calling for further investigations.

    Computer simulations based on density functional theory(DFT)is a powerful method and in principle well-suited to determine the atomistic adsorption properties[10-15], yet for the NO-hematite system existing reports are conflicting and inconclusive.Song et al.[16]conducted DFT simulations using the Perdew-Burke-Ernzerhof(PBE)exchange-correlation functional[17].They found that stable chemisorption took place only at the surface Fe sites(denoted as Fe*)with an adsorption energy of-1.31 eV.In contrast, Li et al.[18]included dispersion corrections(PBE vdw)and determined the adsorption energy as-4.08 eV.Such a large difference is surprising and its origin remains unclear.Moreover, both adsorption energies are quite high, indicating that NO can easily adsorb on the α-Fe2O3surface.This seems in conflict with experimental observations[7,9]where no infrared signals from adsorbed NO molecules were detected when the illumination was off and the NO concentration was low(1×10-7).Note α-Fe2O3is a typical transition metal oxide where the d-electrons of iron atoms exhibit strong correlations.For such systems the PBE or PBE vdw methods may not be suitable and more advanced techniques such as the PBE+U[19]or hybrid functionals[20]are needed.

    Here we use the PBE+U method with dispersion corrections(vdw)to study NO adsorption on the α-Fe2O3(0001)surface.The effects of Hubbard U and vdw were carefully delineated.The microscopic bonding mechanism was determined by analyzing the partial density of states(pdos)and charge density differences before and after NO adsorption.Finally, we applied the Langmuir formula from statistical mechanics to predict the equilibrium coverage as a function of NO concentration in the air.

    1 Computational details

    Calculations were performed using the plane-wave pseudopotential method as implemented in the open-source QUANTUM-ESPRESSO package[21].To avoid uncertainties associated with semi-core electrons, we use an ultrasoft pseudopotential[22]with 16 valence electrons(3s23p63d64s2)to describe Fe, N and O were described using ultrasoft pseudopotentials with 2s22p3and 2s22p4valence electrons, respectively.Previous studies have long established that physical properties of hematite are best described by the PBE+U method withU=4.2 eV[23-27], thus we adopt the sameUvalue here.NO is a polar molecule and dipole-dipole interactions may substantially affect its adsorption properties.However such dipole interactions were absent in the standard PBE functional, thus a semi-empirical dispersion correction(vdw)[28]was added to the simulation.The energy cutoff of the plane-wave basis was set to 40 Ry, and the Brillouin zone sampling was conducted at 4×4×2 for the hematite bulk, and 4×4×1 for the slab.With these settings the adsorption energies were converged within 0.01 eV.To ensure the reliability of the calculations, a tight energy convergence criterion(10-8Ry)was set for the electron self-consistent field(scf)calculations.Ionic relaxations were performed until every force component on the atoms was less than 0.2 mRy/bohr(50 meV/nm).

    α-Fe2O3maintains a R-3c, corundum structure and is anti-ferromagnetic along the c-axis.Figure 1 shows the slab supercell we are using, where yellow and white arrows distinguish the spin-up and spin-down iron atoms.The surface corresponds to the Fe-O3-Fe termination, which has been identified as thermodynamically most stable[19,24]at ambient conditions.The slabs were separated by a 24 ?(1 ?=0.1 nm)vacuum layer so as to minimize their interactions.To delineate the effect of +U and vdw, structural relaxations were performed with four different settings: PBE, PBE vdw, PBE+U, and PBE+U vdw.During the structural relaxation, the atoms in the middle three layers were fixed at their bulk positions, whereas all other atoms were allowed to move.

    Once structural relaxations were completed, we evaluated the adsorption energyEadas follows

    Ead=Em+s-(Em+Es),

    (1)

    whereEm+s,Em,andEsare the energies of the adsorbed system, isolated molecule, and the slab, respectively.A negativeEadindicates the adsorption is exothermic: the greater the absolute value ofEad,the more stable the adsorbed configuration.

