• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A measurement of vibrations of sensor holders of a container in lifting and moving operations

    2022-03-16 03:17:24TIANHaoHUANGQiWUZengwenWANGJi
    關(guān)鍵詞:寧波大學(xué)湖州頻段

    TIAN Hao, HUANG Qi, WU Zengwen, WANG Ji*

    A measurement of vibrations of sensor holders of a container in lifting and moving operations

    TIAN Hao1, HUANG Qi2, WU Zengwen1, WANG Ji1*

    ( 1.Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo 315211, China; 2.Institute of Civil Engineering, Huzhou Vocational & Technical College, Huzhou 313000, China )

    In the process of container handling with cranes, vibrations and impacts can damage substructures of a container such as a sensor holder. To ensure the normal operation of sensor holder during transportation, it is necessary to monitor conditions of sensors and take remediation. A theoretical analysis and experimental measurement are combined to investigate vibrations of the sensor holder of a container structure. The results show that the sensor holder has a large displacement response in the frequency range of 12–25Hz. The sensor holder has a large acceleration response in the frequency range of 4100–5000Hz. A preliminary vibration isolation scheme design can be proposed with the consideration of these two frequency bands, and feasibility analysis and optimization targets are discussed.

    vibration; measurement; laser; analysis; structure; container

    1 Introduction

    All structures in industry or nature are subjected to vibrations of certain kinds due to their dynamic characteristics and environmental factors[1]. While it is pleasant to have small vibrations in daily activities in places like home and office, excessive vibrations, which happens in industry more often due to operations of heavy duty and larger power machines with moving or rotating parts[2-3], are always on the lists for elimination. It is natural to seek possible methods for the control of vibrations in applications which the excessive vibrations are always prohibited[4-5]. This objective can be achieved with the vibration analysis which are closely related with a structural model with the needed vibration frequencies and mode shapes[6]. In addition, the analytical results of structural vibrations and properties are generally required for validation with vibration tests and measurements concerning the targeted applica- tions[7-8], because the difference between analysis and actual results are important in applications for the control of vibrations in certain conditions such as in the critical region of resonance[9-10]. Besides, installations of vibration control mechanisms are time consuming, disruptive, and also expensive[11]. Precise planning, design, fabrication, and implementation are important for the goal of a better and safer operation. In a dynamic environment, these are the general principles and concepts for the vibration control and test in engineering applications based on vibration analysis.

    Recently, the Piezoelectric Device Laboratory of Ningbo University (piezo.nbu.edu.cn) was asked to investigate the excessive vibrations on the sensor holders[12-13], a substructure of a container, because damages and disruptions have been experienced in the moving of containers by heavy cranes during the transportation process. The logistic company asked to be kept anonymous, would like the laboratory to identify the source of vibrations and provide a solution to the problem with the design and installation of vibration control apparatus tailored to the existing equipment. The vibration analyses and measurements are the core expertise of the laboratory with extensive experiences in dealing with industrial problems and relatively advanced instrumentation for vibration testing[14-16]. The laboratory accepted the request and checked the container structure for a plan for the identification of the vibration source[17]with the combination of analysis and measurement. A plan for vibration control will be proposed after careful evaluation of the data and requirements.

    It turned out that the analysis and measurements are quite useful from the planned approach, and the results are fully confirmed and a solution has been presented to the logistic company. It is believed that a full account of the analysis, test, and design will demonstrate the procedure and methods for the solution of the vibration control problem from engineering point of view in similar situations.

    2 The analysis of vibrations of sensor holders of a container

    A close examination of the sensor holders of a container as the targeted structure was made on the logistic company freight yard. The sensor holders are fully attached to the container with a strong support of steel plates. The sensor is used for the positioning during the moving of the container between different platforms. The crane will lift the container in a relatively fast action, causing noticeable collision and impact to the container and subsequent vibrations of sensor holders in top corners of containers. As it is planned, vibrations of the sensor holder will be analyzed to obtain essential properties, then it will be checked by the measurement to validate the analysis. This will be essential in identifying the dynamic properties of the structure and design vibration control structures accordingly[18].

    With the sensor holders as shown in Fig. 1, it is necessary to calculate the natural frequency of the sensor installation for the initial design of a needed vibration isolation system. As illustrated, the current sensor holder is actually a cantilever plate of steel attached to the container. We can use plate material properties and dimensions for the natural frequency of the holder structure. For a simple estimation, the lowest flexural vibration frequency of the sensor hold is[19]

    where k, m, E, I and L are the equivalent stiffness, mass, Young’s modulus, cross-section inertia, and length of the beam, respectively.

    With known parameters of the steel plate, the frequency of flexural vibrations of the beam with center of sensor mass as the length in Eq. (1) is around 4000Hz.

    For vibrations of the sensor, which can be simplified to a single-degree-of freedom (SDOF) model as shown in Fig. 2 with the consideration of the supporting plate and rubber pad. In this case, the damping will be included in the analysis. Since the sensor will be under the external excitation from the supporting plate, the analytical model will consider the input as a displacement from the supporting plate as() in Fig. 2.

    Fig. 2 The SDOF vibration model of the sensor

    As in Fig. 2, the rubber pad has a smaller stiffness in comparison with the sensor and supporting plate. In the calculation of vibration frequency of the sensor, the mass will be mainly of the sensor, and the stiffness is the steel plate under the rubber pad. For approximation, the equivalent mass of the sensor is[19]

    wheremandmare mass of the sensor and rubber pad, respectively.

