• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Angular engineering strategy of an additional periodic phase for widely tunable phase-matched deep-ultraviolet second harmonic generation

    2022-03-15 10:23:36MingchuanShaoFeiLiangHaohaiYuandHuaijinZhang
    Light: Science & Applications 2022年2期

    Mingchuan Shao,Fei Liang,Haohai Yu?and Huaijin Zhang?

    1State Key Laboratory of Crystal Materials and Institute of Crystal Materials,Shandong University,Jinan 250100,China

    Abstract Manipulation of the light phase lies at the heart of the investigation of light-matter interactions,especially for efficient nonlinear optical processes.Here,we originally propose the angular engineering strategy of the additional periodic phase(APP)for realization of tunable phase matching and experimentally demonstrate the widely tunable phasematched second harmonic generation(SHG)which is expected for dozens of years.With an APP quartz crystal,the phase difference between the fundamental and frequency-doubled light is continuously angularly compensated under this strategy,which results the unprecedented and efficient frequency doubling at wavelengths almost covering the deep-UV spectral range from 221 to 332 nm.What’s more,all the possible phase-matching types are originally realized simultaneously under the angular engineering phase-matching conditions.This work should not only provide a novel and practical nonlinear photonic device for tunable deep-UV radiation but also be helpful for further study of the light-matter interaction process.

    Introduction

    Phase is a “memory” of motion in the classical and quantum wave functions1-3and can record the trajectory and states of particles and waves in time and space simultaneously4,5.Phase engineering of a wave function influences and determines the tendency and even results of physical processes,which could also give rise to abundant fascinating phenomena,such as the soliton,Moiré lattices and topological charge6-8,thus boosting the development of integrated photonics,phononics and electronics9-11.For the electromagnetic wave,its behaviour can be well described by Maxwell’s equation,and manipulation of the phase results in weak-field linear optics,including reflection,refraction,scattering and interferometric control of absorption12-15.Under strong electromagnetic fields with ultrahigh electric field intensity,the interacting matter could respond nonlinearly and generate nonlinear polarization and nonlinear optics16,whose efficiency also depends on the phase relationship,with manifestation of momentum conservation.For example,the energy flow could be inverted when the phase difference reaches π in the second harmonic generation(SHG)process if the phase is mismatched.To realize highly efficient optical conversion,a phasematching condition between the fundamental and harmonic electromagnetic waves is required.This prerequisite was realized in many anisotropic crystals with inherent birefringence,which broadens the available wavelength of laser sources17,18but concurrently precludes many nonlinear materials without suitable birefringence.To break the strict birefringent limitation,the quasi-phase-matching(QPM)technique was proposed in 1962 by employing periodic inversion of the polarization direction of nonlinear crystals19,which has been demonstrated in many ferroelectric materials20-22and applied in classical and quantum optics fields for the generation of frequency conversion,nonlinear imaging,quantum information generation and computation23-25.However,there are also some“clouds”in phase-matching nonlinear optics,e.g.,crystals without suitable birefringence and invertible ferroelectric domains were ruled out,which constrains the further development and application of nonlinear photonics in the broad spectral range,especially in the ultraviolet(UV)region.In addition,the well-designed frequency converters are wavelength- and polarization-dependent,which means that the typical wavelength requires a particular frequency converter with particular phase-matching type.The novel strategy for the efficient tunable frequency conversion and universal nonlinear crystals are expected for dozens of years.

    Recently,we proposed a novel and universal phasematching strategy associated with phase manipulation26,named as additional periodic phase(APP)phase matching.Such phase-matching condition is attributed to the artificial manipulation of the optical phase in the periodic ordered/disordered alignments.Meanwhile,the light phase is related to its propagation length in the crystal,thereby giving rise to the possibility of the generation of tunable phase matching if the phase could be angularly engineered in angular APP phase matching,especially in the deep-UV region where the practical nonlinear optical crystals are rare and the available laser wavelengths are discrete up to now.The angular APP phase matching would provide a new way for the development and design of nonlinear optical materials without suitable birefringence but with excellent nonlinear optical properties(e.g.,short UV cut-off edge or large nonlinear coefficient)in the deep-UV region.

    Results

    Herein,we originally theoretically investigated angular engineering of the additional periodic phase in APP phase matching and experimentally realized efficient tunable SHG(221-332 nm)covering almost the entire deep-UV spectral range with a tunable range of 111 nm for the first time to our knowledge.In addition,all possible phase-matching types are also originally simultaneously achieved with the participation of phase variation induced by the distribution of the grating period within a certain range.This novel and practicable work should be further development of APP phase matching and could inspire further studies in nonlinear optics,photonics and even physics.

