張?chǎng)?崔瑞瑞 袁高峰 王旭 鄧朝勇
摘 要:為了研究Li+,Na+,K+離子摻雜對(duì)Ca2GdNbO6: 0.03Sm3+熒光粉發(fā)光性能的影響,本文采用高溫固相反應(yīng)法成功制備了Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)熒光粉。通過X射線衍射儀測(cè)量并分析了熒光粉的晶體結(jié)構(gòu),結(jié)果表明,Li+,Na+,K+離子成功摻入Ca2GdNbO6: 0.03Sm3+晶格。通過掃描電子顯微鏡測(cè)量了熒光粉的微觀形貌,從圖譜中可以看出,Na+離子摻入Ca2GdNbO6: 0.03Sm3+熒光粉時(shí),其晶粒發(fā)育最完整。通過熒光光譜儀測(cè)量了熒光粉的發(fā)光性能,結(jié)果說明,熒光粉在4G5/2→6H7/2(602 nm)躍遷處發(fā)射峰最強(qiáng),且Na+離子作為電荷補(bǔ)償劑時(shí)發(fā)射強(qiáng)度最好。制備的熒光粉CIE色坐標(biāo)集中在橙紅色中心區(qū)域,與國(guó)際照明委員會(huì)規(guī)定的標(biāo)準(zhǔn)色坐標(biāo)非常接近,表明Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)熒光粉在WLEDs領(lǐng)域是一種具有應(yīng)用潛力的發(fā)光材料。
關(guān)鍵詞:熒光粉;高溫固相法;微觀形貌;發(fā)光性能
中圖分類號(hào):TB33
文獻(xiàn)標(biāo)志碼:A
白光發(fā)光二極管(white light-emitting diodes, WLEDs)作為固態(tài)光源在照明領(lǐng)域得到迅速的發(fā)展,因具有壽命長(zhǎng)、功耗低及環(huán)境友好等優(yōu)點(diǎn)被視為傳統(tǒng)照明設(shè)備的替代品[1-3]。由于能源危機(jī)、環(huán)境污染和社會(huì)可持續(xù)發(fā)展等問題,預(yù)計(jì)WLEDs將在不同場(chǎng)合具有不同的應(yīng)用和在未來具有更大的應(yīng)用潛力[4]。目前,市場(chǎng)上WLEDs的獲取主要有兩種方式:一種是通過近紫外芯片激發(fā)紅、綠、藍(lán)三基色熒光粉發(fā)出白光;另一種是藍(lán)色LED芯片結(jié)合黃色熒光粉YAG:Ce3+獲得白光[5-6]。然而,通過第二種方法獲得的白光由于缺乏紅色成分,導(dǎo)致過高的相關(guān)色溫和較低的顯色指數(shù),這有效的阻止了它們?cè)诠虘B(tài)照明領(lǐng)域的應(yīng)用[7]。為了解決這個(gè)問題,許多研究人員研究了具有發(fā)光特性良好的紅色或者橙紅色發(fā)光材料,從而促進(jìn)WLEDs在固態(tài)照明具有更廣泛的應(yīng)用。
在稀土離子中,Sm3+離子作為激活劑被廣泛應(yīng)用在各種無機(jī)化合物中。例如:硅酸鹽、鈮酸鹽、磷酸鹽等。雙鈣鈦礦結(jié)構(gòu)的鈮酸鹽具有優(yōu)異的物理性質(zhì)和熱穩(wěn)定性,并能為發(fā)光中心提供一個(gè)良好的晶體環(huán)境,因此選擇Ca2GdNbO6作為基質(zhì)。激活劑與基質(zhì)結(jié)合后通過高溫固相反應(yīng)等方法形成的熒光粉可應(yīng)用在WLEDs照明領(lǐng)域[8-11]。許多研究人員已經(jīng)研究并報(bào)道了關(guān)于Sm3+離子摻雜鈮酸鹽的熒光粉,例如YNbO4: Sm3+[12],Ca2GdNbO6: Sm3+[13],BaNb2O6: Sm3+[14]。雖然Ca2GdNbO6: Sm3+熒光粉已有相關(guān)報(bào)道,對(duì)該熒光粉進(jìn)行相關(guān)研究時(shí)發(fā)現(xiàn)其發(fā)光性能不夠理想。因此,考慮使用Li+、K+、Na+離子作為電荷補(bǔ)償摻雜Ca2GdNbO6: 0.03Sm3+熒光粉,從而進(jìn)一步提高其發(fā)光強(qiáng)度。