    To understand the effect of coverage on the adsorption, we first performed the simulation in the 1×1 supercell(100% monolayer coverage), then repeated the simulation in the 2×2 supercell(25% monolayer coverage).The resulting adsorption geometries and energies are nearly identical.In fact, as the distance between adjacent surface Fe*atoms are more than 5 ?, the interactions among adsorbates are small even at full coverage.

    2 Results and discussion

    2.1 Adsorption geometries and energies

    Prior studies have identified that the most stable NO adsorption configuration as the N atom pointing downwards near vertically to a surface Fe*atom[16,18], with the N-Fe*bond length about 1.7 ?.We took this configuration as the initial coordinates and performed structure relaxations under four different settings: PBE, PBE vdw, PBE+U and PBE+U vdw.The resulting adsorption geometries are shown in Fig.2.Comparisons with prior studies are listed in Table 1.Our PBE results agree very well with those of Song et al.[16], whereas our PBE vdw results differ substantially with Li et al.[18]The adsorption energies of PBE and PBE vdw from our calculations differ by~0.2 eV, in accordance with the typical range of van der Waals energies[28].By contrast, the contribution the van der Waals interaction would be 2.77 eV if the adsorption energy of PBE vdw is indeed-4.08 eV[18].Such a large van der Waals contribution is unreasonable as it exceeds the bond strengths of many covalent bonds.The PBE vdw results obtained from this study is consistent with those of PBE and should be more reliable.

    Fig.2 Adsorption geometries of NO on hematite(0001) surface predicted with four different settings

    More importantly, we find that the addition of a Hubbard U term in the DFT Hamiltonic affects strongly the adsorption properties of NO on hematite.Once the U is turned on, the N-Fe*bond length gets elongated by as much as 0.3 ?.The inclination of the NO molecule also changes substantially, from nearly vertical to the surface(∠O-N-Fe*=170°)to an O-N-Fe*angle of about 125°.The adsorption energy decreases by~50%, from-1.31 eV to-0.64 eV.This trend is unaffected by the inclusion of dispersion correction(vdw), whose overall effect is to increase the adsorption energy by~0.18 eV while causes little changes in the adsorption geometries.It has been known that for transition metal oxides[29]the DFT+U can predict adsorption properties different from those of standard DFT.However to our knowledge this is yet to be reported for NO-hematite.In fact, in our previous study on the SO2adsorption on the hematite surface[27], the adsorption energy was found to be nearly independent ofU, thus it is surprising to see NO behaves so differently.

    2.2 Electronic structures

    Fig.3 Partial density of states of the NO molecule and the surface Fe atom(Fe*)before(upper panel) and after(lower panel)adsorption using(a)PBE and(b)PBE+U

    Further insights can be obtained by examining the charge density difference with and without Hubbard-like U correction, as shown in Fig.4.Upon adsorption, significant charge accumulations take place in the region between the N and the Fe*atoms, indicating that the adsorption is mainly driven by forming new covalent bonds rather than charge transfer reactions such as Fe3++ NO = NO++ Fe2+.Indeed, the integrated charge difference in the region occupied by the NO molecule is less than 0.01e.By contrast, the integrated charge difference in the region between the N and the Fe*atoms is 0.18 e(PBE)and 0.08 e(PBE+U), respectively.The less covalent charge predicted in the PBE+U calculation is consistent with its smaller adsorption energy.

    The iso-surface value is ±0.02 e/?3.

    We now consider the effect of dispersion correction(vdw)on the electronic structures.This semi-empirical correction is not involved in the scf cycles to determine the electronic ground state, yet it can exert an indirect influence on the electronic structure by changing the final relaxed coordinates.As the changes in the relaxed coordinates are small(see Table 1), we find the associated changes in the electronic structure are minor.Still, as dipole-dipole interactions are present in real systems, we use the adsorption properties evaluated with vdw to compare with experiments.