    Fig.1 Two different ways to provide phase manipulation if the phase is mismatched.a Schematic of the traditional method with a π phase shift at the interfaces.The interacting waves are totally reflected repeatedly with a propagation distance of Upon each reflection,E(ω)and E(2ω)are inverted with a π phase shift at the interfaces.b Schematic of the APP with a continuous phase change.In crystalline regions,a nonlinear optical process occurs with a phase difference Δφa =(2m-1)π,and then,in amorphous regions,phase manipulation operates with an APP Δφb =(2n-1)π

    Under the plane-wave approximation,electric field with a frequency of ωl(l=1,2,3)and an interaction length ofzcan be expressed as16

    Fig.2 APP phase matching with light phase manipulation for nonlinear frequency conversion.a SHG intensity(I2ω)under phase mismatch and different APP phase-matching conditions with phase difference Δφ in a nonlinear crystal.The relative SHG intensities with light phasemanipulation of Δφa :Δφb =π :π,3π :π and 3π :3π correspond to the red,blue and orange lines,respectively.b Distribution of the second-order nonlinear coefficient d with the phase difference Δφ

    Next,we demonstrate the theoretical and experimental feasibility of angular engineering of the APP.If the light propagates in the direction of the phase grating,then a specific SHG wavelength can be obtained by special reciprocal vector compensation.In addition,new angular degrees of freedom in spatial modulation can be introduced with multiple phase grating layers fabricated along the depth direction to obtain large-scale APP crystals,which enables angular APP phase matching(Fig.3a).In this way,we can realize tunable phase-matched SHG with angular engineering of the APP in one APP crystal.Compared with angular BPM limited by strict refractive index dispersion condition Δk=0 or angular QPM depending on ferroelectric materials28-30,the angular APP technique could realize tunable phase matching in the nonlinear optical materials no matter those with or without Δk=0 and reversed ferroelectric domains by continuous phase manipulation of Δφ=2Nπ.Moreover,angular APP strategy should be theoretically suitable for all non-centrosymmetric nonlinear crystals in the entire spectral transmission range.What’s more,large nonlinear coefficients could be employed under APP phase matching condition,which should be more flexible compared to the birefringence phase-matching condition.

    Fig.3 Angular APP phase-matching engineering diagram.a Schematic of laser direct writing of APP gratings.Multiple grating layers can be fabricated along the depth direction to obtain large-scale APP crystals.∧=La+Lb is the fabricated APP grating period,and La and Lb are the lengths of crystalline/amorphous regions of the crystal with second-order nonlinear coefficients of d/0,respectively.b APP gratings along the Z direction.→ρ(θ,?)is the propagation direction of the interacting waves;θ is the phase-matching angle between the propagation direction and optical axis;and ? is the azimuth angle

    Taking the structure of APP gratings arranged along thez-axis as an example,the interacting waves propagate along the direction of →ρ(θ,?),where θ is the phasematching angle between the propagation direction andz-axis and?is the azimuth angle(Fig.3b).Besides the changing of grating period length,the function of angle tuning is realized by the manipulation of the optical path to satisfy the phase relation of Δφ=Δφa+Δφb=2Nπ of periodic crystalline/amorphous regions by continuous phase compensations.In the crystalline regions,nonlinear frequency conversion proceeds with the phase difference Δφa(θ,?)=(k3(θ,?)-k2(θ,?)-Associated with the APP phase matching,Δφa(θ,?)=(2m-1)π is required for efficient frequency conversion.For interacting waves with wave-vectors ofkl(θ,?)(l=1,2,3),there are 23types of polarization configurations for angular APP phase matching owing to the two different values of refractive indicesnoandne,wherenoandnestand for the refractive indices of ordinary(o)light and extraordinary(e)light,respectively.Generally,a particular phase angle satisfies typical SHG light with a specific polarization;thus,the eight types of phase-matching conditions cannot coexist for the dispersion of intrinsic refractive indices.Due to the finite processing accuracy,the phase grating period is uncertainly distributed with an error ofLr;thus,an uncertain phase variation Δφris generated that participates in the phase compensation process,providing the possibility for tunable phase-matched SHG with different polarization configurations.Therefore,SHG is concurrently accessible for different types of angular APP phase matching,which greatly utilizes the pump light to improve the conversion efficiency.In the amorphous regions,phase compensation operates withwhereni(i=1,2,3)are the wavelength-dependent refractive indices of interacting waves,regardless of angle.For APP phase matching,Δφb(θ,?)=(2n-1)π from amorphous regions is added to compensate for the phase mismatch in the crystalline regions to realize effective energy conversion.Notably,in APP crystals,the refractive index of the material also varies periodically from the crystalline region to the amorphous region;however,the change in refractive index is very small(<0.005),so the influence on the refraction at the interface of the crystalline/amorphous regions can be ignored26.