本文通過高溫固相反應(yīng)法,成功制備了鈮酸鹽為基質(zhì)的Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)橙紅色熒光粉。詳細(xì)研究了Li+,Na+,K+離子摻雜Ca2GdNbO6: 0.03Sm3+熒光粉時(shí),其晶體結(jié)構(gòu)、微觀形貌和發(fā)光性能的影響。試驗(yàn)結(jié)果表明Li+,Na+,K+離子的摻入改善了基質(zhì)中的缺陷,有效提升了Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)熒光粉的發(fā)光性能。其中,Na+離子作為電荷補(bǔ)償時(shí)熒光粉發(fā)光性能最好,為WLEDs含有紅色成分提供一種新的選擇和應(yīng)用。
1 試驗(yàn)
1.1 樣品制備
采用高溫固相反應(yīng)法,成功合成了Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)橙紅色熒光粉。樣品所需原材料分別為CaCO3(99.99%), Gd2O3(3.5N), Nb2O5(4N), Sm2O3(3N), Li2CO3(AR), Na2CO3(AR)和K2CO3(AR)。使用天平對(duì)原料進(jìn)行精準(zhǔn)稱量后,倒入瑪瑙研缽中充分研磨45 min。將充分研磨后的樣品轉(zhuǎn)移到高溫?zé)Y(jié)爐中,在溫度1 300 ℃的條件下煅燒6 h。待煅燒結(jié)束冷卻至室溫后取出樣品,再次用瑪瑙研缽研磨3 min得到最終樣品。
1.2 性能表征
Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)熒光粉的物相結(jié)構(gòu)通過日本理學(xué)Max-RA型X射線衍射儀(X-ray diffractometer, XRD)進(jìn)行測(cè)試;微觀形貌通過日立公司SU-8100型掃描電子顯微鏡(scanning electron microscope, SEM)進(jìn)行觀察;激發(fā)和發(fā)射光譜使用HORIBA公司FluoroMax-4型熒光光譜儀進(jìn)行測(cè)試和分析。在本試驗(yàn)中,所有樣品的測(cè)試均在室溫下進(jìn)行。
2 結(jié)果與討論
2.1 物相分析
圖1所示為Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)熒光粉的XRD圖譜。從圖1中可以觀察到,樣品中存在細(xì)微的雜峰,它們分別為Gd2O3和Nb2O5。在圖1中,Ca2GdNbO6: 0.03Sm3+熒光粉和摻雜Li+,Na+,K+離子熒光粉的衍射峰均與標(biāo)準(zhǔn)卡片(JCPDS No.89-1438)相匹配,結(jié)果表明少量摻雜的Li+,Na+,K+離子進(jìn)入到晶體內(nèi)部并沒有對(duì)該晶體結(jié)構(gòu)產(chǎn)生明顯的影響。通過XRD圖譜可知,Li+,Na+,K+離子成功摻入Ca2GdNbO6: 0.03Sm3+熒光粉中,所有樣品均屬于空間群為P21/n的單斜晶系鈣鈦礦結(jié)構(gòu)。
2.2 Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)的微觀形貌
圖2所示為Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)熒光粉的微觀形貌。由圖2可知,制備的樣品顆粒半徑大約在1~3 um范圍,顆粒飽滿且形狀為橢圓形。從圖2(a)中觀察到,未摻雜Li+,Na+,K+離子時(shí),樣品表面存在未充分反應(yīng)的化合物小顆粒。當(dāng)在Ca2GdNbO6: 0.03Sm3+熒光粉中摻入Li+,Na+,K+離子時(shí),樣品顆粒更飽滿、粒徑進(jìn)一步增大。其中,當(dāng)Na+離子摻入Ca2GdNbO6: 0.03Sm3+熒光粉時(shí)樣品晶粒發(fā)育最完整,表面最光滑。在制備過程中對(duì)樣品進(jìn)行精準(zhǔn)稱量和進(jìn)行充分研磨并且具有適宜的燒結(jié)溫度,能使獲得的樣品形貌更加優(yōu)異。
2.3 Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)的激發(fā)光譜