    As a result, the natural frequency of the sensor without considering the damping will be

    and the equation of vibrations under excitation displacement() from the steel plate is[19]

    with the usual consideration of generic mass, damping, and stiffness.

    In order to obtain the vibration properties of the sensor, the model in Fig. 2 is analyzed with Eqs. (2)–(3) and the finite element method with Ansys (Ansys Corporation, Pittsburgh, USA)[20]for comparison and verification. The finite element model used is shown in Fig. 3 with the mesh scheme. For simplification, the connection of the sensor and steel plate with bolts are not included in the model and analysis, implying the sensor is attached to the rubber pad and steel plate with a perfect bonding.

    In the analysis, materials of the sensor and installation structure are

    (1)The plate is made of Q235 Steel[21], and the sensor is considered as a rigid body.

    Fig. 3 The finite element model and mesh scheme with analysis

    (3)The dimensions of the sensor are65mm×60 mm×50mm, and its weight is 130g.

    Table 1 Material properties and dimensions

    The calculations are performed with material properties and parameters in Table 1. The boundary conditions of the finite element model are as shown in Fig. 3.

    The approximate frequency is very close to the result from the finite element analysis for the simple vibration mode. As it is known, the simple calculation will be accurate for practical problem as this one. It is clear that the frequency is from the uniform compression of the rubber layer, and the higher frequencies are no longer associated with the sensor vibration isolation to be concerned of.

    Fig. 4 Response of the sensor under an impulse excitation from the FEM and analytical solution

    The calculations from approximate equation and simple FEM model are intended to confirm the vibration properties of the sensor holder for the evaluation of vibration isolation scheme and selection of structure materials. In addition, it is important to know possible resonant frequencies of the holder and sensor itself. Such calculations will also be confirmed with later measurements with prototypes of vibration isolation structures. The combination of calculations and measurements are needed for the full plan of vibration isolation structure design and evaluation as requested.

    3 Vibration measurement of a container

    After the completion of vibration analysis with this simple model and calculations, it is time to validate the calculation for design of vibration isolation structure. The important parameters now include the excitation to be considered, because the sensor properties have been validated. To this objective, a measurement from the container in lifting and moving processes for the properties of shock and vibrations are to be conducted. Since the vibration frequencies of the sensor are so different in different modes, it is important to find the most frequency and significant frequencies as the targeted dynamic loads. This has to be done by in-situ measurement of vibration signals in different conditions.

    The actual measurement was done in the freight container yard. The standard containers were selected for routine operations of the loading and unloading process by heavy lifts. The objective of the measurement is to find out the properties of impact impulse of the lifting and moving processes and some basic properties of the container and sensor holders. To be consistent with the objective, a laser vibrometer (Sunny Optical Technology Limited, Yuyao, Ningbo, China) was used for the vibration measurement. The measurement was completed in one day in several rounds to ensure the consistency of data and loadings. The data was compared after processing and it is proved that the measurement was successful. The sensor holders and data collection point V1 are shown in Fig. 5. Data are also collected from another sensor at point denoted as V2. Since the data are similar after analysis, only the results from V1 is shown here.

    Fig. 5 The data collecting spot V1 of the sensor holder for vibration measurement

    The measurement was done at two spots for check and validation purpose. Because the sensor holder is small, it is expected the measured vibrations and properties should be close without significant difference. The data sweeping frequency is 12800Hz for the displacement and acceleration relative to the ground.

    3.1 Vibration data from point V1 and the FFT analysis

    The displacement data from point V1 is plotted as the histogram and the Fast Fourier Transformation (FFT)[23]in Fig. 6. It is clear from the histogram in Fig. 6(a) that the displacement is larger at certain times, and the large displacement is in lower frequency as in Fig. 6(b). Since the properties of data are not clear in Fig. 6, more details need to be examined by different data packs.

    Fig. 6 Displacement data at point V1 and its FFT

    Now the time series of displacement at point V1 is divided into different intervals for the FFT analysis with local details in Fig. 7.

    3.1.1 The first data pack in time interval 0–1.5s

    It is clear this is an impact impulse with a larger single peak and smaller displacement (Fig. 7). The peak frequency is 15.33Hz. It is likely an impact impulse from the collision between the lift hook and the container.

    3.1.2 The second data pack in time interval 25.3–25.8s

    The displacement is relatively large with a peak frequency at 22Hz (Fig. 8). This is also an impact impulse between the lift hook and container.

    3.1.3 The third data pack in time interval 26.7–27.1s

    This is similar to previous data pack (Fig. 9). It is the impact impulse with a peak frequency at 17.5Hz.

    The displacement data from points V1 and V2 are highly similar in waveform and essential properties. There are differences in peak frequencies, but it is likely to be associated with the differences of the sensor holders, hook, and positions. The peak frequencies from point V1 are 15.33Hz, 17.5Hz and 22Hz, and V2 are 11.43Hz, 12.5Hz and 26Hz. The large displacements of the sensor holder surface are caused by the impact signal.

    3.2 The analyses of accelerations of point V1 of the sensor holder

    The data analysis of acceleration measurement is also performed in separated time intervals, just as for displacement in previous section. The results are used to check some essential properties as a way of verification.

    The acceleration data from point V1 is shown in Fig. 10. More peaks of acceleration can be observed with clusters of a few frequencies, just as the displacement data in previous figures. The data will be examined also in different time intervals.