    We experimentally realized efficient tunable SHG in the UV spectral range with APP quartz,which has been identified as an efficient deep-UV nonlinear optical crystal by APP techniques26.A fibre femtosecond laser with a central wavelength of 1030 nm and a pulse width of 240 fs was used as the writing source.The minimum focused diameter of the femtosecond laser corresponding to amorphous region can be controlled within 2 μm,basically satisfying fabrication requirements of APP periods.The grating error is measured generally to be<500 nm.The phase gratings are arranged along the optical axis of a Z-cut quartz crystal.By optimizing the incident energy of the writing laser,the crystallinity of the crystal is obviously destroyed and transformed into an amorphous state through laser irradiation,which can be confirmed by the significant reduction in the Raman resonance peaks(see Supplementary Information for details,Fig.S2).A 3 mm long APP quartz crystal with a period length ofLa=Lb=2.1 μm for SHG of the laser at a wavelength of 484 nm was fabricated based on the dispersion equation31,corresponding to light phase manipulation of Δφa=Δφb=π.

    An optical parametric oscillator(optical parametric oscillator,Opolette HE 355 II)with a pulse width of 10 ns and a repetition frequency of 20 Hz was used as the pump light source.First,angular APP phase matching was experimentally demonstrated in the YZ plane(?=90?)with extraordinary light incidence,corresponding to type(eeo)APP phase matching,and(o)and(e)stand for the ordinary and extraordinary polarizations,respectively.The relationship between thedeffand incident angleof APP quartz in the YZ plane calculated by Eq.(6)can be expressed asWidely tunable phase-matched SHG wavelengths from 221 to 332 nm were experimentally achieved through continuous phase-mismatch compensation by rotating the APP quartz along the X direction(Fig.4a),which cover almost the entire UV range from 200 to 350 nm.The tunable SHG wavelengths are the results of the combination of angle tuning and phase variation participation.By theoretical analysis and fitting(orange line in Fig.4b),the SHG wavelengths from 242 to 332 nm are found to be attributed to angular APP phase matching with phase-matched angle.In addition,the SHG wavelength from 221 to 241 nm is mainly attributed to the participation of phase variation Δφrwith a fixed angle,which is generated by the distribution of the entire grating period Λ=La+Lbwithin a certain range from 3.8 to 4.6 μm with an error ofLr=±0.4 μm.Associated with the statistical analysis of the phase variation Δφrand angular engineering for Δφa(θ,?)and Δφb(θ,?),the experimental SHG signal intensities agree well with the theoretical calculations(purple dashed line in Fig.4c).Therefore,the participation of phase variation Δφrcaused by fabrication error provides a realizable method for tunable phase matching.In fact,the designed APP grating structure and the accuracy of the grating fabrication will both affect the phase matching bandwidth.Besides,there is also another possible way for broadening the phase matching bandwidth by the introduction of the particular patterns(such as chirped periodic patterns,fan-out grating,segmented grating,etc.)into the APP materials for the realization of tunable SHG,which would be performed in the further experiments.

    Fig.4 Experimental demonstration of angular APP phase matching with APP quartz with a period of La =Lb =2·1 μm.a Comparison of the tunable spectral region of this work with those of common nonlinear optical crystals in the deep-UV(200-350 nm)range.b Calculation of the angular APP phase-matching angle θ and distribution of absolute value |deff| in the YZ plane when ?=90°.The dots are the experimentally measured phase-matching angles corresponding to SHG wavelengths.c SHG signal intensities at different wavelengths from 221 to 332 nm.The dashed line is the fitting curve of SHG intensities.d Output energy and conversion efficiency of the SHG light at 242 nm.e Calculated(curves)and experimental(dots)SHG intensities for ordinary and extraordinary light at 250 nm with azimuth angle ? tuning from 0°to 90°along the Z direction,where the phase-matching angle is located at θ=29.6°

    Compared with other common deep-UV nonlinear optical crystals,APP quartz shows a great advantage in wavelength tunability32-49(Fig.4a),regardless of BPM materials or QPM ferroelectric materials.The SHG energy reaches a maximum of 10.32 μJ under the input energy of 1025 μJ at a wavelength of 484 nm,corresponding to a SHG peak power of 1.46 kW and an optical conversion efficiency of η=1.01%(Fig.4d),which is almost 10 times higher than that of a QPM quartz with the finest twin structure(17.28 W,η=0.12%)at 266 nm50.The conversion efficiency decreases slightly at high energy,which should be induced by the poor quality of the fundamental laser with the increase in the incident energy under the present conditions.The conversion efficiency can be enhanced by improving the laser fabrication accuracy and beam quality and peak power of fundamental light sources.In addition,the efficiency can also be improved with a nonlinear crystal with larger nonlinear coefficients and longer interaction length.Taking the BBO crystal as an example47-49,the realized tunable wavelength range of BBO crystal is about 20 nm in the ultraviolet range as shown in Fig.4a.Moreover,the maximum output power as high as 1.37 W was recent realized at 213 nm with the efficiency over than 17% with a BBO crystal by the well-designed sumfrequency technique18,which indicates that the BBO crystal could be an excellent ultraviolet crystal and suitable for the high-power ultraviolet lasers with the APP strategy.