    2.3 Equilibrium coverage

    We now apply the information obtained in prior sections to calculate the equilibrium coverage of NO on hematite.Assume a mono-layer adsorption where the adsorption configuration at each adsorption site is identical and the adsorbates do not interact, the thermal equilibrium coverage of the adsorbed molecule can be expressed in terms of the Langmuir formula[32]as

    (2)

    (3)

    where ΔGm(T,P0)is the Gibbs energy change of the gas molecule from 0 K to T at the standard atmospheric pressure.For NO it equals-0.56 eV at 298.15 K[33].The resulting Θ(P)are shown in Fig.5.As theEadfrom PBE vdw is high(-1.51 eV), substantial amount of NO will be adsorbed on the surface even when the NO partial pressure is as low as 10-12Pa.In fact, a full coverage is achieved whenP>10-9Pa.By contrast, theEadfrom PBE+U vdw is low(-0.82 eV)and a full coverage can be achieved only whenP>100 Pa.In the experiments[7,9], no infrared signal from the adsorbed NO molecules were observed when the light was off and the NO concentration is 1×10-7(P=0.01 Pa), indicating that the amount of adsorbates is scarce under such conditions.By contrast, distinct infrared signals from the adsorbed NO molecules were detected when the NO partial pressures were greater than 5 Torr(667 Pa)[34].These observations are consistent with the Θ(P)predicted by PBE+U vdw while in conflict with that of PBE vdw.We therefore conclude that including the Hubbard U provides a more accurate description of the system.

    Fig.5 Equilibrium Coverage of NO molecule on the Hematite(0001)surface at 298.15 K

    The above analysis considers only one type of gas molecule(NO)adsorbing on the hematite surface.This is appropriate when the illumination is off.When the illumination is on, electron-hole pairs will be generated at the hematite surface.These electron-hole pairs will interact with the O2, H2O molecules in the air and convert NO into thermodynamically more stable compounds such as NO3.The formation of NO3is crucial in trapping significant amount of NO molecules on the hematite surface, otherwise for typical NO concentrations in the atmosphere, the number of adsorbed NO molecules would be scarce.The exact mechanism of this de-NOxprocess, as well as how to use this mechanism to further improve the catalytic efficiency of hematite, will be a focus for future research.

    3 Conclusions

    We have studied the adsorption of NO molecules on the hematite(0001)surface using DFT.We found that the inclusion of a Hubbard term in the DFT Hamiltonian strongly affects the NO adsorption geometries and energies.The smaller adsorption energies predicted with +U yield equilibrium coverages that are more consistent with experimental observations.As this U-dependence is related to the unpaired electron of the NO molecule, we anticipate similar behavior in other molecules such as NO2, which also possess lone electrons.In contrast, the effect of dispersion correction is not as dramatic as previous studies may indicate, as the adsorption geometries and electronic structures with or without the vdw correction are nearly identical.This work clarifies the mechanism of the NO adsorption, and paves the way for further work to fully understand the de-NOxprocess on the hematite surface.