    3.2.1 The first data pack of acceleration in 1.76–1.83s

    By comparing the time of occurrence, it is clear this is also from the impact impulse (Fig. 11). The displacement is low, as found in Figs. 7–9, but the acceleration is high. It is believed this is from the resonance induced by the high-frequency components of vibrations of the impact at the vibration frequency of the cantilever plate.

    3.2.2 The second data pack of acceleration in 2.78– 2.88s

    This is a perfectly damped vibration under excitation with the frequency centered at 4097Hz, which is close to the first data pack. Again, this is the resonance of steel plate caused by the high frequency components of the impact (Fig. 12).

    3.2.3 The third data pack of acceleration in 2.83–2.88s

    This is a damped vibration without the growth phase, implying the vibration could be further amplified by the later excitation (Fig. 13). The peak frequency is 4099Hz, similar to earlier acceleration response. It further reinforced the frequency feature of the steel plate under resonance.

    From both points V1 and V2, there is a strong resonance in the vicinity of 4100Hz, although there is a small difference in the properties of accelerations from measurements of the two points. The steel plate and attachment can cause the differences, but they all are close to 4100Hz, which is believed to be the lowest flexural vibration frequency of the steel plate from the estimation at the beginning. There is always a strong resonance at this frequency induced the high frequency components of the impact vibrations.

    3.3 Summary of measurement data of vibrations

    From analyses of vibration data of two measurement spots, it proved that the measurement of vibrations of sensor holders is successful. These data will be useful for the design of vibration isolation and control apparatus. There are some differences which are minimal between the two measurement points, therefore, the results have been validated by each other. By summarizing the analyses of measurement data, it can be concluded that the impact vibrations have a frequency range from 12–25Hz, which causes large displacements of the bottom plate of the sensor holders. In vibration control, this low frequency vibration needs to be taken into consideration seriously.

    From the acceleration data of two measurement points, large acceleration was observed at 4100Hz with clear presence of damping. It shows that there is a strong response of sensor holder acceleration at that frequency. Since there are no high frequency signals in the measured displacements, it is clear that the response is just from the excitation of the high-frequency components of impact vibrations. This is the frequency of the flexural vibrations of the steel plate, and the differences are from the structure, position, and possibly materials.

    In summary, the peak responses are observed in ranges of 12–25Hz and 4100–5000Hz from measure- ments. Therefore, the vibration control design for the sensor holders should be focused on vibrations at 15Hz and 4100Hz for both free and forced vibrations in relation to the design and evaluation with structure and material consideration.

    4 Conclusions

    Through a systematic analysis and measurement, vibration properties of the sensor holder of a container are obtained and validated as part of the efforts in the design of vibration control structure for the positioning sensor. The vibration frequencies of the holder are well separated, implying that the lower and high frequencies vibrations cannot be well controlled with the simple structure of a rubber pad. From the measurement, it is clear that one of the excitations comes at 12Hz through the impact between the hook and container. This vibration causes the largest displacement, but the interferences with sensor holders are limited. The largest acceleration comes at 4100Hz, which is the induced resonance of the cantilever steel plates. This could be the major vibration disrupting the operations of sensors. Of course, one more testing is needed on the resonance frequencies of the sensor itself, which will be fatal if there is an internal resonance caused by the impact frequency. Actually, there could be many resonant frequencies of sensor interacting with container vibrations in the lifting and moving operations with cranes. The interrupting of sensor functions and damages to sensors are the bigger concerns with noticeable economic costs, and remedies with full considerations of vibrations of the container, holder, and sensor itself will provide solutions to ensure smooth operations and savings of the equipment.

    The analysis of vibrations of sensor compartment structures and impact loadings provide much needed information for the design of control apparatus. Further testing on the sensor structure will provide more information required to design solutions to improve the safety of sensors on containers. This will be major task with efforts in different areas to satisfy the objective of improving the container transporting in a large port with increasingly automatic and intelligent operations.

    Acknowledgment

    The authors acknowledge the participation of testing and analysis of Dr. Bin Huang, Yangyang Zhang, and Lijun Yi of Piezoelectric Device Laboratory, Ningbo University, and Messrs. Yijun Zhou, Shuang Liu, and Xusheng Zhang of Sunny Optical Technology Limited.

    [1] Peeters B, Maeck J, de Roeck G. Vibration-based damage detection in civil engineering: Excitation sources and temperature effects[J]. Smart Materials and Structures, 2001, 10(3):518-527.

    [2] Nakra B C. Vibration control in machines and structures using viscoelastic damping[J]. Journal of Sound and Vibration, 1998, 211(3):449-466.

    [3] Genta G. Vibration of Structures and Machines: Practical Aspects[M]. 3rd ed. New York: Springer Science & Business Media, 1999.

    [4] Yang D H, Shin J H, Lee H, et al. Active vibration control of structure by active mass damper and multi-modal negative acceleration feedback control algorithm[J]. Journal of Sound and Vibration, 2017, 392:18-30.

    [5] Hudson M J, Reynolds P. Implementation considerations for active vibration control in the design of floor structures[J]. Engineering Structures, 2012, 44:334-358.

    [6] Chandrashekhar M, Ganguli R. Damage assessment of structures with uncertainty by using mode-shape curvatures and fuzzy logic[J]. Journal of Sound and Vibration, 2009, 326(3/4/5):939-957.