    In addition,for realization of multiple types of APP phase matching,we also investigated the angular APP phase matching with a fixed phase-matching angle θ under arbitrary azimuth angle?.Taking the SHG process of pump light at a wavelength of 500 nm as an example,the phase-matching angles in the present APP quartz could be calculated to range from 25.64°to 35.40°for different types of APP phase matching;i.e.,types{(ooe),(oee/eoe),(eee),(ooo),(oeo/eoo),(eeo)} correspond to {25.64°,27.20°,29.06°,29.89°,32.34°,35.40°},respectively.The incident angle was located at θ=29.6°in the experiment with rotation of the APP quartz along the Z direction.Due to the contribution of the phase variation,all types of angular APP phase matching were observed in the SHG process.The SHG intensities for o light and e light were both measured in the experiment with azimuth angle?tuning from 0° to 90°(Fig.4e).By calculating the contribution of each type of phase matching,the experimental data(dots in Fig.4e)agree well with the theoretical simulation(dashed curves in Fig.4e).The total SHG energy reaches a maximum at an azimuth angle of approximately?=30°,and the output energy of SH light is 9.16 μJ with a fundamental wavelength energy of 1012 μJ,corresponding to o light and e light of 7.82 and 1.34 μJ,respectively.Therefore,the angular engineering by tuning azimuth angle?can be employed not only to select nonlinear coefficients,but also to control the polarization output in different phase matching types,which should be very difficult or unavailable in traditional phase-matching conditions due to the dispersion of refractive index,thus could be further applied in relevant scientific fields,such as laser-induced periodic surface structures,laser-scanning nonlinear optical techniques and even some quantum entanglement fields with the nonlinear upconversion process51-53.

    Discussion

    In conclusion,we have demonstrated angular engineering of an APP for widely tunable phase-matched SHG and experimentally demonstrated it in an APP quartz crystal.Through the introduction of angular engineering,efficient SHG was realized in an APP quartz with a tunability of 111 nm in the UV range and all possible phasematching types were simultaneously realized.The optical conversion efficiency and peak power are over 1% and 1 kW,respectively,which could be further improved by improving the fabrication techniques and experimental conditions.Angular APP phase matching should provide a new route for nonlinear optics and thus will be key to opening the door for realization of tunable lasers,which could have applications in modern photonics and physics.

    Materials and methods

    The quartz was cut alongz-axis with the length of about 5 mm.The APP quartz with phase grating period ofLa=Lb=2.1 μm was writing with the energy of 12 μJ by the femtosecond laser(ANTAUS 1030-20)with a pulse duration of 240 fs and a repetition rate of 200 kHz.The femtosecond laser with a central wavelength of 1030 nm was focused inside the crystal through a microscope objective(Mitutoyo 20x,NA=0.35)into the sample,and the crystal is placed on a three-dimensional moving platform with the writing speed of 1 mm s-1.In order to obtain a large-scale APP quartz to meet angular manipulation requirements,five layers phase gratings were fabricated along the depth direction with an interlayer distance of 0.25 mm.

    Acknowledgements

    This work was financially supported by the National Natural Science Foundation of China(NSFC)(92163207,52025021,51890863),Future Plans of Young Scholars at Shandong University.

    Author contributions

    H.Y.and H.Z.conceived the idea and designed the experiments.M.S.carried out the sample synthesis,characterization and laser experiments.F.L.provided constructive discussion and participated in the paper writing.All of the authors contributed to the overall scientific interpretation and edited the manuscript.

    Conflict of interest

    The authors declare no competing interests.

    Supplementary informationThe online version contains supplementary material available at https://doi.org/10.1038/s41377-022-00715-w.