    av.在线天堂| 啦啦啦韩国在线观看视频| 亚洲国产精品成人久久小说| av在线天堂中文字幕| 久久国产乱子免费精品| 欧美最新免费一区二区三区| 天天一区二区日本电影三级| 久久精品91蜜桃| 午夜福利高清视频| 天堂av国产一区二区熟女人妻| 美女cb高潮喷水在线观看| 亚洲国产欧洲综合997久久,| 国产精品一区二区性色av| 日韩一区二区视频免费看| 国产精品伦人一区二区| 大香蕉97超碰在线| 一级毛片久久久久久久久女| 亚洲伊人久久精品综合 | 亚洲无线观看免费| 99久久人妻综合| 亚洲四区av| 欧美性感艳星| 视频中文字幕在线观看| 久久国产乱子免费精品| 国产午夜福利久久久久久| 亚洲性久久影院| 国产色爽女视频免费观看| 国产69精品久久久久777片| 男人的好看免费观看在线视频| 成人午夜高清在线视频| 日本av手机在线免费观看| 精品一区二区免费观看| 国产伦精品一区二区三区视频9| 亚洲欧美日韩无卡精品| 国产三级在线视频| 国产高潮美女av| 亚洲成人av在线免费| 亚洲欧美日韩东京热| 国产午夜精品论理片| 可以在线观看毛片的网站| 亚洲精品乱码久久久v下载方式| 精品一区二区三区视频在线| 色播亚洲综合网| 我要看日韩黄色一级片| 国产一区亚洲一区在线观看| 日韩制服骚丝袜av| 少妇被粗大猛烈的视频| 国产精品福利在线免费观看| 又粗又爽又猛毛片免费看| 欧美精品一区二区大全| av在线蜜桃| 日韩人妻高清精品专区| 久久久久久九九精品二区国产| 国产精品1区2区在线观看.| 黄色一级大片看看| 国产精品野战在线观看| 嘟嘟电影网在线观看| 欧美另类亚洲清纯唯美| 国内精品宾馆在线| 国产在视频线精品| 性色avwww在线观看| 亚洲婷婷狠狠爱综合网| 久久6这里有精品| 美女内射精品一级片tv| 欧美一区二区国产精品久久精品| 久久久成人免费电影| 久久久久久久久大av| 婷婷六月久久综合丁香| 99久久精品热视频| 国产不卡一卡二| 亚洲综合色惰| 一级毛片电影观看 | 国产亚洲av嫩草精品影院| 国产成人aa在线观看| 精品一区二区三区视频在线| 亚洲av免费高清在线观看| 免费观看的影片在线观看| 一级毛片我不卡| videossex国产| av又黄又爽大尺度在线免费看 | 亚洲国产精品专区欧美| 亚洲欧美日韩无卡精品| 22中文网久久字幕| 免费av不卡在线播放| 国产成人一区二区在线| 99热精品在线国产| kizo精华| 97超碰精品成人国产| 国产精品电影一区二区三区| 国产色婷婷99| 精品久久久噜噜| 精品国内亚洲2022精品成人| 又爽又黄a免费视频| 久久久久久久国产电影| 高清毛片免费看| 午夜福利成人在线免费观看| 国产一级毛片在线| 男人狂女人下面高潮的视频| 美女高潮的动态| 成年av动漫网址| 欧美成人精品欧美一级黄| 最近的中文字幕免费完整| 免费看av在线观看网站| 嘟嘟电影网在线观看| 国产精品国产三级国产专区5o | 日本黄色片子视频| 欧美3d第一页| 欧美成人精品欧美一级黄| 中文在线观看免费www的网站| 国产在线一区二区三区精 | 午夜视频国产福利| 日韩视频在线欧美| 亚洲av成人精品一区久久| 国产探花在线观看一区二区| 国产亚洲av片在线观看秒播厂 | 亚洲av电影在线观看一区二区三区 | 高清午夜精品一区二区三区| 国产免费一级a男人的天堂| 寂寞人妻少妇视频99o| 看非洲黑人一级黄片| 美女国产视频在线观看| 国产精品国产三级国产av玫瑰| 九九热线精品视视频播放| 一级毛片久久久久久久久女| 性插视频无遮挡在线免费观看| 性色avwww在线观看| 成人性生交大片免费视频hd| 欧美xxxx性猛交bbbb| 亚洲av电影不卡..