    [7] Gibson R F. Modal vibration response measurements for characterization of composite materials and structures[J]. Composites Science and Technology, 2000, 60(15):2769- 2780.

    [8] Huda F, Kajiwara I, Hosoya N, et al. Bolt loosening analysis and diagnosis by non-contact laser excitation vibration tests[J]. Mechanical Systems and Signal Processing, 2013, 40(2):589-604.

    [9] Ma T F, Wang J, Du J K, et al. Resonances and energy trapping in AT-cut quartz resonators operating with fast shear modes driven by lateral electric fields produced by surface electrodes[J]. Ultrasonics, 2015, 59:14-20.

    [10] Wang J, Shen L J. Exact thickness-shear resonance frequency of electroded piezoelectric crystal plates[J]. Journal of Zhejiang University: Science A, 2005, 6(9): 980-985.

    [11] Keane A J. Passive vibration control via unusual geometries: The application of genetic algorithm optimization to structural design[J]. Journal of Sound and Vibration, 1995, 185(3):441-453.

    [12] Uquillas D R, Yeh S S. Tool holder sensor design for measuring the cutting force in CNC turning machines [C]//IEEE International Conference on Advanced Intelligent Mechatronics. IEEE, 2015:1218-1223.

    [13] de Sousa H M, Matos J C, Figueiras J A. Development of an embedded sensor holder for concrete structures monitoring[J]. Carbon, 2006, 28(3):2-58.

    [14] Liu J, Zhang M H, Du J K, et al. Frequency perturbation integral for FBAR mass sensors and frequency shifts due to nonuniform mass layers[J]. Applied Acoustics, 2021, 172:107592.

    [15] Wang J. The extended Rayleigh-Ritz method for an analysis of nonlinear vibrations[J]. Mechanics of Advanced Materials and Structures, 2021(3):1892888.

    [16] Xie L T, Wang S Y , Zhang C Z, et al. An analysis of the thickness vibration of an unelectroded doubly-rotated quartz circular plate[J]. The Journal of the Acoustical Society of America, 2018, 144(2):814-821.

    [17] Pezerat C, Guyader J L. Identification of vibration sources[J]. Applied Acoustics, 2000, 61(3):309-324.

    [18] Sortino M, Totis G, Prosperi F. Modeling the dynamic properties of conventional and high-damping boring bars[J]. Mechanical Systems and Signal Processing, 2013, 34(1/2):340-352.

    [19] Chakraverty S. Vibration of Plates[M]. New York: CRC Press, 2009.

    [20] Kohnke P C. ANSYS[M]. Berlin: Springer Heidelberg, 1982.

    [21] Huang Q X, Zhao G H, Zhou C L, et al. Experiment and simulation analysis of roll-bonded Q235 steel plate[J]. Revista De Metalurgia, 2016, 52(2):e069.

    [22] Ju S H, Ni S H. Determining Rayleigh damping parameters of soils for finite element analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31(10):1239-1255.

    [23] Varkonyi-Koczy A R. A recursive fast Fourier transfor- mation algorithm[J]. Circuits & Systems II: Analog & Digital Signal Processing, 2002, 42(9):614-616.

    集裝箱提升和移動(dòng)中傳感器支架振動(dòng)的測(cè)量

    田 昊1, 黃 奇2, 吳增文1, 王 驥1*

    (1.寧波大學(xué) 機(jī)械工程與力學(xué)學(xué)院, 浙江 寧波 315211; 2.湖州職業(yè)技術(shù)學(xué)院 建筑工程學(xué)院, 浙江 湖州 313000)

    在起重機(jī)搬運(yùn)集裝箱的過程中, 振動(dòng)和沖擊會(huì)損壞集裝箱的底層結(jié)構(gòu)(如傳感器支架). 為確保傳感器支架在運(yùn)輸時(shí)正常工作, 對(duì)傳感器的狀態(tài)進(jìn)行監(jiān)測(cè)并采取相應(yīng)補(bǔ)救措施. 通過理論分析和實(shí)驗(yàn)測(cè)量相結(jié)合的方式, 對(duì)集裝箱結(jié)構(gòu)中傳感器支架的振動(dòng)進(jìn)行了研究. 結(jié)果表明, 在12~25Hz頻段, 傳感器支架有較大的位移響應(yīng); 在4100~5000Hz頻段, 傳感器支架有較大的加速度響應(yīng). 因此, 可以針對(duì)這兩個(gè)主要頻率區(qū)間進(jìn)行初步隔振方案設(shè)計(jì), 并討論可行性分析和優(yōu)化目標(biāo).

    振動(dòng); 測(cè)量; 激光; 分析; 結(jié)構(gòu); 集裝箱

    2021?04?28.

    國(guó)家自然科學(xué)基金(16472142); 寧波市科技創(chuàng)新2025計(jì)劃(2019B10122).