    男女啪啪激烈高潮av片| 一个人看视频在线观看www免费| 精品一区二区三区人妻视频| 亚洲av成人av| 毛片女人毛片| 日本三级黄在线观看| 亚洲性久久影院| 欧美一区二区精品小视频在线| 在线免费观看的www视频| 校园人妻丝袜中文字幕| 国产亚洲av嫩草精品影院| 午夜福利成人在线免费观看| 伦精品一区二区三区| 别揉我奶头 嗯啊视频| 免费看光身美女| 国产精品久久久久久亚洲av鲁大| 99九九线精品视频在线观看视频| 99热6这里只有精品| 亚洲av成人精品一区久久| 亚洲专区国产一区二区| 99久久精品热视频| 男插女下体视频免费在线播放| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成av人片在线播放无| 天天躁夜夜躁狠狠久久av| 久久精品国产清高在天天线| 亚洲18禁久久av| 精品国产三级普通话版| aaaaa片日本免费| 一区二区三区免费毛片| 国产亚洲av嫩草精品影院| 1024手机看黄色片| 久久久国产成人免费| 少妇人妻精品综合一区二区 | 国产女主播在线喷水免费视频网站 | 亚洲国产日韩欧美精品在线观看| 黄色欧美视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 欧美高清性xxxxhd video| 在线播放无遮挡| 午夜福利高清视频| 成人漫画全彩无遮挡| 国产美女午夜福利| 午夜日韩欧美国产| 亚洲精品日韩av片在线观看| 少妇裸体淫交视频免费看高清| 国产亚洲欧美98| 日日摸夜夜添夜夜添av毛片| 欧美bdsm另类| 一级毛片我不卡| 如何舔出高潮| 国产白丝娇喘喷水9色精品| av国产免费在线观看| 国产精品女同一区二区软件| 午夜激情福利司机影院| 久久精品国产亚洲av涩爱 | 麻豆国产97在线/欧美| 1024手机看黄色片| 免费av观看视频| 久久欧美精品欧美久久欧美| av在线播放精品| 99久国产av精品| 久久鲁丝午夜福利片| 国产 一区精品| 日韩欧美免费精品| 女人被狂操c到高潮| 成人永久免费在线观看视频| 国产伦精品一区二区三区视频9| 一个人观看的视频www高清免费观看| 中文字幕免费在线视频6| 国产精品一区二区三区四区免费观看 | 国模一区二区三区四区视频| 日韩大尺度精品在线看网址| 大型黄色视频在线免费观看| 观看美女的网站| 免费看日本二区| 欧美+日韩+精品| 一级a爱片免费观看的视频| 国产高清有码在线观看视频| 老女人水多毛片| 欧美日韩一区二区视频在线观看视频在线 | 精品人妻偷拍中文字幕| or卡值多少钱| 亚洲精品456在线播放app| 搞女人的毛片| 高清日韩中文字幕在线| 简卡轻食公司| 两性午夜刺激爽爽歪歪视频在线观看| 99热网站在线观看| 给我免费播放毛片高清在线观看| 日韩欧美在线乱码| avwww免费| 日本a在线网址| 又爽又黄无遮挡网站| 欧美日本视频| 色在线成人网| 欧美在线一区亚洲| 别揉我奶头 嗯啊视频| 亚洲最大成人中文| www.色视频.com| 欧美成人a在线观看| 成人亚洲精品av一区二区| 在线播放无遮挡| 国产av在哪里看| 亚洲最大成人av| 一进一出抽搐动态| 国产激情偷乱视频一区二区| 婷婷精品国产亚洲av在线| АⅤ资源中文在线天堂| 亚洲国产色片| 午夜免费男女啪啪视频观看 | 美女 人体艺术 gogo| 亚洲人成网站高清观看| 日本黄色视频三级网站网址| 变态另类丝袜制服| 最近的中文字幕免费完整| 国产伦精品一区二区三区四那| 悠悠久久av| 久久人人爽人人爽人人片va| 国产人妻一区二区三区在| 日本一本二区三区精品| 国内少妇人妻偷人精品xxx网站| 欧美一区二区国产精品久久精品| 日韩 亚洲 欧美在线| 日韩大尺度精品在线看网址| 久久热精品热| 国产精品精品国产色婷婷| a级毛色黄片| 午夜免费男女啪啪视频观看 | 人妻少妇偷人精品九色| 可以在线观看毛片的网站| 日本黄色视频三级网站网址| 丰满乱子伦码专区| 美女 人体艺术 gogo| 午夜日韩欧美国产| 精品国产三级普通话版| 男人的好看免费观看在线视频| 十八禁国产超污无遮挡网站| 亚洲国产高清在线一区二区三| 久久99热这里只有精品18| 男插女下体视频免费在线播放| 别揉我奶头 嗯啊视频| 网址你懂的国产日韩在线| 少妇丰满av| 97热精品久久久久久| 老司机午夜福利在线观看视频| 久久久a久久爽久久v久久| 青春草视频在线免费观看| 99久久精品一区二区三区| 日韩一区二区视频免费看| 