在线观看| 韩国av在线不卡| 久久久久久久久久久丰满| 精品国内亚洲2022精品成人| 亚洲性久久影院| 黄色配什么色好看| 网址你懂的国产日韩在线| 亚洲国产高清在线一区二区三| 寂寞人妻少妇视频99o| 亚洲成人精品中文字幕电影| 爱豆传媒免费全集在线观看| 亚洲18禁久久av| 99久久精品热视频| 国产国拍精品亚洲av在线观看| 亚洲国产精品成人综合色| 日韩 亚洲 欧美在线| av黄色大香蕉| 大香蕉久久网| 天天躁夜夜躁狠狠久久av| 午夜福利网站1000一区二区三区| 日本-黄色视频高清免费观看| 九九在线视频观看精品| 成人亚洲欧美一区二区av| 熟女电影av网| 国产成人精品久久久久久| 国产一级毛片七仙女欲春2| 国内精品美女久久久久久| 永久网站在线| 亚洲欧美日韩无卡精品| 日本wwww免费看| 国产黄a三级三级三级人| 免费观看人在逋| 毛片一级片免费看久久久久| 18禁在线无遮挡免费观看视频| 菩萨蛮人人尽说江南好唐韦庄 | 国语对白做爰xxxⅹ性视频网站| 国产在视频线精品| 国产麻豆成人av免费视频| 国产单亲对白刺激| 成人美女网站在线观看视频| 熟妇人妻久久中文字幕3abv| 亚洲色图av天堂| 99视频精品全部免费 在线| 寂寞人妻少妇视频99o| 欧美精品一区二区大全| 国产精品综合久久久久久久免费| 永久免费av网站大全| 久久久亚洲精品成人影院| 亚洲精品亚洲一区二区| 村上凉子中文字幕在线| 91av网一区二区| 精品一区二区免费观看| 日本猛色少妇xxxxx猛交久久| 色哟哟·www| or卡值多少钱| 69人妻影院| 美女内射精品一级片tv| 最近手机中文字幕大全| 国产精品久久久久久精品电影小说 | 国内精品美女久久久久久| 国产午夜福利久久久久久| 永久网站在线| 男的添女的下面高潮视频| 日本五十路高清| 黄片无遮挡物在线观看| 色噜噜av男人的天堂激情| 亚洲一级一片aⅴ在线观看| 国产av不卡久久| 免费大片18禁| av卡一久久| 精品欧美国产一区二区三| 国产黄色视频一区二区在线观看 | 国产免费一级a男人的天堂| 日韩人妻高清精品专区| 黄片wwwwww| 亚洲av男天堂| 精品久久国产蜜桃| 久久99热这里只频精品6学生 | 国产精品日韩av在线免费观看| 美女xxoo啪啪120秒动态图| 最近中文字幕高清免费大全6| 大香蕉97超碰在线| 男人狂女人下面高潮的视频| 国产一区有黄有色的免费视频 | 秋霞在线观看毛片| 又爽又黄a免费视频| 高清视频免费观看一区二区 | 中文亚洲av片在线观看爽| 亚洲欧美精品专区久久| 亚洲av成人av| av卡一久久| 免费黄色在线免费观看| 高清毛片免费看| 亚洲人成网站在线观看播放| 色网站视频免费| 国产三级在线视频| 亚洲18禁久久av| 日日干狠狠操夜夜爽| 在线免费十八禁| 老司机福利观看| 亚洲av中文字字幕乱码综合| 亚洲成色77777| 久久欧美精品欧美久久欧美| 亚洲av.av天堂| 美女xxoo啪啪120秒动态图| 禁无遮挡网站| 中文字幕制服av| 国产精品乱码一区二三区的特点| 日韩av在线免费看完整版不卡| 亚洲av成人精品一二三区| 淫秽高清视频在线观看| 日本欧美国产在线视频| 国产精品久久久久久久久免| 国产淫语在线视频| 三级男女做爰猛烈吃奶摸视频| 亚洲激情五月婷婷啪啪| 精品久久久久久电影网 | 天堂影院成人在线观看| 18+在线观看网站| 欧美区成人在线视频| 