    田昊(1992-), 男, 吉林松原人, 在讀碩士研究生, 主要研究方向: 振動(dòng)測(cè)試與分析. E-mail: 261364590@qq.com

    王驥(1962-), 男, 甘肅徽縣人, 教授, 主要研究方向: 壓電聲波諧振器. E-mail: wangji@nbu.edu.cn

    O329

    A

    1001-5132(2022)02-0079-10

    寧波大學(xué)學(xué)報(bào)(理工版)網(wǎng)址: http://journallg.nbu.edu.cn/

    (責(zé)任編輯 章踐立)

    猜你喜歡
    寧波大學(xué)湖州頻段
    《寧波大學(xué)學(xué)報(bào)(理工版)》征稿簡(jiǎn)則
    《寧波大學(xué)學(xué)報(bào)(教育科學(xué)版)》稿約
    gPhone重力儀的面波頻段響應(yīng)實(shí)測(cè)研究
    地震研究(2021年1期)2021-04-13 01:04:56
    A Personal Tragedy The professionalism of Stevens
    Research on College Education Based on VR Technology
    湖州出土郡國(guó)五銖錢
    推擠的5GHz頻段
    CHIP新電腦(2016年3期)2016-03-10 14:07:52
    湖州特色小鎮(zhèn)的“特”與“色”
    TD—LTE在D頻段和F頻段的覆蓋能力差異
    湖州練市小學(xué)
    亚洲人成网站在线播| 亚洲在久久综合| 国产中年淑女户外野战色| 久久国内精品自在自线图片| av在线播放精品| 各种免费的搞黄视频| av免费观看日本| 交换朋友夫妻互换小说| 中文天堂在线官网| www.av在线官网国产| 99re6热这里在线精品视频| 久久这里有精品视频免费| 精品亚洲乱码少妇综合久久| a级毛色黄片| 一本一本综合久久| 97在线视频观看| 最近最新中文字幕免费大全7| 看非洲黑人一级黄片| 2021天堂中文幕一二区在线观| 天天躁夜夜躁狠狠久久av| 亚洲第一区二区三区不卡| 亚洲av二区三区四区| 免费看光身美女| 成人美女网站在线观看视频| 成年免费大片在线观看| 最近2019中文字幕mv第一页| 一级毛片我不卡| 美女内射精品一级片tv| 免费大片18禁| 久久综合国产亚洲精品| 噜噜噜噜噜久久久久久91| 少妇的逼好多水| 高清日韩中文字幕在线| 亚洲精品久久久久久婷婷小说| 国产高清不卡午夜福利| 伦精品一区二区三区| 男女无遮挡免费网站观看| 中文在线观看免费www的网站| 亚洲欧美成人精品一区二区| 人妻少妇偷人精品九色| 国产在视频线精品| 精品久久久久久久末码| 校园人妻丝袜中文字幕| 国产国拍精品亚洲av在线观看| av播播在线观看一区| 久久精品人妻少妇| 黄色日韩在线| 女人久久www免费人成看片| 亚洲在久久综合| 97超碰精品成人国产| 青春草视频在线免费观看| 国产高清三级在线| 乱码一卡2卡4卡精品| 亚洲久久久久久中文字幕| 国产一级毛片在线| 日本一本二区三区精品| 日本一二三区视频观看| av卡一久久| 欧美成人午夜免费资源| 午夜老司机福利剧场| 国产综合精华液| 国国产精品蜜臀av免费| 五月玫瑰六月丁香| 美女国产视频在线观看| 国产伦精品一区二区三区视频9| 日本与韩国留学比较| 亚洲欧美一区二区三区黑人 | 九九在线视频观看精品| 麻豆成人av视频| 免费看不卡的av| 亚洲人成网站在线观看播放| 国产探花在线观看一区二区| 一级爰片在线观看| 国产大屁股一区二区在线视频| 亚洲美女搞黄在线观看| 蜜桃亚洲精品一区二区三区| 三级国产精品片| 性色av一级| 青春草国产在线视频| 欧美丝袜亚洲另类| 狂野欧美白嫩少妇大欣赏| 国产亚洲av嫩草精品影院| 精品久久久精品久久久| 成人无遮挡网站| 男男h啪啪无遮挡| 午夜亚洲福利在线播放| 嫩草影院精品99| 啦啦啦在线观看免费高清www| 精品一区二区免费观看| 久久久久久伊人网av| 久久久久久久午夜电影| 男女边吃奶边做爰视频| 日韩av免费高清视频| 国产亚洲91精品色在线| 亚洲国产欧美在线一区| 97超视频在线观看视频| 日韩三级伦理在线观看| 九九久久精品国产亚洲av麻豆| 亚洲欧美日韩无卡精品| 又大又黄又爽视频免费| 草草在线视频免费看| 99久久中文字幕三级久久日本| 免费电影在线观看免费观看| 高清日韩中文字幕在线| 菩萨蛮人人尽说江南好唐韦庄| 看非洲黑人一级黄片| 菩萨蛮人人尽说江南好唐韦庄| 高清日韩中文字幕在线| 精品午夜福利在线看| 国产精品国产三级国产av玫瑰| 又粗又硬又长又爽又黄的视频| 777米奇影视久久| 国产黄a三级三级三级人| 精品一区在线观看国产| 噜噜噜噜噜久久久久久91| 在线观看国产h片| 综合色丁香网| 天美传媒精品一区二区| av在线天堂中文字幕| 嫩草影院精品99| 69人妻影院| 国产免费一区二区三区四区乱码| 五月天丁香电影| 人妻系列 视频| 日本黄色片子视频| 国产精品伦人一区二区| 午夜精品国产一区二区电影 | 欧美高清成人免费视频www| 日韩电影二区| 亚洲av中文字字幕乱码综合| 亚洲,欧美,日韩| 国产精品.