又黄又爽又免费观看的视频| 精品熟女少妇av免费看| 97人妻精品一区二区三区麻豆| 有码 亚洲区| 中国美女看黄片| 性欧美人与动物交配| 乱码一卡2卡4卡精品| 欧美人与善性xxx| 欧美三级亚洲精品| www日本黄色视频网| 久久久久久大精品| 欧美中文日本在线观看视频| 变态另类成人亚洲欧美熟女| 国国产精品蜜臀av免费| 成年女人毛片免费观看观看9| 精品不卡国产一区二区三区| 俄罗斯特黄特色一大片| 别揉我奶头 嗯啊视频| 寂寞人妻少妇视频99o| 激情 狠狠 欧美| 成人亚洲精品av一区二区| 全区人妻精品视频| 搡老妇女老女人老熟妇| 欧美潮喷喷水| 国产蜜桃级精品一区二区三区| 国内精品宾馆在线| 国产成人freesex在线 | 欧美日韩国产亚洲二区| 香蕉av资源在线| 久99久视频精品免费| 精品少妇黑人巨大在线播放 | 亚洲国产精品sss在线观看| videossex国产| 国产激情偷乱视频一区二区| 国产真实伦视频高清在线观看| 淫秽高清视频在线观看| 国语自产精品视频在线第100页| 看黄色毛片网站| 国产高清不卡午夜福利| 99久久精品热视频| 卡戴珊不雅视频在线播放| 色哟哟·www| 两个人视频免费观看高清| 非洲黑人性xxxx精品又粗又长| 日本在线视频免费播放| 国产成人一区二区在线| 日韩精品青青久久久久久| 久久中文看片网| av卡一久久| 啦啦啦啦在线视频资源| 亚洲人成网站在线观看播放| 国产午夜福利久久久久久| 日日撸夜夜添| 两个人视频免费观看高清| 国产中年淑女户外野战色| 97超碰精品成人国产| 午夜福利在线观看免费完整高清在 | 在线观看免费视频日本深夜| 国产精品精品国产色婷婷| 亚洲国产精品国产精品| 美女大奶头视频| 久久午夜亚洲精品久久| 欧美绝顶高潮抽搐喷水| 一级毛片电影观看 | videossex国产| 小蜜桃在线观看免费完整版高清| 五月伊人婷婷丁香| 麻豆乱淫一区二区| 日韩欧美 国产精品| 69人妻影院| 中文字幕久久专区| 国产伦精品一区二区三区视频9| 国产美女午夜福利| 亚洲欧美精品自产自拍| 久久午夜福利片| 亚洲欧美成人精品一区二区| 国产av不卡久久| 成年av动漫网址| 中文字幕av成人在线电影| 亚洲五月天丁香| 97超碰精品成人国产| 国产私拍福利视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 91久久精品电影网| 国产亚洲av嫩草精品影院| 两性午夜刺激爽爽歪歪视频在线观看| a级毛片免费高清观看在线播放| 直男gayav资源| 亚洲精品一区av在线观看| 毛片女人毛片| 国产老妇女一区| 免费大片18禁| 午夜精品一区二区三区免费看| 国产一区二区在线观看日韩| 国产69精品久久久久777片| 国产成人精品久久久久久| 国产高清有码在线观看视频| av在线亚洲专区| 国产精品一区二区三区四区久久| 麻豆av噜噜一区二区三区| 精品一区二区三区人妻视频| 俺也久久电影网| 日本熟妇午夜| 最近视频中文字幕2019在线8| 又黄又爽又刺激的免费视频.| 五月伊人婷婷丁香| 国产69精品久久久久777片| 身体一侧抽搐| 禁无遮挡网站| 亚洲经典国产精华液单| 亚洲av熟女| 午夜日韩欧美国产| 久久久久久国产a免费观看| 日韩欧美国产在线观看| 看非洲黑人一级黄片| 99热6这里只有精品| 亚洲中文字幕日韩| 在线观看午夜福利视频| 一个人看的www免费观看视频| 俄罗斯特黄特色一大片| 久久久欧美国产精品| 亚洲精品色激情综合| 精品久久久久久成人av| 日韩中字成人| 最新在线观看一区二区三区| 日日啪夜夜撸| 欧美xxxx性猛交bbbb| 夜夜看夜夜爽夜夜摸| 丝袜美腿在线中文| 亚洲欧美日韩东京热| 淫秽高清视频在线观看| 精品国内亚洲2022精品成人| 亚洲18禁久久av| 色尼玛亚洲综合影院| 久久人人精品亚洲av| 久99久视频精品免费| 中文亚洲av片在线观看爽| 亚洲欧美日韩卡通动漫| 天天一区二区日本电影三级| 一个人免费在线观看电影| 亚洲av中文字字幕乱码综合| 麻豆国产97在线/欧美| 丝袜喷水一区| 精品乱码久久久久久99久播| 老女人水多毛片| 久久精品夜夜夜夜夜久久蜜豆| 最新在线观看一区二区三区| 国产乱人视频| 国产成人aa在线观看| 国产一级毛片七仙女欲春2| 美女内射精品一级片tv| 婷婷精品国产亚洲av| 日本爱情动作片www.