亚洲精品久久久久久婷婷小说 | 69人妻影院| 麻豆成人午夜福利视频| 国产色爽女视频免费观看| 三级经典国产精品| 日日啪夜夜撸| 国产成人福利小说| 男插女下体视频免费在线播放| 国产精品蜜桃在线观看| 中文字幕av在线有码专区| 国产av码专区亚洲av| eeuss影院久久| 深爱激情五月婷婷| 亚洲成人久久爱视频| 国产成人精品一,二区| 白带黄色成豆腐渣| 哪个播放器可以免费观看大片| 精品久久久久久久久av| 亚洲五月天丁香| 国产69精品久久久久777片| 国产淫语在线视频| 亚洲第一区二区三区不卡| 精品一区二区免费观看| 免费观看性生交大片5| 人妻少妇偷人精品九色| 欧美高清性xxxxhd video| 成人午夜精彩视频在线观看| av福利片在线观看| 看非洲黑人一级黄片| 久久综合国产亚洲精品| 99热这里只有是精品在线观看| av专区在线播放| 夜夜看夜夜爽夜夜摸| 国产 一区精品| 九九热线精品视视频播放| 午夜免费激情av| 久热久热在线精品观看| 免费观看精品视频网站| 两个人的视频大全免费| 男女下面进入的视频免费午夜| 中国国产av一级| 国产精品久久久久久精品电影小说 | 99热网站在线观看| 两个人视频免费观看高清| 国产视频内射| 免费人成在线观看视频色| 亚洲经典国产精华液单| 亚洲精品久久久久久婷婷小说 | 一区二区三区免费毛片| 99热全是精品| 联通29元200g的流量卡| 免费观看在线日韩| 蜜臀久久99精品久久宅男| 国产精品国产三级国产av玫瑰| 91精品伊人久久大香线蕉| 韩国高清视频一区二区三区| 日韩欧美在线乱码| 天天躁夜夜躁狠狠久久av| 亚洲精品乱久久久久久| 欧美zozozo另类| 婷婷色av中文字幕| 国产免费又黄又爽又色| 亚洲中文字幕日韩| 亚洲综合色惰| 精品欧美国产一区二区三| 看片在线看免费视频| 22中文网久久字幕| 变态另类丝袜制服| 日韩大片免费观看网站 | 午夜激情福利司机影院| 黄色欧美视频在线观看| av在线蜜桃| 高清av免费在线| 亚洲国产精品成人久久小说| 国产欧美日韩精品一区二区| 国内精品美女久久久久久| 丰满乱子伦码专区| 久久国内精品自在自线图片| 亚洲精品456在线播放app| a级一级毛片免费在线观看| 中文字幕av成人在线电影| 国产高清国产精品国产三级 | 成人av在线播放网站| 精品99又大又爽又粗少妇毛片| 内射极品少妇av片p| 国产极品天堂在线| 丰满乱子伦码专区| 亚洲国产精品成人久久小说| 久久人妻av系列| 久久精品人妻少妇| 搡老妇女老女人老熟妇| av在线老鸭窝| 亚洲自拍偷在线| 天天躁日日操中文字幕| 日韩一区二区视频免费看| 国产午夜精品久久久久久一区二区三区| av视频在线观看入口| 国产色爽女视频免费观看| 欧美一区二区精品小视频在线| or卡值多少钱| 国产精品美女特级片免费视频播放器| 91狼人影院| 久久99热这里只有精品18| 能在线免费观看的黄片| 秋霞伦理黄片| 亚洲成人中文字幕在线播放| 亚洲aⅴ乱码一区二区在线播放| 欧美潮喷喷水| 久久精品夜夜夜夜夜久久蜜豆| 日韩 亚洲 欧美在线| 精品不卡国产一区二区三区| 搡老妇女老女人老熟妇| 又黄又爽又刺激的免费视频.| 人人妻人人澡欧美一区二区| 天天躁日日操中文字幕| 观看免费一级毛片| 日韩欧美精品v在线| 插阴视频在线观看视频| 啦啦啦韩国在线观看视频| 久久热精品热| 一级二级三级毛片免费看| 国产麻豆成人av免费视频| 高清视频免费观看一区二区 | av.