圖3所示為在602 nm波長(zhǎng)監(jiān)測(cè)下,Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)熒光粉的激發(fā)光譜。從圖3中可以觀察到,摻雜不同Li+,Na+,K+離子明顯提升了該熒光粉的激發(fā)強(qiáng)度,這是因?yàn)長(zhǎng)i+,Na+,K+離子作為電荷補(bǔ)償改善了基質(zhì)中的缺陷。在該熒光粉中,摻雜Li+,Na+,K+離子幾乎不影響激發(fā)峰的形狀和位置,且摻雜Na+離子時(shí)其激發(fā)光譜最強(qiáng)。由圖3中可知,由于Sm3+離子的4f—4f躍遷,在350~500 nm范圍內(nèi)的激發(fā)峰分別是6H5/2→4D3/2(363 nm), 6H5/2→6P7/2(377 nm), 6H5/2→6P3/2(406 nm), 6H5/2→6P5/2(420 nm), 6H5/2→4G9/2(438 nm)和6H5/2→4I9/2(470 nm)躍遷[3]。Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)熒光粉在6H5/2→6P3/2(406 nm)躍遷處其激發(fā)峰最強(qiáng),結(jié)果表明所制備的樣品最佳激發(fā)波長(zhǎng)為406 nm。
2.4 Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)的發(fā)射光譜
圖4所示為在406 nm激發(fā)監(jiān)測(cè)下,Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)熒光粉的發(fā)射光譜。通過圖4中觀察到,Li+,Na+,K+離子摻雜Ca2GdNbO6: 0.03Sm3+熒光粉時(shí),顯著提升了其發(fā)光性能。在Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)熒光粉中,摻雜離子均沒有影響發(fā)射峰的形狀及位置。由圖4中插圖知,Na+離子摻雜的熒光粉發(fā)射強(qiáng)度最好,且該熒光粉的發(fā)射強(qiáng)度遵循Na+大于Li+大于K+。
在發(fā)射光譜的波長(zhǎng)范圍內(nèi),Sm3+離子主要有3個(gè)不同的發(fā)射峰,分別為4G5/2→6H5/2(564 nm), 4G5/2→6H7/2(602 nm)以及4G5/2→6H9/2(649 nm)躍遷[15]。由圖4可知,在不同躍遷處其發(fā)射強(qiáng)度不同。在564 nm處4G5/2→6H5/2躍遷屬于磁偶極躍遷,在602 nm處4G5/2→6H7/2躍遷屬于磁偶極和電偶極共同支配的躍遷[16]。Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)熒光粉在4G5/2→6H7/2躍遷處的發(fā)光強(qiáng)度大于4G5/2→6H5/2和4G5/2→6H9/2躍遷處的發(fā)光強(qiáng)度,結(jié)果表明Sm3+離子在4G5/2→6H7/2(602 nm)躍遷處主要占據(jù)非反演對(duì)稱中心。當(dāng)Sm3+離子在基質(zhì)中占據(jù)非反演對(duì)稱中心時(shí),4G5/2→6H7/2躍遷主要以電偶極躍遷為主,特征峰發(fā)射出橙紅光。
2.5 CIE 色度圖
熒光粉的顏色通常用CIE色度坐標(biāo)來描述。對(duì)樣品進(jìn)行發(fā)射光譜測(cè)量后,將發(fā)射光譜數(shù)據(jù)導(dǎo)入在CIE軟件中,其熒光粉CIE色度坐標(biāo)展示在表1。Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)熒光粉的發(fā)光顏色如圖5所示,Li+,Na+,K+離子摻雜Ca2GdNbO6: 0.03Sm3+熒光粉的發(fā)光顏色集中在橙紅色中心區(qū)域,非常接近國(guó)際照明委員會(huì)規(guī)定的標(biāo)準(zhǔn)色坐標(biāo)(0.666, 0.333)。
3 結(jié)論