在线观看 | av视频在线观看入口| 欧美日本视频| 国产国拍精品亚洲av在线观看| 久久精品国产亚洲网站| av福利片在线观看| 亚洲内射少妇av| 免费黄网站久久成人精品| 深夜a级毛片| 少妇熟女欧美另类| 日产精品乱码卡一卡2卡三| 亚洲欧美中文字幕日韩二区| 日本黄大片高清| 91在线精品国自产拍蜜月| 日本在线视频免费播放| 变态另类成人亚洲欧美熟女| 久久99热这里只有精品18| 99riav亚洲国产免费| 最近最新中文字幕大全电影3| 成人av一区二区三区在线看| 淫秽高清视频在线观看| 女的被弄到高潮叫床怎么办| 黄色配什么色好看| 久久久久久伊人网av| 毛片女人毛片| 真人做人爱边吃奶动态| 一级a爱片免费观看的视频| 午夜福利在线观看吧| 国产色爽女视频免费观看| 亚洲av中文av极速乱| 欧美一区二区亚洲| 最近最新中文字幕大全电影3| 日韩精品青青久久久久久| 色播亚洲综合网| 国产欧美日韩精品一区二区| 热99在线观看视频| 国产视频内射| 1000部很黄的大片| 国产精品久久久久久av不卡| 中文字幕久久专区| 亚洲国产精品sss在线观看| 最近中文字幕高清免费大全6| 国产久久久一区二区三区| 精品熟女少妇av免费看| 国产一区二区亚洲精品在线观看| 日本撒尿小便嘘嘘汇集6| 黄色日韩在线| 久久久精品94久久精品| 色av中文字幕| 两个人的视频大全免费| 最近中文字幕高清免费大全6| 国产精品一区二区免费欧美| 亚洲国产精品sss在线观看| 国产亚洲av嫩草精品影院| 熟妇人妻久久中文字幕3abv| 嫩草影视91久久| 日韩,欧美,国产一区二区三区 | 精品午夜福利在线看| 国产黄色小视频在线观看| 国产亚洲精品久久久com| 欧美最黄视频在线播放免费| 永久网站在线| 精品乱码久久久久久99久播| 国内精品宾馆在线| 看黄色毛片网站| avwww免费| 不卡一级毛片| 日韩制服骚丝袜av| 精品人妻熟女av久视频| 国产黄片美女视频| 亚洲av成人av| 晚上一个人看的免费电影| 日本熟妇午夜| 91av网一区二区| 一区二区三区四区激情视频 | 国产精品久久视频播放| 午夜精品国产一区二区电影 | 亚洲国产欧美人成| 欧美丝袜亚洲另类| 国产伦一二天堂av在线观看| 久久精品久久久久久噜噜老黄 | 免费在线观看影片大全网站| 色哟哟·www| 久久久国产成人精品二区| 久久久久国产网址| 久久婷婷人人爽人人干人人爱| 日韩亚洲欧美综合| 亚洲国产日韩欧美精品在线观看| 一区福利在线观看| 国产成人aa在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 人人妻人人澡欧美一区二区| 国产日本99.免费观看| 亚洲精品亚洲一区二区| 在线免费观看不下载黄p国产| 国内少妇人妻偷人精品xxx网站| 人妻少妇偷人精品九色| 99国产极品粉嫩在线观看| 国产视频内射| 婷婷色综合大香蕉| 久久久久久久久久久丰满| 国产高清激情床上av| 亚洲第一电影网av| 亚洲av免费在线观看| 亚洲久久久久久中文字幕| 国产高清激情床上av| 久久久久精品国产欧美久久久| 久久精品国产清高在天天线| 成人综合一区亚洲| 精品久久国产蜜桃| 色5月婷婷丁香| 高清日韩中文字幕在线| 一本一本综合久久| 真实男女啪啪啪动态图| 丝袜美腿在线中文| 久久久精品大字幕| 欧美日韩在线观看h| 国产亚洲精品久久久com| 97超碰精品成人国产| 99热只有精品国产| 中文字幕免费在线视频6| 国产一级毛片七仙女欲春2| 乱人视频在线观看| 色av中文字幕| h日本视频在线播放| 精品久久久久久久久av| 久久精品国产亚洲网站| 国产极品精品免费视频能看的| 久久久久久大精品| 又爽又黄a免费视频| 成人毛片a级毛片在线播放| 久久午夜福利片| 午夜精品一区二区三区免费看| 亚洲精品一区av在线观看| 国产欧美日韩一区二区精品| 搞女人的毛片| 十八禁网站免费在线| 特大巨黑吊av在线直播| 成人av一区二区三区在线看| 国产精品久久久久久av不卡| 亚洲无线观看免费| 亚洲国产欧洲综合997久久,| 国产精品伦人一区二区| 成年女人看的毛片在线观看| 最近中文字幕高清免费大全6| 欧美最黄视频在线播放免费| 色噜噜av男人的天堂激情| 1024手机看黄色片| 亚洲欧美成人精品一区二区| 国产精品久久久久久精品电影| 别揉我奶头~嗯~啊~动态视频| 变态另类成人亚洲欧美熟女| 综合色av麻豆| 国产在视频线在精品| 久久热精品热| 狂野欧美激情性xxxx在线观看| 熟女人妻精品中文字幕| 国产综合懂色| 人人妻,人人澡人人爽秒播| 