在线天堂| 欧美性猛交黑人性爽| 亚洲国产成人一精品久久久| av福利片在线观看| 国产精品一区二区三区四区久久| 久久久色成人| 亚洲欧美成人精品一区二区| 精品国产三级普通话版| 亚洲婷婷狠狠爱综合网| 免费观看精品视频网站| 欧美又色又爽又黄视频| 一区二区三区四区激情视频| 超碰97精品在线观看| 久久久久免费精品人妻一区二区| 婷婷色综合大香蕉| 99久久精品国产国产毛片| 欧美一级a爱片免费观看看| 欧美一区二区精品小视频在线| 狂野欧美激情性xxxx在线观看| 精品无人区乱码1区二区| 两性午夜刺激爽爽歪歪视频在线观看| 国产成年人精品一区二区| 99久国产av精品| 欧美一区二区精品小视频在线| 岛国在线免费视频观看| 精品久久久噜噜| 国产一区二区在线观看日韩| 99久久精品国产国产毛片| 国产成人精品一,二区| 三级国产精品欧美在线观看| 免费看美女性在线毛片视频| 欧美高清性xxxxhd video| 国产午夜福利久久久久久| 日韩强制内射视频| 婷婷色av中文字幕| 全区人妻精品视频| 久久久精品94久久精品| 嘟嘟电影网在线观看| 欧美最新免费一区二区三区| 亚洲自偷自拍三级| 国产老妇伦熟女老妇高清| 欧美变态另类bdsm刘玥| 村上凉子中文字幕在线| 亚洲五月天丁香| 男女那种视频在线观看| 在线观看av片永久免费下载| 欧美精品国产亚洲| 久久人人爽人人片av| 特级一级黄色大片| 在线观看一区二区三区| 久久久久九九精品影院| 97超碰精品成人国产| 亚洲欧洲国产日韩| 午夜精品在线福利| 亚洲av中文字字幕乱码综合| 久久精品夜夜夜夜夜久久蜜豆| 国产真实乱freesex| 亚洲成色77777| a级毛片免费高清观看在线播放| 国产乱人偷精品视频| 欧美一区二区精品小视频在线| 国产精品爽爽va在线观看网站| 欧美成人精品欧美一级黄| .国产精品久久| 成人漫画全彩无遮挡| 精品久久久久久久久久久久久| 神马国产精品三级电影在线观看| 丰满少妇做爰视频| 亚洲丝袜综合中文字幕| av免费观看日本| 毛片女人毛片| 国产成人一区二区在线| 亚洲av.av天堂| 秋霞在线观看毛片| 欧美日韩一区二区视频在线观看视频在线 | 日韩视频在线欧美| 日本与韩国留学比较| 卡戴珊不雅视频在线播放| 精品国内亚洲2022精品成人| 欧美又色又爽又黄视频| 看十八女毛片水多多多| 国产精品一区二区三区四区久久| 国产精品蜜桃在线观看| 国产精品一区二区性色av| 搡老妇女老女人老熟妇| 男女那种视频在线观看| 国产不卡一卡二| av国产免费在线观看| 最近手机中文字幕大全| 欧美日本视频| 高清日韩中文字幕在线| 成人性生交大片免费视频hd| 成人亚洲欧美一区二区av| 两个人视频免费观看高清| 亚洲三级黄色毛片| 国产精品国产三级国产av玫瑰| 内地一区二区视频在线| 精品人妻视频免费看| 麻豆精品久久久久久蜜桃| 日本免费在线观看一区| 最近视频中文字幕2019在线8| 十八禁国产超污无遮挡网站| 黄片无遮挡物在线观看| 深爱激情五月婷婷| 国产又黄又爽又无遮挡在线| 成人三级黄色视频| 亚洲综合精品二区| 欧美人与善性xxx| АⅤ资源中文在线天堂| 国产av一区在线观看免费| 91av网一区二区| 久久99热6这里只有精品| 国内少妇人妻偷人精品xxx网站| av视频在线观看入口| 中国美白少妇内射xxxbb| 欧美一区二区国产精品久久精品| 天堂网av新在线| 国产精品av视频在线免费观看| 日本黄色片子视频| 亚洲精品日韩在线中文字幕| 日韩亚洲欧美综合| 麻豆久久精品国产亚洲av| 亚洲四区av| 免费av不卡在线播放| 