通過高溫固相反應(yīng)法,成功合成了Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)橙紅色熒光粉。XRD圖譜表明,合成的熒光粉晶體結(jié)構(gòu)與標(biāo)準(zhǔn)卡片相匹配。SEM結(jié)果顯示,Li+,Na+,K+離子摻雜Ca2GdNbO6: 0.03Sm3+熒光粉時(shí)顆粒更加飽滿、粒徑進(jìn)一步增大。通過激發(fā)和發(fā)射光譜可知,Li+,Na+,K+離子作為電荷補(bǔ)償顯著提升了該熒光粉的發(fā)光強(qiáng)度。在406 nm波長(zhǎng)激發(fā)監(jiān)測(cè)下,Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)熒光粉在4G5/2→6H7/2(602 nm)躍遷處發(fā)射出橙紅光,且發(fā)射強(qiáng)度遵循Na+>Li+>K+。制備的熒光粉色坐標(biāo)集中在橙紅色區(qū)域,非常接近國(guó)際照明委員會(huì)規(guī)定的標(biāo)準(zhǔn)色坐標(biāo)。研究結(jié)果表明,Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+)熒光粉在WLEDs照明領(lǐng)域具有潛在的應(yīng)用前景。
參考文獻(xiàn):
[1]SUN L L, DEVAKUMAR B, LIANG J, et al. A broadband cyan-emitting Ca2LuZr2(AlO4)3:Ce3+ garnet phosphor for near-ultraviolet-pumped warm-white light-emitting diodes with an improved color rendering index [J]. Journal of Materials Chemistry C, 2020, 8(3): 1095-1103.
[2] SUN W Z, JIA Y L, PANG R, et al. Sr9Mg1.5(PO4)7:Eu2+: a novel broadband orange-yellow-emitting phosphor for blue light-excited warm white LEDs [J]. ACS Applied Materials & Interfaces, 2015, 7(45): 25219-25226.
[3] ZHANG X, CUI R R, ZHANG J, et al. A novel red-emitting phosphor Ca2GdNbO6:Eu3+: influences of sintering temperature and Eu3+ concentration on the photoluminescence [J]. ECS Journal of Solid State Science and Technology, 2021, 10(2): 026003.
[4] SHAO B Q, HUO J S, YOU H P. Prevailing strategies to tune emission color of lanthanide-activated phosphors for WLEDs applications [J]. Advanced Optical Materials, 2019, 7(13): 1900319.
[5] 王新悅, 李菁華, 崔瑞瑞, 等. Li+摻雜ZnNb2O6:Eu3+制備及發(fā)光性能研究 [J]. 人工晶體學(xué)報(bào), 2019, 48(11): 2111-2118.
[6] ZHANG Z Z, SHI Y R, LI C, et al. Enhanced photoluminescence emission and thermal stability in diamond-like framework contained K(Sr, Ba)BP2O8:Eu3+ red phosphors via composition modification [J]. Journal of Luminescence, 2020, 219: 116885.
[7] DU P, HUANG X Y, YU J S. Facile synthesis of bifunctional Eu3+-activated NaBiF4 red-emitting nanoparticles for simultaneous white light-emitting diodes and field emission displays [J]. Chemical Engineering Journal, 2018, 337: 91-100.