久久久| 欧美最新免费一区二区三区| 1000部很黄的大片| 在线观看av片永久免费下载| 国产永久视频网站| 在线观看一区二区三区| 日本wwww免费看| 日韩不卡一区二区三区视频在线| 最近最新中文字幕免费大全7| 一级片'在线观看视频| 一级二级三级毛片免费看| 久久久精品94久久精品| 欧美性猛交╳xxx乱大交人| 最近中文字幕高清免费大全6| 91精品伊人久久大香线蕉| av卡一久久| 男插女下体视频免费在线播放| 免费看av在线观看网站| 国产老妇伦熟女老妇高清| 精品一区二区三区视频在线| 一级黄片播放器| 精品亚洲乱码少妇综合久久| 中文在线观看免费www的网站| 国产在线一区二区三区精| 欧美一级a爱片免费观看看| 精品久久久久久久人妻蜜臀av| 尾随美女入室| 看十八女毛片水多多多| 男的添女的下面高潮视频| 永久网站在线| 亚洲精品视频女| 日韩精品有码人妻一区| 我的女老师完整版在线观看| 欧美性猛交╳xxx乱大交人| 一个人观看的视频www高清免费观看| 春色校园在线视频观看| 人妻少妇偷人精品九色| 18禁动态无遮挡网站| 真实男女啪啪啪动态图| 欧美高清成人免费视频www| 黄色日韩在线| 只有这里有精品99| 久久99热这里只有精品18| 亚洲最大成人av| 一本久久精品| 18禁动态无遮挡网站| 国产成人精品一,二区| 中国美白少妇内射xxxbb| 久久久久久久久久人人人人人人| 自拍偷自拍亚洲精品老妇| 亚洲美女视频黄频| 夫妻午夜视频| 91久久精品国产一区二区成人| 狂野欧美激情性bbbbbb| 超碰97精品在线观看| 天堂网av新在线| 日韩电影二区| 色综合色国产| 久久久午夜欧美精品| 精品国产三级普通话版| 国产精品爽爽va在线观看网站| 日日摸夜夜添夜夜爱| 国产亚洲av嫩草精品影院| 干丝袜人妻中文字幕| 丝袜喷水一区| 国产成人午夜福利电影在线观看| 1000部很黄的大片| 99热国产这里只有精品6| 国产一区二区亚洲精品在线观看| 丝袜美腿在线中文| 色视频www国产| 国产色爽女视频免费观看| 黄色配什么色好看| 欧美精品人与动牲交sv欧美| 成人国产麻豆网| 久久影院123| 日本欧美国产在线视频| 亚洲国产成人一精品久久久| 国产精品国产av在线观看| 亚洲成人av在线免费| 欧美日韩在线观看h| 国产av不卡久久| 久久韩国三级中文字幕| 乱系列少妇在线播放| av黄色大香蕉| 色综合色国产| 日本与韩国留学比较| 夫妻午夜视频| 午夜老司机福利剧场| 蜜桃亚洲精品一区二区三区| 日韩一区二区视频免费看| 日本熟妇午夜| 国产精品偷伦视频观看了| 最新中文字幕久久久久| av免费观看日本| 国产精品人妻久久久久久| 日本午夜av视频| 自拍欧美九色日韩亚洲蝌蚪91 | 在线观看国产h片| 午夜福利视频精品| 国产片特级美女逼逼视频| 国产亚洲一区二区精品| 日韩视频在线欧美| 99久久九九国产精品国产免费| 日韩av不卡免费在线播放| 男女下面进入的视频免费午夜| 最近最新中文字幕免费大全7| 最近中文字幕高清免费大全6| 一本一本综合久久| 蜜桃久久精品国产亚洲av| a级一级毛片免费在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲精品日韩av片在线观看| 亚洲精品国产成人久久av| 好男人在线观看高清免费视频| av黄色大香蕉| 国产欧美亚洲国产| freevideosex欧美| 欧美精品国产亚洲| 丰满少妇做爰视频| 国产v大片淫在线免费观看| 看黄色毛片网站| 免费观看在线日韩| 亚洲国产av新网站| 午夜亚洲福利在线播放| 日韩 亚洲 欧美在线| 亚洲精品乱码久久久v下载方式| 国产成人一区二区在线| 亚洲最大成人手机在线| 少妇熟女欧美另类| 日韩欧美一区视频在线观看 | 久久韩国三级中文字幕| 亚洲欧美清纯卡通| 直男gayav资源| 欧美激情久久久久久爽电影| 久久99蜜桃精品久久| 国产精品爽爽va在线观看网站| 在现免费观看毛片| 尤物成人国产欧美一区二区三区| 黄色一级大片看看| 少妇人妻一区二区三区视频| 一级毛片电影观看| 国产老妇伦熟女老妇高清| 国产淫语在线视频| 国产免费福利视频在线观看| 亚洲伊人久久精品综合| 日本爱情动作片www.