亚洲av熟女| 国产激情偷乱视频一区二区| 国产私拍福利视频在线观看| 蜜桃亚洲精品一区二区三区| 国产精品综合久久久久久久免费| 免费观看的影片在线观看| 国产免费男女视频| 九九热线精品视视频播放| 啦啦啦观看免费观看视频高清| 亚洲伊人久久精品综合 | a级一级毛片免费在线观看| 日本猛色少妇xxxxx猛交久久| 国产综合懂色| 国内揄拍国产精品人妻在线| 美女高潮的动态| 九九在线视频观看精品| 最近中文字幕高清免费大全6| 99久久精品一区二区三区| 高清日韩中文字幕在线| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美精品v在线| 非洲黑人性xxxx精品又粗又长| 美女脱内裤让男人舔精品视频| 我要搜黄色片| 欧美潮喷喷水| 美女国产视频在线观看| 中文字幕制服av| 免费看a级黄色片| 男人的好看免费观看在线视频| 伊人久久精品亚洲午夜| 久久久久久国产a免费观看| 色尼玛亚洲综合影院| av播播在线观看一区| 久久久国产成人免费| 在线观看66精品国产| 国产黄色小视频在线观看| 天堂av国产一区二区熟女人妻| 我的女老师完整版在线观看| 久热久热在线精品观看| 久久精品人妻少妇| 一本一本综合久久| 欧美日韩综合久久久久久| 亚洲av熟女| 一个人看视频在线观看www免费| 91久久精品国产一区二区三区| 黄色欧美视频在线观看| 久久久久久久久大av| 又爽又黄a免费视频| 亚洲综合色惰| 直男gayav资源| 亚洲怡红院男人天堂| 成人亚洲精品av一区二区| 深夜a级毛片| 久久99热6这里只有精品| 国产精品无大码| 久久精品国产99精品国产亚洲性色| 国产极品天堂在线| 人妻少妇偷人精品九色| 大话2 男鬼变身卡| 亚洲av免费高清在线观看| 亚洲电影在线观看av| 禁无遮挡网站| 亚洲国产高清在线一区二区三| 18禁在线无遮挡免费观看视频| 国产探花极品一区二区| 舔av片在线| 久久人妻av系列| 亚洲精品乱久久久久久| 国产精品久久久久久久久免| 成人三级黄色视频| 嘟嘟电影网在线观看| 日本午夜av视频| 蜜桃亚洲精品一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 婷婷色综合大香蕉| 中文字幕免费在线视频6| 精品久久久久久久久亚洲| 蜜桃亚洲精品一区二区三区| 少妇被粗大猛烈的视频| 国产中年淑女户外野战色| 精品熟女少妇av免费看| 欧美xxxx黑人xx丫x性爽| 成年女人看的毛片在线观看| 国产精品熟女久久久久浪| 国产精品综合久久久久久久免费| 美女内射精品一级片tv| 国产白丝娇喘喷水9色精品| 丝袜美腿在线中文| 看十八女毛片水多多多| 18禁在线无遮挡免费观看视频| 免费无遮挡裸体视频| 色播亚洲综合网| 成人高潮视频无遮挡免费网站| 91久久精品国产一区二区成人| 插逼视频在线观看| 超碰av人人做人人爽久久| 国产精品不卡视频一区二区| 久久久精品欧美日韩精品| 中文资源天堂在线| 噜噜噜噜噜久久久久久91| 精品久久久噜噜| 国产精品三级大全| 青春草视频在线免费观看| 国产成人福利小说| 波多野结衣巨乳人妻| or卡值多少钱| 国产免费男女视频| 亚洲国产精品成人综合色| 黄色日韩在线| 日本一二三区视频观看| 三级国产精品欧美在线观看| 两个人的视频大全免费| 一区二区三区乱码不卡18| 夜夜看夜夜爽夜夜摸| 插阴视频在线观看视频| 日韩欧美 国产精品| 99热6这里只有精品| 国产一区二区三区av在线| 亚洲久久久久久中文字幕| 成人国产麻豆网|