[8] PORTAKAL-UCAR Z G, DOGAN T, AKCA S, et al. Effect of Sm3+ and Mn2+ incorporation on the structure and luminescence characteristics of Zn2SiO4 phosphor [J]. Radiation Physics and Chemistry, 2021, 181: 109329.
[9] SI J Y, YANG N, XU M J, et al. Structure and tunable luminescence in Sm3+/Er3+ doped host-sensitized LaNbO4 phosphor by energy transfer [J]. Ceramics International, 2020, 46(18): 28373-28381.
[10]CUI R R, GUO X, DENG C Y. A novel Ba3Bi2(PO4)4:Sm3+ orange red-emitting phosphor: influences of sintering temperature and Sm3+ concentration on microstructures and photoluminescence properties [J]. Journal of Luminescence, 2020, 224: 117233.
[11]李兆, 曹靜, 王永鋒, 等. NaGd(WO4)2:Sm3+熒光粉的制備及光致發(fā)光 [J]. 稀土, 2021, 42(2): 25-29.
[12]南賞瑞, 付振東, 張?jiān)葡觯?等. Tb3+,Sm3+摻雜的YNbO4多色熒光材料的制備及發(fā)光性能 [J]. 無機(jī)化學(xué)學(xué)報(bào), 2021, 37(2): 229-234.
[13]HUA Y B, YU J S. Synthesis and luminescence properties of reddish-orange-emitting Ca2GdNbO6:Sm3+ phosphors with good thermal stability for high CRI white applications [J]. Ceramics International, 2021, 47(5): 6059-6067.
[14]VISHWAKARMA A K, JAYASIMHADRI M. Pure orange color emitting Sm3+ doped BaNb2O6 phosphor for solid-state lighting applications [J]. Journal of Luminescence, 2016, 176(5): 112-117.
[15]游潘麗. Li2BaSiO4:Sm3+熒光粉的制備與性能研究 [J]. 光學(xué)學(xué)報(bào), 2015, 35(5): 267-272.
[16]陳浩, 劉琳, 徐飛翔, 等. Sm3+摻雜LnNbO4(Ln=La,Y)紅色熒光粉的性能分析 [J]. 廈門理工學(xué)院學(xué)報(bào), 2020, 28(5): 81-88.
(責(zé)任編輯:于慧梅)
Preparation and Luminescent Properties of Phosphors
Ca2GdNbO6: Sm3+,M+(M=Li+,Na+,K+)
ZHANG Xin, CUI Ruirui, YUAN Gaofeng, WANG Xu, DENG Chaoyong*
(Key Laboratory of Electronic Composites of Guizhou Province, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China)
Abstract:
In order to study the effect of Li+,Na+,K+ ions doping on the luminescence of Ca2GdNbO6: 0.03Sm3+ phosphors, Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+) phosphors were successfully synthesized by high temperature solid-state reaction. The crystal structure of the phosphor was measured and analyzed by X-ray diffractometer. The results show that Li+,Na+,K+ ions were successfully doped into Ca2GdNbO6: 0.03Sm3+ lattices. The micromorphology of the phosphors was measured by scanning electron microscope display it can be seen from the results that when Na+ ions are doped into Ca2GdNbO6: 0.03Sm3+ phosphors, the grain growth is the most complete. The luminescence properties of phosphors were mersured by fluorescence spectrometer and the results illustrate that the emission peaks of phosphors are the strongest during the transition of 4G5/2→6H7/2(602 nm), and the emission intensity is the best when Na+ ions were used as charge compensator. The CIE color coordinates of the prepared phosphors are concentrated in the central area of orange-red, which are very close to the standard coordinates specified by the international commission on illumination, indicating that Ca2GdNbO6: 0.03Sm3+,0.05M+(M=Li+,Na+,K+) phosphors are potential luminescent materials in the field of WLEDs.
Key words:
phosphors; high temperature solid-state method; microtopography; optical property
2596500520391