在线观看| 国产黄色视频一区二区在线观看| 国产一区有黄有色的免费视频| 人人妻人人爽人人添夜夜欢视频 | 激情五月婷婷亚洲| 中文乱码字字幕精品一区二区三区| 黄色欧美视频在线观看| 国产精品一区二区在线观看99| 国内揄拍国产精品人妻在线| 久久精品久久精品一区二区三区| 国产精品久久久久久精品古装| 熟女av电影| 午夜福利高清视频| 又大又黄又爽视频免费| 欧美性感艳星| 欧美xxxx性猛交bbbb| 赤兔流量卡办理| 亚洲精品日韩在线中文字幕| 男女边吃奶边做爰视频| 精品人妻熟女av久视频| 国产伦精品一区二区三区四那| 22中文网久久字幕| 国产精品三级大全| 在线免费十八禁| 亚洲丝袜综合中文字幕| 男的添女的下面高潮视频| 久久人人爽人人爽人人片va| 熟女人妻精品中文字幕| av专区在线播放| 日韩av在线免费看完整版不卡| 亚州av有码| 亚洲av免费高清在线观看| 老师上课跳d突然被开到最大视频| 精品酒店卫生间| 亚洲成人中文字幕在线播放| 色视频在线一区二区三区| 国产乱来视频区| 亚洲欧美成人精品一区二区| 久久久午夜欧美精品| 中国国产av一级| 国产69精品久久久久777片| 国产精品99久久久久久久久| av播播在线观看一区| 久久人人爽av亚洲精品天堂 | 日本一二三区视频观看| 国产色婷婷99| 国产爱豆传媒在线观看| 夫妻午夜视频| 一级黄片播放器| 波多野结衣巨乳人妻| 亚洲精品日韩在线中文字幕| 成人特级av手机在线观看| 秋霞在线观看毛片| 免费黄频网站在线观看国产| 国产高清不卡午夜福利| 高清日韩中文字幕在线| 最近手机中文字幕大全| 精品人妻一区二区三区麻豆| 欧美区成人在线视频| 日日撸夜夜添| 毛片女人毛片| 国产大屁股一区二区在线视频| 欧美三级亚洲精品| 日韩三级伦理在线观看| 简卡轻食公司| 在线播放无遮挡| av免费观看日本| 欧美成人a在线观看| 久久精品国产亚洲av天美| 网址你懂的国产日韩在线| 2021天堂中文幕一二区在线观| 噜噜噜噜噜久久久久久91| 久久精品国产亚洲网站| 日韩成人伦理影院| 国产精品福利在线免费观看| 青青草视频在线视频观看| 亚洲av不卡在线观看| 人体艺术视频欧美日本| 国产成年人精品一区二区| 99久久精品国产国产毛片| 精品久久久久久久人妻蜜臀av| 久久99蜜桃精品久久| 美女xxoo啪啪120秒动态图| 如何舔出高潮| 黄色日韩在线| 七月丁香在线播放| 国产人妻一区二区三区在| 日韩在线高清观看一区二区三区| 国产一区二区在线观看日韩| 亚洲国产最新在线播放| 99热这里只有是精品50| 2022亚洲国产成人精品| 午夜福利视频精品| 国产亚洲av片在线观看秒播厂| 亚洲国产高清在线一区二区三| 国产欧美另类精品又又久久亚洲欧美| 熟女人妻精品中文字幕| 在线播放无遮挡| 日韩伦理黄色片| 日本一二三区视频观看| 80岁老熟妇乱子伦牲交| 国产精品国产三级专区第一集| 超碰av人人做人人爽久久| 精品99又大又爽又粗少妇毛片| 国产精品一区二区在线观看99| 黑人高潮一二区| 少妇 在线观看| 国产毛片a区久久久久| 免费不卡的大黄色大毛片视频在线观看| 人妻少妇偷人精品九色| 国产黄色视频一区二区在线观看| 国产在线男女| 精品久久久久久久久亚洲| 久久国内精品自在自线图片| 赤兔流量卡办理| 国产成人免费观看mmmm| 久久久久九九精品影院| 男女无遮挡免费网站观看| 日韩人妻高清精品专区| 亚洲精品久久午夜乱码| 亚洲人成网站在线播| 寂寞人妻少妇视频99o| 一级二级三级毛片免费看| 亚洲久久久久久中文字幕| av.在线天堂| 久久ye,这里只有精品| 丝瓜视频免费看黄片| 日本-黄色视频高清免费观看| 一级毛片久久久久久久久女| 又爽又黄a免费视频| 成人毛片a级毛片在线播放| 18禁在线播放成人免费| av线在线观看网站| 男人舔奶头视频| 2018国产大陆天天弄谢| 亚洲最大成人手机在线| 亚洲人成网站在线观看播放| 亚洲国产高清在线一区二区三| 国国产精品蜜臀av免费| 18禁动态无遮挡网站| 亚洲av日韩在线播放| 一级二级三级毛片免费看| 乱码一卡2卡4卡精品| 亚洲精品乱码久久久久久按摩| 免费观看无遮挡的男女| 国产成人精品一,二区| 国产极品天堂在线| 天天躁日日操中文字幕| 日本一本二区三区精品| 国产乱人视频| 国产免费一区二区三区四区乱码| 亚洲av中文字字幕乱码综合| 美女主播在线视频| 亚洲四区av| 欧美老熟妇乱子伦牲交| 国产成年人精品一区二区| 国产乱来视频区| 国产有黄有色有爽视频| 超碰av人人做人人爽久久| 男女那种视频在线观看| 深夜a级毛片| 丝袜脚勾引网站| 国产一区二区三区综合在线观看 | av在线app专区| 22中文网久久字幕| 久久韩国三级中文字幕| 国产又色又爽无遮挡免| 国产精品一及| 成年免费大片在线观看| 