六月丁香七月| 中文字幕av在线有码专区| 黄片wwwwww| 乱系列少妇在线播放| 一个人看的www免费观看视频| 午夜爱爱视频在线播放| a级一级毛片免费在线观看| 一区二区三区高清视频在线| 亚洲内射少妇av| 亚洲欧美成人精品一区二区| 两个人视频免费观看高清| 日本成人三级电影网站| 熟女人妻精品中文字幕| 97人妻精品一区二区三区麻豆| 久久久久久久久久久丰满| 亚洲av成人av| 久久久久久久久久成人| 男女视频在线观看网站免费| 欧美日韩一区二区视频在线观看视频在线 | 无遮挡黄片免费观看| 国产久久久一区二区三区| 日本精品一区二区三区蜜桃| 麻豆一二三区av精品| а√天堂www在线а√下载| 国产精品亚洲一级av第二区| 日本欧美国产在线视频| 午夜影院日韩av| 别揉我奶头 嗯啊视频| 国产av不卡久久| 亚洲成av人片在线播放无| 搡老妇女老女人老熟妇| 国产老妇女一区| 国产精品美女特级片免费视频播放器| 亚洲精品成人久久久久久| 久久久久精品国产欧美久久久| 有码 亚洲区| 免费看光身美女| 插阴视频在线观看视频| 神马国产精品三级电影在线观看| 欧美成人免费av一区二区三区| 丰满人妻一区二区三区视频av| 亚洲丝袜综合中文字幕| av在线播放精品| 国产精品亚洲一级av第二区| 国产中年淑女户外野战色| 男女下面进入的视频免费午夜| 淫妇啪啪啪对白视频| 久久综合国产亚洲精品| .国产精品久久| 国产精品美女特级片免费视频播放器| 黄片wwwwww| 人妻丰满熟妇av一区二区三区| 狂野欧美激情性xxxx在线观看| 国产精品一区二区三区四区免费观看 | 国内精品一区二区在线观看| 亚洲最大成人手机在线| 亚洲成人精品中文字幕电影| 亚洲图色成人| 亚洲18禁久久av| 国产伦一二天堂av在线观看| 午夜免费激情av| 91午夜精品亚洲一区二区三区| 午夜精品国产一区二区电影 | 麻豆国产97在线/欧美| 免费看光身美女| 亚洲四区av| 无遮挡黄片免费观看| 最近最新中文字幕大全电影3| 中文字幕熟女人妻在线| 在线观看免费视频日本深夜| aaaaa片日本免费| 国产高清激情床上av| 国产伦精品一区二区三区四那| 欧美激情在线99| 一区二区三区高清视频在线| 精品99又大又爽又粗少妇毛片| 久久精品国产清高在天天线| 欧美潮喷喷水| 毛片一级片免费看久久久久| 99久久久亚洲精品蜜臀av| 亚洲欧美精品综合久久99| 亚洲av成人av| 日韩精品中文字幕看吧| 午夜爱爱视频在线播放| 亚洲欧美成人综合另类久久久 | 久久久久久久亚洲中文字幕| 舔av片在线| av天堂中文字幕网| 日本撒尿小便嘘嘘汇集6| 国产私拍福利视频在线观看| 91狼人影院| 国产亚洲精品久久久com| 深夜a级毛片| 最近最新中文字幕大全电影3| av在线天堂中文字幕| 夜夜看夜夜爽夜夜摸| 女人被狂操c到高潮| 天堂动漫精品| 国产毛片a区久久久久| 可以在线观看的亚洲视频| 亚洲美女视频黄频| 国产亚洲精品综合一区在线观看| 午夜老司机福利剧场| 亚洲精品在线观看二区| 国产 一区 欧美 日韩| 我要搜黄色片| 国产免费一级a男人的天堂| 亚洲av电影不卡..在线观看| 亚洲熟妇熟女久久| h日本视频在线播放| 秋霞在线观看毛片| 在线免费观看的www视频| 久久久久免费精品人妻一区二区| 日韩高清综合在线| 国产 一区精品| 天堂网av新在线| 亚洲aⅴ乱码一区二区在线播放| 中文字幕av成人在线电影| 久久久久精品国产欧美久久久| 欧美性感艳星| 日本-黄色视频高清免费观看| 在线看三级毛片| 色吧在线观看| 亚洲欧美日韩东京热| 精品人妻熟女av久视频| www.色视频.com| 欧美人与善性xxx| 亚洲国产精品成人久久小说 | 国产成人影院久久av| 国产真实伦视频高清在线观看| 亚洲三级黄色毛片| 69av精品久久久久久| 12—13女人毛片做爰片一| 日本三级黄在线观看| 99九九线精品视频在线观看视频| 日本黄大片高清| 欧美高清性xxxxhd video| 久久久精品欧美日韩精品| 午夜福利在线观看免费完整高清在 | 亚洲天堂国产精品一区在线| 午夜亚洲福利在线播放| 三级国产精品欧美在线观看| 九九爱精品视频在线观看| 欧美性感艳星| 一区二区三区高清视频在线| 在线播放国产精品三级| 俄罗斯特黄特色一大片| 国产免费一级a男人的天堂| 色尼玛亚洲综合影院| 亚洲性夜色夜夜综合| 两个人的视频大全免费| 亚洲第一电影网av| 男女之事视频高清在线观看| 日韩一本色道免费dvd|