全区人妻精品视频| 午夜亚洲福利在线播放| 男人添女人高潮全过程视频| 国产一区二区在线观看日韩| 国产成人aa在线观看| 老司机影院毛片| 亚洲av电影在线观看一区二区三区 | 熟女人妻精品中文字幕| 五月开心婷婷网| 亚洲精品国产色婷婷电影| 在线观看一区二区三区激情| 国产 一区精品| 五月天丁香电影| 亚洲国产日韩一区二区| 2018国产大陆天天弄谢| 亚洲人成网站在线播| 男女边摸边吃奶| 国产精品久久久久久av不卡| 看黄色毛片网站| 国产精品国产三级国产av玫瑰| 亚洲最大成人中文| 国产探花极品一区二区| 大码成人一级视频| 极品教师在线视频| 午夜福利在线在线| 99久久精品国产国产毛片| 国产一区二区三区综合在线观看 | 日韩在线高清观看一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 成年免费大片在线观看| av在线蜜桃| 卡戴珊不雅视频在线播放| 亚洲欧美成人精品一区二区| 亚洲精品乱久久久久久| 中文字幕制服av| av在线观看视频网站免费| 五月天丁香电影| 亚洲av二区三区四区| 青春草亚洲视频在线观看| 国产成人精品一,二区| 亚洲精品成人久久久久久| 亚洲国产精品成人久久小说| 黄色日韩在线| 视频中文字幕在线观看| 赤兔流量卡办理| 又粗又硬又长又爽又黄的视频| 久久精品国产鲁丝片午夜精品| av国产免费在线观看| 最近的中文字幕免费完整| 国产午夜福利久久久久久| 国产免费视频播放在线视频| 人妻一区二区av| 欧美性猛交╳xxx乱大交人| 欧美潮喷喷水| 亚洲av福利一区| 亚洲天堂国产精品一区在线| 亚洲欧美成人综合另类久久久| 国产一级毛片在线| 国产亚洲5aaaaa淫片| 精品一区二区三区视频在线| 你懂的网址亚洲精品在线观看| 欧美成人a在线观看| 日韩,欧美,国产一区二区三区| 男女国产视频网站| tube8黄色片| 国产伦精品一区二区三区视频9| 一级av片app| 国产精品偷伦视频观看了| 午夜激情福利司机影院| 身体一侧抽搐| av国产久精品久网站免费入址| 人妻制服诱惑在线中文字幕| 麻豆国产97在线/欧美| 观看免费一级毛片| 亚洲av.av天堂| 亚洲图色成人| 日韩不卡一区二区三区视频在线| 精品99又大又爽又粗少妇毛片| 深夜a级毛片| 性色av一级| 日产精品乱码卡一卡2卡三| 黄色怎么调成土黄色| 久久久欧美国产精品| 又粗又硬又长又爽又黄的视频| 亚洲国产精品国产精品| 久久精品国产自在天天线| 国产亚洲一区二区精品| 亚洲真实伦在线观看| 国产老妇伦熟女老妇高清| 亚洲第一区二区三区不卡| 插阴视频在线观看视频| av福利片在线观看| videossex国产| 国产老妇女一区| 能在线免费看毛片的网站| 亚洲国产日韩一区二区| 日本爱情动作片www.在线观看| 亚洲性久久影院| 听说在线观看完整版免费高清| 91精品一卡2卡3卡4卡| a级毛片免费高清观看在线播放| 日韩一区二区视频免费看| 国产av不卡久久| 国产色婷婷99| 午夜激情久久久久久久| 中文字幕久久专区| 有码 亚洲区| 日韩一区二区视频免费看| 国产男女内射视频| 80岁老熟妇乱子伦牲交| 男女国产视频网站| 18+在线观看网站| 男女国产视频网站| 另类亚洲欧美激情| 97在线视频观看| 成人午夜精彩视频在线观看| 色哟哟·www| 成人欧美大片| 国产国拍精品亚洲av在线观看| 午夜免费观看性视频| 少妇的逼好多水| 成年女人在线观看亚洲视频 | av在线app专区| 亚洲精品色激情综合| 联通29元200g的流量卡| 精品久久国产蜜桃| 国产欧美日韩精品一区二区| av一本久久久久| 国产伦精品一区二区三区四那| 精品一区在线观看国产| 91狼人影院| 深爱激情五月婷婷| 成人高潮视频无遮挡免费网站| 观看美女的网站| 黄色一级大片看看| 18禁在线无遮挡免费观看视频| 亚洲性久久影院| 久久97久久精品| 人人妻人人澡人人爽人人夜夜| 一区二区三区免费毛片| 在线天堂最新版资源| 一本一本综合久久| 男的添女的下面高潮视频| 水蜜桃什么品种好| 国产黄频视频在线观看| 国产精品久久久久久精品古装| 日本色播在线视频| 欧美高清性xxxxhd video| 亚洲伊人久久精品综合| 真实男女啪啪啪动态图| 日本猛色少妇xxxxx猛交久久| 精品久久久久久久人妻蜜臀av| 一级二级三级毛片免费看| 亚洲在久久综合| 久久韩国三级中文字幕| 99精国产麻豆久久婷婷| 性插视频无遮挡在线免费观看| 精品国产露脸久久av麻豆| 日本欧美国产在线视频| 成人毛片a级毛片在线播放| 久久人人爽人人片av| 亚洲成人中文字幕在线播放| 国产在线一区二区三区精| 一级毛片 在线播放| 国产成人精品一,二区| 97在线视频观看| 国产成人freesex在线| 亚洲婷婷狠狠爱综合网| 亚洲av日韩在线播放|